root / dandelion.cpp @ 22
Historique | Voir | Annoter | Télécharger (10,96 ko)
1 |
/***************************
|
---|---|
2 |
* ----------------------------------------------------------------------
|
3 |
* Dandelion pappus morphing is actuated by radially patterned material swelling
|
4 |
* ----------------------------------------------------------------------
|
5 |
*
|
6 |
* FreeFem++ simulation scripte used in the following publication :
|
7 |
*
|
8 |
* Madeleine Seale, Annamaria Kiss, Simone Bovio, Ignazio Maria Viola, Enrico
|
9 |
* Mastropaolo, Arezki Boudaoud, Naomi Nakayama,
|
10 |
* "Dandelion pappus morphing is actuated by radially patterned material swelling",
|
11 |
* doi: https://doi.org/10.1101/2021.08.23.457337
|
12 |
*
|
13 |
* Author :
|
14 |
* Annamaria Kiss
|
15 |
* (annamaria.kiss@ens-lyon.fr, Laboratoire RDP, ENS Lyon)
|
16 |
*
|
17 |
* ***************************/
|
18 |
|
19 |
include "getARGV.idp"
|
20 |
|
21 |
// reading script arguments
|
22 |
for (int i=0;i<ARGV.n;++i) |
23 |
{ cout << ARGV[i] << " ";}
|
24 |
cout<<endl; |
25 |
|
26 |
/***************************
|
27 |
* GLOSSARY
|
28 |
* nectary = floral podium
|
29 |
* mesophyl = cortex
|
30 |
/****************************/
|
31 |
|
32 |
/*************************************************************
|
33 |
* PARAMETERS
|
34 |
* **********************************************************/
|
35 |
|
36 |
string output = getARGV("-out", "."); |
37 |
|
38 |
// ---------------- geometrical parameters ----------------
|
39 |
|
40 |
// (lengths are measured in micrometers)
|
41 |
real units=200;
|
42 |
|
43 |
// actuator dimensions
|
44 |
real lx=getARGV("-D", 491.0)/units; //sd =34.4 |
45 |
real ly=getARGV("-H", 240.0)/units; //sd=36.0 |
46 |
|
47 |
// floral podium
|
48 |
real hnect = getARGV("-Hpod", 38.8)/units; //sd=9.6 |
49 |
real Rmeasured=getARGV("-R", 363.0)/units; //sd=49.4 |
50 |
real R=Rmeasured-hnect; |
51 |
|
52 |
// side
|
53 |
real hside=getARGV("-Hside", 91.4)/units; //12.6 |
54 |
real lside=getARGV("-Wside", 47.6)/units; //6.6 |
55 |
|
56 |
// vasculature
|
57 |
real vthickness=getARGV("-Wvasculature", 34.3)/units;//5.5 |
58 |
real cwidth=getARGV("-Dcavity", 74.8)/units; //15.2 |
59 |
|
60 |
// vasculature displacement (from vascular bundle distance)
|
61 |
real vd=getARGV("-dvasc", 15.3)/units; //15.3*0.22 |
62 |
real vposition=lx/2-vthickness-hnect/ly*(lx/2-cwidth/2-vthickness); |
63 |
|
64 |
// mesh parameters
|
65 |
int nvertex=40; |
66 |
cout << "nvertex="<<nvertex<<endl;
|
67 |
|
68 |
// ---------------- Material properties ----------------
|
69 |
|
70 |
// Poisson's ratio
|
71 |
real nu = 0.29; |
72 |
|
73 |
// Young modulus
|
74 |
real Ev; // vasculature Young modulus
|
75 |
real fEm; // cortex Em/Ev
|
76 |
real fEn; // floral podium En/Ev
|
77 |
real fEs; // side Es/Ev
|
78 |
|
79 |
// measured values for the density (Mean, SD)
|
80 |
real dm=0.668060839; //sd=0.04091249 |
81 |
real dn=1.01896008; //sd=0.015464575 |
82 |
real ds=0.918032482; //sd=0.075097509 |
83 |
real dv=0.882171532; //sd=0.066651037 |
84 |
|
85 |
// Young modulus is linked to measured densities
|
86 |
Ev=1; // vasculature Young modulus |
87 |
fEm=dm/dv; // cortex Em/Ev
|
88 |
fEn=dn/dv; // floral podium En/Ev
|
89 |
fEs=ds/dv; // side Es/Ev
|
90 |
|
91 |
// ----- swelling ability of each region is a parameter
|
92 |
real ani = getARGV("-ani", 1.);// anisotropy of swelling property |
93 |
real sm = -getARGV("-scort", 0.464888);// cortex swelling property |
94 |
real sn = -getARGV("-spod", 0.443697);// floral podium swelling property |
95 |
real ss = -getARGV("-sside", 0.573482);// side swelling property |
96 |
real sv = -getARGV("-svasc", 0.236087);// vasculature swelling property |
97 |
|
98 |
|
99 |
/*************************************************************
|
100 |
* GEOMETRY and MESH
|
101 |
* **********************************************************/
|
102 |
|
103 |
func real lineD(real xA, real xB, real yA, real yB) |
104 |
{ return (yB-yA)/(xB-xA);
|
105 |
} |
106 |
|
107 |
func real lineC(real xA, real xB, real yA, real yB) |
108 |
{ return (yA*xB-yB*xA)/(xB-xA);
|
109 |
} |
110 |
|
111 |
func real angleToVertical(real Mx, real My, real Nx, real Ny) |
112 |
{ /* Computes the sinus of angle between the MN vector and Oy */
|
113 |
return asin((Nx-Mx)/sqrt((Mx-Nx)^2+(My-Ny)^2))*180/pi; |
114 |
} |
115 |
|
116 |
// ----------------- External boundary/ -----------------
|
117 |
|
118 |
real rnect=lx/2-vthickness;
|
119 |
real tB=2*pi-acos(rnect/R);
|
120 |
real tA=pi+acos(rnect/R); |
121 |
real xC=0;
|
122 |
real yC=sqrt(R*R-rnect*rnect); |
123 |
|
124 |
// top
|
125 |
border a1(t=0,1){x=lx/2+t*(lx/2-vthickness-lx/2);y=0;label=11;}; |
126 |
border a2(t=tB,tA){x=xC+R*cos(t);y=yC+R*sin(t);label=12;};
|
127 |
border a3(t=0,1){x=-lx/2+vthickness+t*(-lx/2-(-lx/2+vthickness));y=0;label=13;}; |
128 |
// left
|
129 |
border b1(t=0,1){x=-lx/2;y=t*(-ly);label=2;}; |
130 |
// bottom
|
131 |
border c1(t=0,1){x=-lx/2+t*(-cwidth/2-vthickness+lx/2);y=-ly;label=31;}; |
132 |
border c2(t=0,1){x=-cwidth/2-vthickness+t*vthickness;y=-ly;label=32;}; |
133 |
border c3(t=0,1){x=cwidth/2+t*vthickness;y=-ly;label=33;}; |
134 |
border c4(t=0,1){x=cwidth/2+vthickness+t*(lx/2-cwidth/2-vthickness);y=-ly;label=34;}; |
135 |
// right
|
136 |
border d1(t=0,1){x=lx/2;y=-ly+t*(ly);label=4;}; |
137 |
|
138 |
// -------------------- Internal boundary/ -----------------
|
139 |
|
140 |
real xA=-rnect; real yA=0;
|
141 |
real xB=-cwidth/2; real yB=-ly;
|
142 |
real D=lineD(xA, xB, yA, yB); |
143 |
real C=lineC(xA, xB, yA, yB); |
144 |
real delta=D^2*(C-yC)^2-(1+D^2)*((C-yC)^2-(R+hnect)^2); |
145 |
real xM=(-D*(C-yC)+sqrt(delta))/(D^2+1); |
146 |
real yM=D*xM+C; |
147 |
real tN=2*pi+asin(-sqrt((R+hnect)^2-xM^2)/(R+hnect)); |
148 |
real tM=3*pi-tN;
|
149 |
|
150 |
// hole
|
151 |
border vide1(t=0,1){x=-cwidth/2+t*(xM+cwidth/2);y=-ly+t*(yM+ly);label=51;}; |
152 |
border vide2(t=tM,tN){x=xC+(R+hnect)*cos(t);y=yC+(R+hnect)*sin(t);label=52;};
|
153 |
border vide3(t=0,1){x=-xM+t*(cwidth/2+xM);y=yM+t*(-ly-yM);label=53;}; |
154 |
|
155 |
// ------------------- Define the mesh -------------------
|
156 |
|
157 |
mesh Th = buildmesh (a1(nvertex*vthickness)+a2(nvertex*2*rnect)+a3(nvertex*vthickness) // top |
158 |
+ b1(nvertex*ly) + d1(nvertex*ly) // sides
|
159 |
+ c1(nvertex*lx/2) + c2(nvertex*vthickness) // left bottom |
160 |
+ vide1(nvertex*ly) + vide2(nvertex*(lx-2*vthickness)) + vide3(nvertex*ly) //hole |
161 |
+ c3(nvertex*vthickness) + c4(nvertex*lx/2) // right bottom |
162 |
); |
163 |
|
164 |
/*************************************************************
|
165 |
* DEFINITION OF the REGIONS
|
166 |
* **********************************************************/
|
167 |
|
168 |
real xA1=-(vposition+vthickness), yA1=-hnect; |
169 |
real xB1=-cwidth/2-vthickness, yB1=-ly;
|
170 |
real xA2=(vposition+vthickness), yA2=-hnect; |
171 |
real xB2=cwidth/2+vthickness, yB2=-ly;
|
172 |
real D1=lineD(xA1, xB1, yA1, yB1); |
173 |
real C1=lineC(xA1, xB1, yA1, yB1); |
174 |
real D2=lineD(xA2, xB2, yA2, yB2); |
175 |
real C2=lineC(xA2, xB2, yA2, yB2); |
176 |
|
177 |
func bool vasculatureBool(real xx, real yy)
|
178 |
{ return (((yy>D1*xx+C1) && (yy<D1*(xx-vthickness)+C1)) || ((yy>D2*xx+C2)&& (yy<D2*(xx+vthickness)+C2)) );
|
179 |
} |
180 |
|
181 |
func bool nectaryBool(real xx, real yy)
|
182 |
{ return (yy>D1*(xx-vthickness)+C1)&&(yy>D2*(xx+vthickness)+C2);
|
183 |
} |
184 |
|
185 |
func bool sideBool(real xx, real yy)
|
186 |
{ return (yy>-hside) && (((xx<-lx/2+lside)&&(yy<D1*xx+C1)) || ( (xx>lx/2-lside)&& (yy<D2*xx+C2)) ); |
187 |
} |
188 |
|
189 |
func bool mesophylBool(real xx, real yy)
|
190 |
{ return (!vasculatureBool(xx,yy)) && (!nectaryBool(xx,yy)) && (!sideBool(xx,yy));
|
191 |
} |
192 |
|
193 |
|
194 |
/*************************************************************
|
195 |
* DEFINE THE FINITE ELEMENT SPACE
|
196 |
* **********************************************************/
|
197 |
|
198 |
fespace Vh(Th,[P2,P2]); // vector on the mesh (displacement vector)
|
199 |
Vh [u1,u2], [v1,v2]; |
200 |
|
201 |
fespace Sh(Th, P2); // scalar on the mesh, P2 elements
|
202 |
fespace Sh0(Th,P0); // scalar on the mesh, P0 elements
|
203 |
fespace Sh1(Th,P1); // scalar on the mesh, P1 elements
|
204 |
|
205 |
Sh0 strain, stress; |
206 |
|
207 |
// bounding box for the plot (use the same for all images so that they can be superposed)
|
208 |
func bb=[[-lx/2*1.5,-ly*1],[lx/2*1.5,ly*.1]]; |
209 |
//real coef=1.;
|
210 |
//cout << "Coefficent of amplification:"<<coef<<endl;
|
211 |
plot(Th, ps=output+"/mesh-original.eps", bb=bb, wait=1); |
212 |
|
213 |
// macro to redefine variables on the displaced mesh
|
214 |
macro redefineVariable(vvv) |
215 |
{ real[int] temp(vvv[].n);
|
216 |
temp=vvv[]; vvv=0; vvv[]=temp;
|
217 |
vvv=vvv; |
218 |
}//
|
219 |
|
220 |
|
221 |
real sqrt2=sqrt(2.);
|
222 |
macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
|
223 |
//the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $== \epsilon(\bm{u}): \epsilon(\bm{v})$
|
224 |
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
|
225 |
|
226 |
/*************************************************************
|
227 |
* SPATIAL DEPENDENCE OF MATERIAL PROPERTIES
|
228 |
* **********************************************************/
|
229 |
|
230 |
// define region geometry as a finite element field
|
231 |
|
232 |
//string mutname="mnsv";
|
233 |
func vasculature=int(vasculatureBool(x,y));
|
234 |
func nectary=int(nectaryBool(x,y));
|
235 |
func side=int(sideBool(x,y));
|
236 |
func mesophyl=int(mesophylBool(x,y));
|
237 |
|
238 |
func geometry = 1*vasculature + 3*nectary + 2*side + 4*mesophyl; |
239 |
|
240 |
// definition of FE variables for the structural domains
|
241 |
Sh0 vasculatureh=vasculature; |
242 |
Sh0 nectaryh=nectary; |
243 |
Sh0 sideh=side; |
244 |
Sh0 mesophylh=mesophyl; |
245 |
|
246 |
Sh0 geometryh=geometry; |
247 |
string fname=output+"/geometry-original.eps"; |
248 |
plot(geometryh,fill=1, ps=fname, bb=bb, wait=1 ); |
249 |
|
250 |
|
251 |
// spatial dependence of Young modulus
|
252 |
func E=Ev*(vasculature + fEn*nectary + fEs*side + fEm*mesophyl); |
253 |
Sh0 Eh=E; |
254 |
|
255 |
// spatial dependence of the swelling property
|
256 |
func s=sv*vasculature + sn*nectary + ss*side + sm*mesophyl; |
257 |
Sh0 sh=s; |
258 |
|
259 |
// spatial dependence of the anisotropy of the swelling property
|
260 |
Sh0 anih=ani; |
261 |
|
262 |
func mu=E/(2*(1+nu)); |
263 |
func lambda=E*nu/((1+nu)*(1-2*nu)); |
264 |
|
265 |
/*************************************************************
|
266 |
* SOLVING THE FEM
|
267 |
* **********************************************************/
|
268 |
|
269 |
solve Lame([u1,u2],[v1,v2])= |
270 |
int2d(Th)( |
271 |
lambda*div(u1,u2)*div(v1,v2) |
272 |
+ 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) ) |
273 |
) |
274 |
- int2d(Th) ( sh/(1.+anih)*((2.*mu+lambda)*dx(v1)+lambda*dy(v2)) ) |
275 |
- int2d(Th) ( ani*sh/(1.+anih)*(lambda*dx(v1)+(2.*mu+lambda)*dy(v2)) ) |
276 |
+ on(32,u1=vd,u2=0) + on(33,u1=-vd,u2=0) |
277 |
; |
278 |
|
279 |
|
280 |
/*************************************************************
|
281 |
* RESULTS
|
282 |
* **********************************************************/
|
283 |
|
284 |
// compute original region volumes
|
285 |
real voltotal0=int2d(Th)(1);
|
286 |
real volvasculature0=int2d(Th)(vasculatureh); |
287 |
real volnectary0=int2d(Th)(nectaryh); |
288 |
real volmesophyl0=int2d(Th)(mesophylh); |
289 |
real volside0=int2d(Th)(sideh); |
290 |
|
291 |
|
292 |
// move the mesh and plot the deformed mesh
|
293 |
mesh Th0=Th; |
294 |
Th=movemesh(Th,[x+u1,y+u2]); |
295 |
|
296 |
plot(Th, Th0, ps=output+"/mesh-original+deformed-superposed.eps",bb=bb, wait=1); |
297 |
plot(Th, ps=output+"/mesh-deformed.eps",bb=bb, wait=1); |
298 |
|
299 |
redefineVariable(geometryh); |
300 |
plot(geometryh, fill=1, ps=output+"/geometry-deformed.eps",bb=bb, wait=1); |
301 |
|
302 |
// compute deformed region volumes
|
303 |
redefineVariable(vasculatureh); |
304 |
redefineVariable(nectaryh); |
305 |
redefineVariable(sideh); |
306 |
redefineVariable(mesophylh); |
307 |
|
308 |
real voltotal=int2d(Th)(1);
|
309 |
real volvasculature=int2d(Th)(vasculatureh); |
310 |
real volnectary=int2d(Th)(nectaryh); |
311 |
real volside=int2d(Th)(sideh); |
312 |
real volmesophyl=int2d(Th)(mesophylh); |
313 |
|
314 |
// compute areachanges
|
315 |
real am=volmesophyl0/volmesophyl; |
316 |
real an=volnectary0/volnectary; |
317 |
real as=volside0/volside; |
318 |
real av=volvasculature0/volvasculature; |
319 |
|
320 |
// compute the generated side angle
|
321 |
real height=hside; |
322 |
real Nx=lx/2+u1(lx/2.,0), Ny=u2(lx/2.,0); |
323 |
real Mx=lx/2+u1(lx/2.,-height), My=-height+u2(lx/2.,-height); |
324 |
real sideangle=angleToVertical(Mx, My, Nx, Ny); |
325 |
|
326 |
/*************************************************************
|
327 |
* PRINT RESULTS
|
328 |
* **********************************************************/
|
329 |
cout<<"----------------------"<<endl;
|
330 |
cout<<"Areachanges (Awet/Adry) :"<<endl;
|
331 |
cout<<"----------------------"<<endl;
|
332 |
cout<<"cortex -> "<<am<<endl;
|
333 |
cout<<"floral podium -> "<<an<<endl;
|
334 |
cout<<"side -> "<<as<<endl;
|
335 |
cout<<"vasculature -> "<<av<<endl;
|
336 |
cout<<"----------------------"<<endl;
|
337 |
cout<<"Generated side angle = "<<sideangle<<" degrees"<<endl; |
338 |
cout<<"----------------------"<<endl;
|