Statistiques
| Révision :

root / dandelion.cpp @ 22

Historique | Voir | Annoter | Télécharger (10,96 ko)

1
/***************************
2
 * ----------------------------------------------------------------------
3
 * Dandelion pappus morphing is actuated by radially patterned material swelling
4
 * ----------------------------------------------------------------------
5
 * 
6
 * FreeFem++ simulation scripte used in the following publication :
7
 * 
8
 * Madeleine Seale, Annamaria Kiss, Simone Bovio, Ignazio Maria Viola, Enrico
9
 * Mastropaolo, Arezki Boudaoud, Naomi Nakayama, 
10
 * "Dandelion pappus morphing is actuated by radially patterned material swelling",
11
 * doi: https://doi.org/10.1101/2021.08.23.457337
12
 * 
13
 * Author :
14
 * Annamaria Kiss 
15
 * (annamaria.kiss@ens-lyon.fr, Laboratoire RDP, ENS Lyon)
16
 * 
17
 * ***************************/
18

    
19
include "getARGV.idp"
20

    
21
// reading script arguments
22
for (int i=0;i<ARGV.n;++i)
23
{ cout << ARGV[i] << " ";}
24
cout<<endl;
25

    
26
/***************************
27
*      GLOSSARY
28
*   nectary = floral podium
29
*   mesophyl = cortex
30
/****************************/
31

    
32
/*************************************************************
33
 *                  PARAMETERS
34
 * **********************************************************/
35

    
36
string output = getARGV("-out", ".");
37

    
38
// ---------------- geometrical parameters ----------------
39

    
40
// (lengths are measured in micrometers)
41
real units=200;
42

    
43
// actuator dimensions
44
real lx=getARGV("-D", 491.0)/units;       //sd =34.4
45
real ly=getARGV("-H", 240.0)/units;      //sd=36.0
46

    
47
// floral podium
48
real hnect = getARGV("-Hpod", 38.8)/units;   //sd=9.6
49
real Rmeasured=getARGV("-R", 363.0)/units;    //sd=49.4
50
real R=Rmeasured-hnect;
51

    
52
// side
53
real hside=getARGV("-Hside", 91.4)/units;     //12.6
54
real lside=getARGV("-Wside", 47.6)/units;     //6.6
55

    
56
// vasculature
57
real vthickness=getARGV("-Wvasculature", 34.3)/units;//5.5
58
real cwidth=getARGV("-Dcavity", 74.8)/units;    //15.2
59

    
60
// vasculature displacement (from vascular bundle distance)
61
real vd=getARGV("-dvasc", 15.3)/units; //15.3*0.22
62
real vposition=lx/2-vthickness-hnect/ly*(lx/2-cwidth/2-vthickness);
63

    
64
// mesh parameters
65
int nvertex=40;
66
cout << "nvertex="<<nvertex<<endl;
67

    
68
// ---------------- Material properties ----------------
69

    
70
// Poisson's ratio
71
real nu = 0.29;
72

    
73
// Young modulus
74
real Ev;   // vasculature Young modulus
75
real fEm; // cortex Em/Ev 
76
real fEn;  // floral podium En/Ev 
77
real fEs;  // side     Es/Ev 
78
        
79
// measured values for the density (Mean, SD)
80
real dm=0.668060839; //sd=0.04091249
81
real dn=1.01896008; //sd=0.015464575
82
real ds=0.918032482; //sd=0.075097509
83
real dv=0.882171532; //sd=0.066651037
84

    
85
// Young modulus is linked to measured densities
86
Ev=1;   // vasculature Young modulus
87
fEm=dm/dv; // cortex Em/Ev 
88
fEn=dn/dv;  // floral podium  En/Ev 
89
fEs=ds/dv;  // side     Es/Ev 
90

    
91
// -----   swelling ability of each region is a parameter
92
real ani = getARGV("-ani", 1.);// anisotropy of swelling property
93
real sm = -getARGV("-scort", 0.464888);// cortex swelling property
94
real sn = -getARGV("-spod", 0.443697);// floral podium swelling property
95
real ss = -getARGV("-sside", 0.573482);// side swelling property
96
real sv = -getARGV("-svasc", 0.236087);// vasculature swelling property
97

    
98

    
99
/*************************************************************
100
 *                  GEOMETRY and MESH
101
 * **********************************************************/
102

    
103
func real lineD(real xA, real xB, real yA, real yB)
104
{        return (yB-yA)/(xB-xA);
105
}
106

    
107
func real lineC(real xA, real xB, real yA, real yB)
108
{        return (yA*xB-yB*xA)/(xB-xA);
109
}
110

    
111
func real angleToVertical(real Mx, real My, real Nx, real Ny)
112
{ /*  Computes the sinus of angle between the MN vector and Oy   */
113
        return asin((Nx-Mx)/sqrt((Mx-Nx)^2+(My-Ny)^2))*180/pi;
114
}
115

    
116
// ----------------- External boundary/ -----------------
117

    
118
real rnect=lx/2-vthickness;
119
real tB=2*pi-acos(rnect/R);
120
real tA=pi+acos(rnect/R);
121
real xC=0;
122
real yC=sqrt(R*R-rnect*rnect);
123

    
124
// top
125
border a1(t=0,1){x=lx/2+t*(lx/2-vthickness-lx/2);y=0;label=11;};
126
border a2(t=tB,tA){x=xC+R*cos(t);y=yC+R*sin(t);label=12;};
127
border a3(t=0,1){x=-lx/2+vthickness+t*(-lx/2-(-lx/2+vthickness));y=0;label=13;};
128
// left
129
border b1(t=0,1){x=-lx/2;y=t*(-ly);label=2;};
130
// bottom
131
border c1(t=0,1){x=-lx/2+t*(-cwidth/2-vthickness+lx/2);y=-ly;label=31;};
132
border c2(t=0,1){x=-cwidth/2-vthickness+t*vthickness;y=-ly;label=32;};
133
border c3(t=0,1){x=cwidth/2+t*vthickness;y=-ly;label=33;};
134
border c4(t=0,1){x=cwidth/2+vthickness+t*(lx/2-cwidth/2-vthickness);y=-ly;label=34;};
135
// right
136
border d1(t=0,1){x=lx/2;y=-ly+t*(ly);label=4;};
137

    
138
// -------------------- Internal boundary/ -----------------
139

    
140
real xA=-rnect; real yA=0;
141
real xB=-cwidth/2; real yB=-ly;
142
real D=lineD(xA, xB, yA, yB);
143
real C=lineC(xA, xB, yA, yB);
144
real delta=D^2*(C-yC)^2-(1+D^2)*((C-yC)^2-(R+hnect)^2);
145
real xM=(-D*(C-yC)+sqrt(delta))/(D^2+1);
146
real yM=D*xM+C;
147
real tN=2*pi+asin(-sqrt((R+hnect)^2-xM^2)/(R+hnect));
148
real tM=3*pi-tN;
149

    
150
// hole
151
border vide1(t=0,1){x=-cwidth/2+t*(xM+cwidth/2);y=-ly+t*(yM+ly);label=51;};
152
border vide2(t=tM,tN){x=xC+(R+hnect)*cos(t);y=yC+(R+hnect)*sin(t);label=52;};
153
border vide3(t=0,1){x=-xM+t*(cwidth/2+xM);y=yM+t*(-ly-yM);label=53;};
154

    
155
// ------------------- Define the mesh -------------------
156

    
157
mesh Th = buildmesh (a1(nvertex*vthickness)+a2(nvertex*2*rnect)+a3(nvertex*vthickness) // top
158
                     + b1(nvertex*ly) + d1(nvertex*ly) // sides
159
                     + c1(nvertex*lx/2) + c2(nvertex*vthickness) // left bottom
160
                     + vide1(nvertex*ly) + vide2(nvertex*(lx-2*vthickness)) + vide3(nvertex*ly)  //hole
161
                     + c3(nvertex*vthickness) + c4(nvertex*lx/2)  // right bottom
162
                     );
163

    
164
/*************************************************************
165
 *                  DEFINITION OF the REGIONS
166
 * **********************************************************/
167

    
168
real xA1=-(vposition+vthickness), yA1=-hnect;
169
real xB1=-cwidth/2-vthickness, yB1=-ly;
170
real xA2=(vposition+vthickness), yA2=-hnect;
171
real xB2=cwidth/2+vthickness, yB2=-ly;
172
real D1=lineD(xA1, xB1, yA1, yB1);
173
real C1=lineC(xA1, xB1, yA1, yB1);
174
real D2=lineD(xA2, xB2, yA2, yB2);
175
real C2=lineC(xA2, xB2, yA2, yB2);
176

    
177
func bool vasculatureBool(real xx, real yy)
178
{        return (((yy>D1*xx+C1) && (yy<D1*(xx-vthickness)+C1)) || ((yy>D2*xx+C2)&& (yy<D2*(xx+vthickness)+C2)) );
179
}
180

    
181
func bool nectaryBool(real xx, real yy)
182
{        return (yy>D1*(xx-vthickness)+C1)&&(yy>D2*(xx+vthickness)+C2);
183
}
184

    
185
func bool sideBool(real xx, real yy)
186
{        return   (yy>-hside) && (((xx<-lx/2+lside)&&(yy<D1*xx+C1)) || ( (xx>lx/2-lside)&& (yy<D2*xx+C2))  );
187
}
188

    
189
func bool mesophylBool(real xx, real yy)
190
{        return (!vasculatureBool(xx,yy)) && (!nectaryBool(xx,yy)) && (!sideBool(xx,yy));
191
}
192

    
193

    
194
/*************************************************************
195
 *                  DEFINE THE FINITE ELEMENT SPACE
196
 * **********************************************************/
197

    
198
fespace Vh(Th,[P2,P2]);  // vector on the mesh (displacement vector)
199
Vh [u1,u2], [v1,v2];
200

    
201
fespace Sh(Th, P2);   // scalar on the mesh, P2 elements
202
fespace Sh0(Th,P0);   // scalar on the mesh, P0 elements
203
fespace Sh1(Th,P1);   // scalar on the mesh, P1 elements
204

    
205
Sh0 strain, stress;
206

    
207
// bounding box for the plot (use the same for all images so that they can be superposed)
208
func bb=[[-lx/2*1.5,-ly*1],[lx/2*1.5,ly*.1]];
209
//real coef=1.;
210
//cout << "Coefficent of amplification:"<<coef<<endl;
211
plot(Th, ps=output+"/mesh-original.eps", bb=bb, wait=1);
212

    
213
// macro to redefine variables on the displaced mesh 
214
macro redefineVariable(vvv)
215
{        real[int] temp(vvv[].n);
216
        temp=vvv[]; vvv=0; vvv[]=temp;
217
        vvv=vvv;
218
}//
219

    
220

    
221
real sqrt2=sqrt(2.);
222
macro epsilon(u1,u2)  [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
223
//the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $==  \epsilon(\bm{u}): \epsilon(\bm{v})$
224
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
225

    
226
/*************************************************************
227
 *                 SPATIAL DEPENDENCE OF MATERIAL PROPERTIES
228
 * **********************************************************/
229

    
230
// define region geometry as a finite element field
231

    
232
//string mutname="mnsv";
233
func vasculature=int(vasculatureBool(x,y));
234
func nectary=int(nectaryBool(x,y));
235
func side=int(sideBool(x,y));
236
func mesophyl=int(mesophylBool(x,y));
237

    
238
func geometry = 1*vasculature + 3*nectary + 2*side + 4*mesophyl;
239

    
240
// definition of FE variables for the structural domains
241
Sh0 vasculatureh=vasculature;
242
Sh0 nectaryh=nectary;
243
Sh0 sideh=side;
244
Sh0 mesophylh=mesophyl;
245

    
246
Sh0 geometryh=geometry;
247
string fname=output+"/geometry-original.eps";
248
plot(geometryh,fill=1, ps=fname, bb=bb, wait=1 );
249

    
250

    
251
// spatial dependence of Young modulus
252
func E=Ev*(vasculature + fEn*nectary + fEs*side + fEm*mesophyl);
253
Sh0 Eh=E;
254

    
255
// spatial dependence of the swelling property
256
func s=sv*vasculature + sn*nectary + ss*side + sm*mesophyl;
257
Sh0 sh=s;
258

    
259
// spatial dependence of the anisotropy of the swelling property
260
Sh0 anih=ani;
261

    
262
func mu=E/(2*(1+nu));
263
func lambda=E*nu/((1+nu)*(1-2*nu));
264

    
265
/*************************************************************
266
 *                  SOLVING THE FEM
267
 * **********************************************************/
268

    
269
solve Lame([u1,u2],[v1,v2])=
270
  int2d(Th)(
271
            lambda*div(u1,u2)*div(v1,v2)         
272
            + 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) ) 
273
              )
274
  - int2d(Th) ( sh/(1.+anih)*((2.*mu+lambda)*dx(v1)+lambda*dy(v2)) )
275
  - int2d(Th) ( ani*sh/(1.+anih)*(lambda*dx(v1)+(2.*mu+lambda)*dy(v2)) )
276
+ on(32,u1=vd,u2=0) + on(33,u1=-vd,u2=0) 
277
  ;
278

    
279

    
280
/*************************************************************
281
 *                  RESULTS
282
 * **********************************************************/
283

    
284
// compute original region volumes
285
real voltotal0=int2d(Th)(1);
286
real volvasculature0=int2d(Th)(vasculatureh);
287
real volnectary0=int2d(Th)(nectaryh);
288
real volmesophyl0=int2d(Th)(mesophylh);
289
real volside0=int2d(Th)(sideh);
290

    
291

    
292
// move the mesh and plot the deformed mesh
293
mesh Th0=Th;
294
Th=movemesh(Th,[x+u1,y+u2]);
295

    
296
plot(Th, Th0,  ps=output+"/mesh-original+deformed-superposed.eps",bb=bb, wait=1);
297
plot(Th,  ps=output+"/mesh-deformed.eps",bb=bb, wait=1);
298

    
299
redefineVariable(geometryh);
300
plot(geometryh, fill=1, ps=output+"/geometry-deformed.eps",bb=bb, wait=1);
301

    
302
// compute deformed region volumes
303
redefineVariable(vasculatureh);
304
redefineVariable(nectaryh);
305
redefineVariable(sideh);
306
redefineVariable(mesophylh);
307

    
308
real voltotal=int2d(Th)(1);
309
real volvasculature=int2d(Th)(vasculatureh);
310
real volnectary=int2d(Th)(nectaryh);
311
real volside=int2d(Th)(sideh);
312
real volmesophyl=int2d(Th)(mesophylh);
313

    
314
// compute areachanges
315
real am=volmesophyl0/volmesophyl;
316
real an=volnectary0/volnectary;
317
real as=volside0/volside;
318
real av=volvasculature0/volvasculature;
319

    
320
// compute the generated side angle
321
real height=hside;
322
real Nx=lx/2+u1(lx/2.,0), Ny=u2(lx/2.,0);
323
real Mx=lx/2+u1(lx/2.,-height), My=-height+u2(lx/2.,-height);
324
real sideangle=angleToVertical(Mx, My, Nx, Ny);
325

    
326
/*************************************************************
327
 *        PRINT RESULTS
328
 * **********************************************************/
329
cout<<"----------------------"<<endl;
330
cout<<"Areachanges (Awet/Adry) :"<<endl;
331
cout<<"----------------------"<<endl;
332
cout<<"cortex -> "<<am<<endl;
333
cout<<"floral podium -> "<<an<<endl;
334
cout<<"side -> "<<as<<endl;
335
cout<<"vasculature -> "<<av<<endl;
336
cout<<"----------------------"<<endl;
337
cout<<"Generated side angle = "<<sideangle<<" degrees"<<endl;
338
cout<<"----------------------"<<endl;