Statistiques
| Révision :

root / dandelion.cpp @ 22

Historique | Voir | Annoter | Télécharger (10,96 ko)

1 22 akiss
/***************************
2 22 akiss
 * ----------------------------------------------------------------------
3 22 akiss
 * Dandelion pappus morphing is actuated by radially patterned material swelling
4 22 akiss
 * ----------------------------------------------------------------------
5 22 akiss
 *
6 22 akiss
 * FreeFem++ simulation scripte used in the following publication :
7 22 akiss
 *
8 22 akiss
 * Madeleine Seale, Annamaria Kiss, Simone Bovio, Ignazio Maria Viola, Enrico
9 22 akiss
 * Mastropaolo, Arezki Boudaoud, Naomi Nakayama,
10 22 akiss
 * "Dandelion pappus morphing is actuated by radially patterned material swelling",
11 22 akiss
 * doi: https://doi.org/10.1101/2021.08.23.457337
12 22 akiss
 *
13 22 akiss
 * Author :
14 22 akiss
 * Annamaria Kiss
15 22 akiss
 * (annamaria.kiss@ens-lyon.fr, Laboratoire RDP, ENS Lyon)
16 22 akiss
 *
17 22 akiss
 * ***************************/
18 22 akiss
19 22 akiss
include "getARGV.idp"
20 22 akiss
21 22 akiss
// reading script arguments
22 22 akiss
for (int i=0;i<ARGV.n;++i)
23 22 akiss
{ cout << ARGV[i] << " ";}
24 22 akiss
cout<<endl;
25 22 akiss
26 22 akiss
/***************************
27 22 akiss
*      GLOSSARY
28 22 akiss
*   nectary = floral podium
29 22 akiss
*   mesophyl = cortex
30 22 akiss
/****************************/
31 22 akiss
32 22 akiss
/*************************************************************
33 22 akiss
 *                  PARAMETERS
34 22 akiss
 * **********************************************************/
35 22 akiss
36 22 akiss
string output = getARGV("-out", ".");
37 22 akiss
38 22 akiss
// ---------------- geometrical parameters ----------------
39 22 akiss
40 22 akiss
// (lengths are measured in micrometers)
41 22 akiss
real units=200;
42 22 akiss
43 22 akiss
// actuator dimensions
44 22 akiss
real lx=getARGV("-D", 491.0)/units;       //sd =34.4
45 22 akiss
real ly=getARGV("-H", 240.0)/units;      //sd=36.0
46 22 akiss
47 22 akiss
// floral podium
48 22 akiss
real hnect = getARGV("-Hpod", 38.8)/units;   //sd=9.6
49 22 akiss
real Rmeasured=getARGV("-R", 363.0)/units;    //sd=49.4
50 22 akiss
real R=Rmeasured-hnect;
51 22 akiss
52 22 akiss
// side
53 22 akiss
real hside=getARGV("-Hside", 91.4)/units;     //12.6
54 22 akiss
real lside=getARGV("-Wside", 47.6)/units;     //6.6
55 22 akiss
56 22 akiss
// vasculature
57 22 akiss
real vthickness=getARGV("-Wvasculature", 34.3)/units;//5.5
58 22 akiss
real cwidth=getARGV("-Dcavity", 74.8)/units;    //15.2
59 22 akiss
60 22 akiss
// vasculature displacement (from vascular bundle distance)
61 22 akiss
real vd=getARGV("-dvasc", 15.3)/units; //15.3*0.22
62 22 akiss
real vposition=lx/2-vthickness-hnect/ly*(lx/2-cwidth/2-vthickness);
63 22 akiss
64 22 akiss
// mesh parameters
65 22 akiss
int nvertex=40;
66 22 akiss
cout << "nvertex="<<nvertex<<endl;
67 22 akiss
68 22 akiss
// ---------------- Material properties ----------------
69 22 akiss
70 22 akiss
// Poisson's ratio
71 22 akiss
real nu = 0.29;
72 22 akiss
73 22 akiss
// Young modulus
74 22 akiss
real Ev;   // vasculature Young modulus
75 22 akiss
real fEm; // cortex Em/Ev
76 22 akiss
real fEn;  // floral podium En/Ev
77 22 akiss
real fEs;  // side     Es/Ev
78 22 akiss
79 22 akiss
// measured values for the density (Mean, SD)
80 22 akiss
real dm=0.668060839; //sd=0.04091249
81 22 akiss
real dn=1.01896008; //sd=0.015464575
82 22 akiss
real ds=0.918032482; //sd=0.075097509
83 22 akiss
real dv=0.882171532; //sd=0.066651037
84 22 akiss
85 22 akiss
// Young modulus is linked to measured densities
86 22 akiss
Ev=1;   // vasculature Young modulus
87 22 akiss
fEm=dm/dv; // cortex Em/Ev
88 22 akiss
fEn=dn/dv;  // floral podium  En/Ev
89 22 akiss
fEs=ds/dv;  // side     Es/Ev
90 22 akiss
91 22 akiss
// -----   swelling ability of each region is a parameter
92 22 akiss
real ani = getARGV("-ani", 1.);// anisotropy of swelling property
93 22 akiss
real sm = -getARGV("-scort", 0.464888);// cortex swelling property
94 22 akiss
real sn = -getARGV("-spod", 0.443697);// floral podium swelling property
95 22 akiss
real ss = -getARGV("-sside", 0.573482);// side swelling property
96 22 akiss
real sv = -getARGV("-svasc", 0.236087);// vasculature swelling property
97 22 akiss
98 22 akiss
99 22 akiss
/*************************************************************
100 22 akiss
 *                  GEOMETRY and MESH
101 22 akiss
 * **********************************************************/
102 22 akiss
103 22 akiss
func real lineD(real xA, real xB, real yA, real yB)
104 22 akiss
{        return (yB-yA)/(xB-xA);
105 22 akiss
}
106 22 akiss
107 22 akiss
func real lineC(real xA, real xB, real yA, real yB)
108 22 akiss
{        return (yA*xB-yB*xA)/(xB-xA);
109 22 akiss
}
110 22 akiss
111 22 akiss
func real angleToVertical(real Mx, real My, real Nx, real Ny)
112 22 akiss
{ /*  Computes the sinus of angle between the MN vector and Oy   */
113 22 akiss
        return asin((Nx-Mx)/sqrt((Mx-Nx)^2+(My-Ny)^2))*180/pi;
114 22 akiss
}
115 22 akiss
116 22 akiss
// ----------------- External boundary/ -----------------
117 22 akiss
118 22 akiss
real rnect=lx/2-vthickness;
119 22 akiss
real tB=2*pi-acos(rnect/R);
120 22 akiss
real tA=pi+acos(rnect/R);
121 22 akiss
real xC=0;
122 22 akiss
real yC=sqrt(R*R-rnect*rnect);
123 22 akiss
124 22 akiss
// top
125 22 akiss
border a1(t=0,1){x=lx/2+t*(lx/2-vthickness-lx/2);y=0;label=11;};
126 22 akiss
border a2(t=tB,tA){x=xC+R*cos(t);y=yC+R*sin(t);label=12;};
127 22 akiss
border a3(t=0,1){x=-lx/2+vthickness+t*(-lx/2-(-lx/2+vthickness));y=0;label=13;};
128 22 akiss
// left
129 22 akiss
border b1(t=0,1){x=-lx/2;y=t*(-ly);label=2;};
130 22 akiss
// bottom
131 22 akiss
border c1(t=0,1){x=-lx/2+t*(-cwidth/2-vthickness+lx/2);y=-ly;label=31;};
132 22 akiss
border c2(t=0,1){x=-cwidth/2-vthickness+t*vthickness;y=-ly;label=32;};
133 22 akiss
border c3(t=0,1){x=cwidth/2+t*vthickness;y=-ly;label=33;};
134 22 akiss
border c4(t=0,1){x=cwidth/2+vthickness+t*(lx/2-cwidth/2-vthickness);y=-ly;label=34;};
135 22 akiss
// right
136 22 akiss
border d1(t=0,1){x=lx/2;y=-ly+t*(ly);label=4;};
137 22 akiss
138 22 akiss
// -------------------- Internal boundary/ -----------------
139 22 akiss
140 22 akiss
real xA=-rnect; real yA=0;
141 22 akiss
real xB=-cwidth/2; real yB=-ly;
142 22 akiss
real D=lineD(xA, xB, yA, yB);
143 22 akiss
real C=lineC(xA, xB, yA, yB);
144 22 akiss
real delta=D^2*(C-yC)^2-(1+D^2)*((C-yC)^2-(R+hnect)^2);
145 22 akiss
real xM=(-D*(C-yC)+sqrt(delta))/(D^2+1);
146 22 akiss
real yM=D*xM+C;
147 22 akiss
real tN=2*pi+asin(-sqrt((R+hnect)^2-xM^2)/(R+hnect));
148 22 akiss
real tM=3*pi-tN;
149 22 akiss
150 22 akiss
// hole
151 22 akiss
border vide1(t=0,1){x=-cwidth/2+t*(xM+cwidth/2);y=-ly+t*(yM+ly);label=51;};
152 22 akiss
border vide2(t=tM,tN){x=xC+(R+hnect)*cos(t);y=yC+(R+hnect)*sin(t);label=52;};
153 22 akiss
border vide3(t=0,1){x=-xM+t*(cwidth/2+xM);y=yM+t*(-ly-yM);label=53;};
154 22 akiss
155 22 akiss
// ------------------- Define the mesh -------------------
156 22 akiss
157 22 akiss
mesh Th = buildmesh (a1(nvertex*vthickness)+a2(nvertex*2*rnect)+a3(nvertex*vthickness) // top
158 22 akiss
                     + b1(nvertex*ly) + d1(nvertex*ly) // sides
159 22 akiss
                     + c1(nvertex*lx/2) + c2(nvertex*vthickness) // left bottom
160 22 akiss
                     + vide1(nvertex*ly) + vide2(nvertex*(lx-2*vthickness)) + vide3(nvertex*ly)  //hole
161 22 akiss
                     + c3(nvertex*vthickness) + c4(nvertex*lx/2)  // right bottom
162 22 akiss
                     );
163 22 akiss
164 22 akiss
/*************************************************************
165 22 akiss
 *                  DEFINITION OF the REGIONS
166 22 akiss
 * **********************************************************/
167 22 akiss
168 22 akiss
real xA1=-(vposition+vthickness), yA1=-hnect;
169 22 akiss
real xB1=-cwidth/2-vthickness, yB1=-ly;
170 22 akiss
real xA2=(vposition+vthickness), yA2=-hnect;
171 22 akiss
real xB2=cwidth/2+vthickness, yB2=-ly;
172 22 akiss
real D1=lineD(xA1, xB1, yA1, yB1);
173 22 akiss
real C1=lineC(xA1, xB1, yA1, yB1);
174 22 akiss
real D2=lineD(xA2, xB2, yA2, yB2);
175 22 akiss
real C2=lineC(xA2, xB2, yA2, yB2);
176 22 akiss
177 22 akiss
func bool vasculatureBool(real xx, real yy)
178 22 akiss
{        return (((yy>D1*xx+C1) && (yy<D1*(xx-vthickness)+C1)) || ((yy>D2*xx+C2)&& (yy<D2*(xx+vthickness)+C2)) );
179 22 akiss
}
180 22 akiss
181 22 akiss
func bool nectaryBool(real xx, real yy)
182 22 akiss
{        return (yy>D1*(xx-vthickness)+C1)&&(yy>D2*(xx+vthickness)+C2);
183 22 akiss
}
184 22 akiss
185 22 akiss
func bool sideBool(real xx, real yy)
186 22 akiss
{        return   (yy>-hside) && (((xx<-lx/2+lside)&&(yy<D1*xx+C1)) || ( (xx>lx/2-lside)&& (yy<D2*xx+C2))  );
187 22 akiss
}
188 22 akiss
189 22 akiss
func bool mesophylBool(real xx, real yy)
190 22 akiss
{        return (!vasculatureBool(xx,yy)) && (!nectaryBool(xx,yy)) && (!sideBool(xx,yy));
191 22 akiss
}
192 22 akiss
193 22 akiss
194 22 akiss
/*************************************************************
195 22 akiss
 *                  DEFINE THE FINITE ELEMENT SPACE
196 22 akiss
 * **********************************************************/
197 22 akiss
198 22 akiss
fespace Vh(Th,[P2,P2]);  // vector on the mesh (displacement vector)
199 22 akiss
Vh [u1,u2], [v1,v2];
200 22 akiss
201 22 akiss
fespace Sh(Th, P2);   // scalar on the mesh, P2 elements
202 22 akiss
fespace Sh0(Th,P0);   // scalar on the mesh, P0 elements
203 22 akiss
fespace Sh1(Th,P1);   // scalar on the mesh, P1 elements
204 22 akiss
205 22 akiss
Sh0 strain, stress;
206 22 akiss
207 22 akiss
// bounding box for the plot (use the same for all images so that they can be superposed)
208 22 akiss
func bb=[[-lx/2*1.5,-ly*1],[lx/2*1.5,ly*.1]];
209 22 akiss
//real coef=1.;
210 22 akiss
//cout << "Coefficent of amplification:"<<coef<<endl;
211 22 akiss
plot(Th, ps=output+"/mesh-original.eps", bb=bb, wait=1);
212 22 akiss
213 22 akiss
// macro to redefine variables on the displaced mesh
214 22 akiss
macro redefineVariable(vvv)
215 22 akiss
{        real[int] temp(vvv[].n);
216 22 akiss
        temp=vvv[]; vvv=0; vvv[]=temp;
217 22 akiss
        vvv=vvv;
218 22 akiss
}//
219 22 akiss
220 22 akiss
221 22 akiss
real sqrt2=sqrt(2.);
222 22 akiss
macro epsilon(u1,u2)  [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
223 22 akiss
//the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $==  \epsilon(\bm{u}): \epsilon(\bm{v})$
224 22 akiss
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
225 22 akiss
226 22 akiss
/*************************************************************
227 22 akiss
 *                 SPATIAL DEPENDENCE OF MATERIAL PROPERTIES
228 22 akiss
 * **********************************************************/
229 22 akiss
230 22 akiss
// define region geometry as a finite element field
231 22 akiss
232 22 akiss
//string mutname="mnsv";
233 22 akiss
func vasculature=int(vasculatureBool(x,y));
234 22 akiss
func nectary=int(nectaryBool(x,y));
235 22 akiss
func side=int(sideBool(x,y));
236 22 akiss
func mesophyl=int(mesophylBool(x,y));
237 22 akiss
238 22 akiss
func geometry = 1*vasculature + 3*nectary + 2*side + 4*mesophyl;
239 22 akiss
240 22 akiss
// definition of FE variables for the structural domains
241 22 akiss
Sh0 vasculatureh=vasculature;
242 22 akiss
Sh0 nectaryh=nectary;
243 22 akiss
Sh0 sideh=side;
244 22 akiss
Sh0 mesophylh=mesophyl;
245 22 akiss
246 22 akiss
Sh0 geometryh=geometry;
247 22 akiss
string fname=output+"/geometry-original.eps";
248 22 akiss
plot(geometryh,fill=1, ps=fname, bb=bb, wait=1 );
249 22 akiss
250 22 akiss
251 22 akiss
// spatial dependence of Young modulus
252 22 akiss
func E=Ev*(vasculature + fEn*nectary + fEs*side + fEm*mesophyl);
253 22 akiss
Sh0 Eh=E;
254 22 akiss
255 22 akiss
// spatial dependence of the swelling property
256 22 akiss
func s=sv*vasculature + sn*nectary + ss*side + sm*mesophyl;
257 22 akiss
Sh0 sh=s;
258 22 akiss
259 22 akiss
// spatial dependence of the anisotropy of the swelling property
260 22 akiss
Sh0 anih=ani;
261 22 akiss
262 22 akiss
func mu=E/(2*(1+nu));
263 22 akiss
func lambda=E*nu/((1+nu)*(1-2*nu));
264 22 akiss
265 22 akiss
/*************************************************************
266 22 akiss
 *                  SOLVING THE FEM
267 22 akiss
 * **********************************************************/
268 22 akiss
269 22 akiss
solve Lame([u1,u2],[v1,v2])=
270 22 akiss
  int2d(Th)(
271 22 akiss
            lambda*div(u1,u2)*div(v1,v2)
272 22 akiss
            + 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) )
273 22 akiss
              )
274 22 akiss
  - int2d(Th) ( sh/(1.+anih)*((2.*mu+lambda)*dx(v1)+lambda*dy(v2)) )
275 22 akiss
  - int2d(Th) ( ani*sh/(1.+anih)*(lambda*dx(v1)+(2.*mu+lambda)*dy(v2)) )
276 22 akiss
+ on(32,u1=vd,u2=0) + on(33,u1=-vd,u2=0)
277 22 akiss
  ;
278 22 akiss
279 22 akiss
280 22 akiss
/*************************************************************
281 22 akiss
 *                  RESULTS
282 22 akiss
 * **********************************************************/
283 22 akiss
284 22 akiss
// compute original region volumes
285 22 akiss
real voltotal0=int2d(Th)(1);
286 22 akiss
real volvasculature0=int2d(Th)(vasculatureh);
287 22 akiss
real volnectary0=int2d(Th)(nectaryh);
288 22 akiss
real volmesophyl0=int2d(Th)(mesophylh);
289 22 akiss
real volside0=int2d(Th)(sideh);
290 22 akiss
291 22 akiss
292 22 akiss
// move the mesh and plot the deformed mesh
293 22 akiss
mesh Th0=Th;
294 22 akiss
Th=movemesh(Th,[x+u1,y+u2]);
295 22 akiss
296 22 akiss
plot(Th, Th0,  ps=output+"/mesh-original+deformed-superposed.eps",bb=bb, wait=1);
297 22 akiss
plot(Th,  ps=output+"/mesh-deformed.eps",bb=bb, wait=1);
298 22 akiss
299 22 akiss
redefineVariable(geometryh);
300 22 akiss
plot(geometryh, fill=1, ps=output+"/geometry-deformed.eps",bb=bb, wait=1);
301 22 akiss
302 22 akiss
// compute deformed region volumes
303 22 akiss
redefineVariable(vasculatureh);
304 22 akiss
redefineVariable(nectaryh);
305 22 akiss
redefineVariable(sideh);
306 22 akiss
redefineVariable(mesophylh);
307 22 akiss
308 22 akiss
real voltotal=int2d(Th)(1);
309 22 akiss
real volvasculature=int2d(Th)(vasculatureh);
310 22 akiss
real volnectary=int2d(Th)(nectaryh);
311 22 akiss
real volside=int2d(Th)(sideh);
312 22 akiss
real volmesophyl=int2d(Th)(mesophylh);
313 22 akiss
314 22 akiss
// compute areachanges
315 22 akiss
real am=volmesophyl0/volmesophyl;
316 22 akiss
real an=volnectary0/volnectary;
317 22 akiss
real as=volside0/volside;
318 22 akiss
real av=volvasculature0/volvasculature;
319 22 akiss
320 22 akiss
// compute the generated side angle
321 22 akiss
real height=hside;
322 22 akiss
real Nx=lx/2+u1(lx/2.,0), Ny=u2(lx/2.,0);
323 22 akiss
real Mx=lx/2+u1(lx/2.,-height), My=-height+u2(lx/2.,-height);
324 22 akiss
real sideangle=angleToVertical(Mx, My, Nx, Ny);
325 22 akiss
326 22 akiss
/*************************************************************
327 22 akiss
 *        PRINT RESULTS
328 22 akiss
 * **********************************************************/
329 22 akiss
cout<<"----------------------"<<endl;
330 22 akiss
cout<<"Areachanges (Awet/Adry) :"<<endl;
331 22 akiss
cout<<"----------------------"<<endl;
332 22 akiss
cout<<"cortex -> "<<am<<endl;
333 22 akiss
cout<<"floral podium -> "<<an<<endl;
334 22 akiss
cout<<"side -> "<<as<<endl;
335 22 akiss
cout<<"vasculature -> "<<av<<endl;
336 22 akiss
cout<<"----------------------"<<endl;
337 22 akiss
cout<<"Generated side angle = "<<sideangle<<" degrees"<<endl;
338 22 akiss
cout<<"----------------------"<<endl;