root / dandelion.cpp @ 22
Historique | Voir | Annoter | Télécharger (10,96 ko)
1 | 22 | akiss | /***************************
|
---|---|---|---|
2 | 22 | akiss | * ----------------------------------------------------------------------
|
3 | 22 | akiss | * Dandelion pappus morphing is actuated by radially patterned material swelling
|
4 | 22 | akiss | * ----------------------------------------------------------------------
|
5 | 22 | akiss | *
|
6 | 22 | akiss | * FreeFem++ simulation scripte used in the following publication :
|
7 | 22 | akiss | *
|
8 | 22 | akiss | * Madeleine Seale, Annamaria Kiss, Simone Bovio, Ignazio Maria Viola, Enrico
|
9 | 22 | akiss | * Mastropaolo, Arezki Boudaoud, Naomi Nakayama,
|
10 | 22 | akiss | * "Dandelion pappus morphing is actuated by radially patterned material swelling",
|
11 | 22 | akiss | * doi: https://doi.org/10.1101/2021.08.23.457337
|
12 | 22 | akiss | *
|
13 | 22 | akiss | * Author :
|
14 | 22 | akiss | * Annamaria Kiss
|
15 | 22 | akiss | * (annamaria.kiss@ens-lyon.fr, Laboratoire RDP, ENS Lyon)
|
16 | 22 | akiss | *
|
17 | 22 | akiss | * ***************************/
|
18 | 22 | akiss | |
19 | 22 | akiss | include "getARGV.idp"
|
20 | 22 | akiss | |
21 | 22 | akiss | // reading script arguments
|
22 | 22 | akiss | for (int i=0;i<ARGV.n;++i) |
23 | 22 | akiss | { cout << ARGV[i] << " ";}
|
24 | 22 | akiss | cout<<endl; |
25 | 22 | akiss | |
26 | 22 | akiss | /***************************
|
27 | 22 | akiss | * GLOSSARY
|
28 | 22 | akiss | * nectary = floral podium
|
29 | 22 | akiss | * mesophyl = cortex
|
30 | 22 | akiss | /****************************/
|
31 | 22 | akiss | |
32 | 22 | akiss | /*************************************************************
|
33 | 22 | akiss | * PARAMETERS
|
34 | 22 | akiss | * **********************************************************/
|
35 | 22 | akiss | |
36 | 22 | akiss | string output = getARGV("-out", "."); |
37 | 22 | akiss | |
38 | 22 | akiss | // ---------------- geometrical parameters ----------------
|
39 | 22 | akiss | |
40 | 22 | akiss | // (lengths are measured in micrometers)
|
41 | 22 | akiss | real units=200;
|
42 | 22 | akiss | |
43 | 22 | akiss | // actuator dimensions
|
44 | 22 | akiss | real lx=getARGV("-D", 491.0)/units; //sd =34.4 |
45 | 22 | akiss | real ly=getARGV("-H", 240.0)/units; //sd=36.0 |
46 | 22 | akiss | |
47 | 22 | akiss | // floral podium
|
48 | 22 | akiss | real hnect = getARGV("-Hpod", 38.8)/units; //sd=9.6 |
49 | 22 | akiss | real Rmeasured=getARGV("-R", 363.0)/units; //sd=49.4 |
50 | 22 | akiss | real R=Rmeasured-hnect; |
51 | 22 | akiss | |
52 | 22 | akiss | // side
|
53 | 22 | akiss | real hside=getARGV("-Hside", 91.4)/units; //12.6 |
54 | 22 | akiss | real lside=getARGV("-Wside", 47.6)/units; //6.6 |
55 | 22 | akiss | |
56 | 22 | akiss | // vasculature
|
57 | 22 | akiss | real vthickness=getARGV("-Wvasculature", 34.3)/units;//5.5 |
58 | 22 | akiss | real cwidth=getARGV("-Dcavity", 74.8)/units; //15.2 |
59 | 22 | akiss | |
60 | 22 | akiss | // vasculature displacement (from vascular bundle distance)
|
61 | 22 | akiss | real vd=getARGV("-dvasc", 15.3)/units; //15.3*0.22 |
62 | 22 | akiss | real vposition=lx/2-vthickness-hnect/ly*(lx/2-cwidth/2-vthickness); |
63 | 22 | akiss | |
64 | 22 | akiss | // mesh parameters
|
65 | 22 | akiss | int nvertex=40; |
66 | 22 | akiss | cout << "nvertex="<<nvertex<<endl;
|
67 | 22 | akiss | |
68 | 22 | akiss | // ---------------- Material properties ----------------
|
69 | 22 | akiss | |
70 | 22 | akiss | // Poisson's ratio
|
71 | 22 | akiss | real nu = 0.29; |
72 | 22 | akiss | |
73 | 22 | akiss | // Young modulus
|
74 | 22 | akiss | real Ev; // vasculature Young modulus
|
75 | 22 | akiss | real fEm; // cortex Em/Ev
|
76 | 22 | akiss | real fEn; // floral podium En/Ev
|
77 | 22 | akiss | real fEs; // side Es/Ev
|
78 | 22 | akiss | |
79 | 22 | akiss | // measured values for the density (Mean, SD)
|
80 | 22 | akiss | real dm=0.668060839; //sd=0.04091249 |
81 | 22 | akiss | real dn=1.01896008; //sd=0.015464575 |
82 | 22 | akiss | real ds=0.918032482; //sd=0.075097509 |
83 | 22 | akiss | real dv=0.882171532; //sd=0.066651037 |
84 | 22 | akiss | |
85 | 22 | akiss | // Young modulus is linked to measured densities
|
86 | 22 | akiss | Ev=1; // vasculature Young modulus |
87 | 22 | akiss | fEm=dm/dv; // cortex Em/Ev
|
88 | 22 | akiss | fEn=dn/dv; // floral podium En/Ev
|
89 | 22 | akiss | fEs=ds/dv; // side Es/Ev
|
90 | 22 | akiss | |
91 | 22 | akiss | // ----- swelling ability of each region is a parameter
|
92 | 22 | akiss | real ani = getARGV("-ani", 1.);// anisotropy of swelling property |
93 | 22 | akiss | real sm = -getARGV("-scort", 0.464888);// cortex swelling property |
94 | 22 | akiss | real sn = -getARGV("-spod", 0.443697);// floral podium swelling property |
95 | 22 | akiss | real ss = -getARGV("-sside", 0.573482);// side swelling property |
96 | 22 | akiss | real sv = -getARGV("-svasc", 0.236087);// vasculature swelling property |
97 | 22 | akiss | |
98 | 22 | akiss | |
99 | 22 | akiss | /*************************************************************
|
100 | 22 | akiss | * GEOMETRY and MESH
|
101 | 22 | akiss | * **********************************************************/
|
102 | 22 | akiss | |
103 | 22 | akiss | func real lineD(real xA, real xB, real yA, real yB) |
104 | 22 | akiss | { return (yB-yA)/(xB-xA);
|
105 | 22 | akiss | } |
106 | 22 | akiss | |
107 | 22 | akiss | func real lineC(real xA, real xB, real yA, real yB) |
108 | 22 | akiss | { return (yA*xB-yB*xA)/(xB-xA);
|
109 | 22 | akiss | } |
110 | 22 | akiss | |
111 | 22 | akiss | func real angleToVertical(real Mx, real My, real Nx, real Ny) |
112 | 22 | akiss | { /* Computes the sinus of angle between the MN vector and Oy */
|
113 | 22 | akiss | return asin((Nx-Mx)/sqrt((Mx-Nx)^2+(My-Ny)^2))*180/pi; |
114 | 22 | akiss | } |
115 | 22 | akiss | |
116 | 22 | akiss | // ----------------- External boundary/ -----------------
|
117 | 22 | akiss | |
118 | 22 | akiss | real rnect=lx/2-vthickness;
|
119 | 22 | akiss | real tB=2*pi-acos(rnect/R);
|
120 | 22 | akiss | real tA=pi+acos(rnect/R); |
121 | 22 | akiss | real xC=0;
|
122 | 22 | akiss | real yC=sqrt(R*R-rnect*rnect); |
123 | 22 | akiss | |
124 | 22 | akiss | // top
|
125 | 22 | akiss | border a1(t=0,1){x=lx/2+t*(lx/2-vthickness-lx/2);y=0;label=11;}; |
126 | 22 | akiss | border a2(t=tB,tA){x=xC+R*cos(t);y=yC+R*sin(t);label=12;};
|
127 | 22 | akiss | border a3(t=0,1){x=-lx/2+vthickness+t*(-lx/2-(-lx/2+vthickness));y=0;label=13;}; |
128 | 22 | akiss | // left
|
129 | 22 | akiss | border b1(t=0,1){x=-lx/2;y=t*(-ly);label=2;}; |
130 | 22 | akiss | // bottom
|
131 | 22 | akiss | border c1(t=0,1){x=-lx/2+t*(-cwidth/2-vthickness+lx/2);y=-ly;label=31;}; |
132 | 22 | akiss | border c2(t=0,1){x=-cwidth/2-vthickness+t*vthickness;y=-ly;label=32;}; |
133 | 22 | akiss | border c3(t=0,1){x=cwidth/2+t*vthickness;y=-ly;label=33;}; |
134 | 22 | akiss | border c4(t=0,1){x=cwidth/2+vthickness+t*(lx/2-cwidth/2-vthickness);y=-ly;label=34;}; |
135 | 22 | akiss | // right
|
136 | 22 | akiss | border d1(t=0,1){x=lx/2;y=-ly+t*(ly);label=4;}; |
137 | 22 | akiss | |
138 | 22 | akiss | // -------------------- Internal boundary/ -----------------
|
139 | 22 | akiss | |
140 | 22 | akiss | real xA=-rnect; real yA=0;
|
141 | 22 | akiss | real xB=-cwidth/2; real yB=-ly;
|
142 | 22 | akiss | real D=lineD(xA, xB, yA, yB); |
143 | 22 | akiss | real C=lineC(xA, xB, yA, yB); |
144 | 22 | akiss | real delta=D^2*(C-yC)^2-(1+D^2)*((C-yC)^2-(R+hnect)^2); |
145 | 22 | akiss | real xM=(-D*(C-yC)+sqrt(delta))/(D^2+1); |
146 | 22 | akiss | real yM=D*xM+C; |
147 | 22 | akiss | real tN=2*pi+asin(-sqrt((R+hnect)^2-xM^2)/(R+hnect)); |
148 | 22 | akiss | real tM=3*pi-tN;
|
149 | 22 | akiss | |
150 | 22 | akiss | // hole
|
151 | 22 | akiss | border vide1(t=0,1){x=-cwidth/2+t*(xM+cwidth/2);y=-ly+t*(yM+ly);label=51;}; |
152 | 22 | akiss | border vide2(t=tM,tN){x=xC+(R+hnect)*cos(t);y=yC+(R+hnect)*sin(t);label=52;};
|
153 | 22 | akiss | border vide3(t=0,1){x=-xM+t*(cwidth/2+xM);y=yM+t*(-ly-yM);label=53;}; |
154 | 22 | akiss | |
155 | 22 | akiss | // ------------------- Define the mesh -------------------
|
156 | 22 | akiss | |
157 | 22 | akiss | mesh Th = buildmesh (a1(nvertex*vthickness)+a2(nvertex*2*rnect)+a3(nvertex*vthickness) // top |
158 | 22 | akiss | + b1(nvertex*ly) + d1(nvertex*ly) // sides
|
159 | 22 | akiss | + c1(nvertex*lx/2) + c2(nvertex*vthickness) // left bottom |
160 | 22 | akiss | + vide1(nvertex*ly) + vide2(nvertex*(lx-2*vthickness)) + vide3(nvertex*ly) //hole |
161 | 22 | akiss | + c3(nvertex*vthickness) + c4(nvertex*lx/2) // right bottom |
162 | 22 | akiss | ); |
163 | 22 | akiss | |
164 | 22 | akiss | /*************************************************************
|
165 | 22 | akiss | * DEFINITION OF the REGIONS
|
166 | 22 | akiss | * **********************************************************/
|
167 | 22 | akiss | |
168 | 22 | akiss | real xA1=-(vposition+vthickness), yA1=-hnect; |
169 | 22 | akiss | real xB1=-cwidth/2-vthickness, yB1=-ly;
|
170 | 22 | akiss | real xA2=(vposition+vthickness), yA2=-hnect; |
171 | 22 | akiss | real xB2=cwidth/2+vthickness, yB2=-ly;
|
172 | 22 | akiss | real D1=lineD(xA1, xB1, yA1, yB1); |
173 | 22 | akiss | real C1=lineC(xA1, xB1, yA1, yB1); |
174 | 22 | akiss | real D2=lineD(xA2, xB2, yA2, yB2); |
175 | 22 | akiss | real C2=lineC(xA2, xB2, yA2, yB2); |
176 | 22 | akiss | |
177 | 22 | akiss | func bool vasculatureBool(real xx, real yy)
|
178 | 22 | akiss | { return (((yy>D1*xx+C1) && (yy<D1*(xx-vthickness)+C1)) || ((yy>D2*xx+C2)&& (yy<D2*(xx+vthickness)+C2)) );
|
179 | 22 | akiss | } |
180 | 22 | akiss | |
181 | 22 | akiss | func bool nectaryBool(real xx, real yy)
|
182 | 22 | akiss | { return (yy>D1*(xx-vthickness)+C1)&&(yy>D2*(xx+vthickness)+C2);
|
183 | 22 | akiss | } |
184 | 22 | akiss | |
185 | 22 | akiss | func bool sideBool(real xx, real yy)
|
186 | 22 | akiss | { return (yy>-hside) && (((xx<-lx/2+lside)&&(yy<D1*xx+C1)) || ( (xx>lx/2-lside)&& (yy<D2*xx+C2)) ); |
187 | 22 | akiss | } |
188 | 22 | akiss | |
189 | 22 | akiss | func bool mesophylBool(real xx, real yy)
|
190 | 22 | akiss | { return (!vasculatureBool(xx,yy)) && (!nectaryBool(xx,yy)) && (!sideBool(xx,yy));
|
191 | 22 | akiss | } |
192 | 22 | akiss | |
193 | 22 | akiss | |
194 | 22 | akiss | /*************************************************************
|
195 | 22 | akiss | * DEFINE THE FINITE ELEMENT SPACE
|
196 | 22 | akiss | * **********************************************************/
|
197 | 22 | akiss | |
198 | 22 | akiss | fespace Vh(Th,[P2,P2]); // vector on the mesh (displacement vector)
|
199 | 22 | akiss | Vh [u1,u2], [v1,v2]; |
200 | 22 | akiss | |
201 | 22 | akiss | fespace Sh(Th, P2); // scalar on the mesh, P2 elements
|
202 | 22 | akiss | fespace Sh0(Th,P0); // scalar on the mesh, P0 elements
|
203 | 22 | akiss | fespace Sh1(Th,P1); // scalar on the mesh, P1 elements
|
204 | 22 | akiss | |
205 | 22 | akiss | Sh0 strain, stress; |
206 | 22 | akiss | |
207 | 22 | akiss | // bounding box for the plot (use the same for all images so that they can be superposed)
|
208 | 22 | akiss | func bb=[[-lx/2*1.5,-ly*1],[lx/2*1.5,ly*.1]]; |
209 | 22 | akiss | //real coef=1.;
|
210 | 22 | akiss | //cout << "Coefficent of amplification:"<<coef<<endl;
|
211 | 22 | akiss | plot(Th, ps=output+"/mesh-original.eps", bb=bb, wait=1); |
212 | 22 | akiss | |
213 | 22 | akiss | // macro to redefine variables on the displaced mesh
|
214 | 22 | akiss | macro redefineVariable(vvv) |
215 | 22 | akiss | { real[int] temp(vvv[].n);
|
216 | 22 | akiss | temp=vvv[]; vvv=0; vvv[]=temp;
|
217 | 22 | akiss | vvv=vvv; |
218 | 22 | akiss | }//
|
219 | 22 | akiss | |
220 | 22 | akiss | |
221 | 22 | akiss | real sqrt2=sqrt(2.);
|
222 | 22 | akiss | macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
|
223 | 22 | akiss | //the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $== \epsilon(\bm{u}): \epsilon(\bm{v})$
|
224 | 22 | akiss | macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
|
225 | 22 | akiss | |
226 | 22 | akiss | /*************************************************************
|
227 | 22 | akiss | * SPATIAL DEPENDENCE OF MATERIAL PROPERTIES
|
228 | 22 | akiss | * **********************************************************/
|
229 | 22 | akiss | |
230 | 22 | akiss | // define region geometry as a finite element field
|
231 | 22 | akiss | |
232 | 22 | akiss | //string mutname="mnsv";
|
233 | 22 | akiss | func vasculature=int(vasculatureBool(x,y));
|
234 | 22 | akiss | func nectary=int(nectaryBool(x,y));
|
235 | 22 | akiss | func side=int(sideBool(x,y));
|
236 | 22 | akiss | func mesophyl=int(mesophylBool(x,y));
|
237 | 22 | akiss | |
238 | 22 | akiss | func geometry = 1*vasculature + 3*nectary + 2*side + 4*mesophyl; |
239 | 22 | akiss | |
240 | 22 | akiss | // definition of FE variables for the structural domains
|
241 | 22 | akiss | Sh0 vasculatureh=vasculature; |
242 | 22 | akiss | Sh0 nectaryh=nectary; |
243 | 22 | akiss | Sh0 sideh=side; |
244 | 22 | akiss | Sh0 mesophylh=mesophyl; |
245 | 22 | akiss | |
246 | 22 | akiss | Sh0 geometryh=geometry; |
247 | 22 | akiss | string fname=output+"/geometry-original.eps"; |
248 | 22 | akiss | plot(geometryh,fill=1, ps=fname, bb=bb, wait=1 ); |
249 | 22 | akiss | |
250 | 22 | akiss | |
251 | 22 | akiss | // spatial dependence of Young modulus
|
252 | 22 | akiss | func E=Ev*(vasculature + fEn*nectary + fEs*side + fEm*mesophyl); |
253 | 22 | akiss | Sh0 Eh=E; |
254 | 22 | akiss | |
255 | 22 | akiss | // spatial dependence of the swelling property
|
256 | 22 | akiss | func s=sv*vasculature + sn*nectary + ss*side + sm*mesophyl; |
257 | 22 | akiss | Sh0 sh=s; |
258 | 22 | akiss | |
259 | 22 | akiss | // spatial dependence of the anisotropy of the swelling property
|
260 | 22 | akiss | Sh0 anih=ani; |
261 | 22 | akiss | |
262 | 22 | akiss | func mu=E/(2*(1+nu)); |
263 | 22 | akiss | func lambda=E*nu/((1+nu)*(1-2*nu)); |
264 | 22 | akiss | |
265 | 22 | akiss | /*************************************************************
|
266 | 22 | akiss | * SOLVING THE FEM
|
267 | 22 | akiss | * **********************************************************/
|
268 | 22 | akiss | |
269 | 22 | akiss | solve Lame([u1,u2],[v1,v2])= |
270 | 22 | akiss | int2d(Th)( |
271 | 22 | akiss | lambda*div(u1,u2)*div(v1,v2) |
272 | 22 | akiss | + 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) ) |
273 | 22 | akiss | ) |
274 | 22 | akiss | - int2d(Th) ( sh/(1.+anih)*((2.*mu+lambda)*dx(v1)+lambda*dy(v2)) ) |
275 | 22 | akiss | - int2d(Th) ( ani*sh/(1.+anih)*(lambda*dx(v1)+(2.*mu+lambda)*dy(v2)) ) |
276 | 22 | akiss | + on(32,u1=vd,u2=0) + on(33,u1=-vd,u2=0) |
277 | 22 | akiss | ; |
278 | 22 | akiss | |
279 | 22 | akiss | |
280 | 22 | akiss | /*************************************************************
|
281 | 22 | akiss | * RESULTS
|
282 | 22 | akiss | * **********************************************************/
|
283 | 22 | akiss | |
284 | 22 | akiss | // compute original region volumes
|
285 | 22 | akiss | real voltotal0=int2d(Th)(1);
|
286 | 22 | akiss | real volvasculature0=int2d(Th)(vasculatureh); |
287 | 22 | akiss | real volnectary0=int2d(Th)(nectaryh); |
288 | 22 | akiss | real volmesophyl0=int2d(Th)(mesophylh); |
289 | 22 | akiss | real volside0=int2d(Th)(sideh); |
290 | 22 | akiss | |
291 | 22 | akiss | |
292 | 22 | akiss | // move the mesh and plot the deformed mesh
|
293 | 22 | akiss | mesh Th0=Th; |
294 | 22 | akiss | Th=movemesh(Th,[x+u1,y+u2]); |
295 | 22 | akiss | |
296 | 22 | akiss | plot(Th, Th0, ps=output+"/mesh-original+deformed-superposed.eps",bb=bb, wait=1); |
297 | 22 | akiss | plot(Th, ps=output+"/mesh-deformed.eps",bb=bb, wait=1); |
298 | 22 | akiss | |
299 | 22 | akiss | redefineVariable(geometryh); |
300 | 22 | akiss | plot(geometryh, fill=1, ps=output+"/geometry-deformed.eps",bb=bb, wait=1); |
301 | 22 | akiss | |
302 | 22 | akiss | // compute deformed region volumes
|
303 | 22 | akiss | redefineVariable(vasculatureh); |
304 | 22 | akiss | redefineVariable(nectaryh); |
305 | 22 | akiss | redefineVariable(sideh); |
306 | 22 | akiss | redefineVariable(mesophylh); |
307 | 22 | akiss | |
308 | 22 | akiss | real voltotal=int2d(Th)(1);
|
309 | 22 | akiss | real volvasculature=int2d(Th)(vasculatureh); |
310 | 22 | akiss | real volnectary=int2d(Th)(nectaryh); |
311 | 22 | akiss | real volside=int2d(Th)(sideh); |
312 | 22 | akiss | real volmesophyl=int2d(Th)(mesophylh); |
313 | 22 | akiss | |
314 | 22 | akiss | // compute areachanges
|
315 | 22 | akiss | real am=volmesophyl0/volmesophyl; |
316 | 22 | akiss | real an=volnectary0/volnectary; |
317 | 22 | akiss | real as=volside0/volside; |
318 | 22 | akiss | real av=volvasculature0/volvasculature; |
319 | 22 | akiss | |
320 | 22 | akiss | // compute the generated side angle
|
321 | 22 | akiss | real height=hside; |
322 | 22 | akiss | real Nx=lx/2+u1(lx/2.,0), Ny=u2(lx/2.,0); |
323 | 22 | akiss | real Mx=lx/2+u1(lx/2.,-height), My=-height+u2(lx/2.,-height); |
324 | 22 | akiss | real sideangle=angleToVertical(Mx, My, Nx, Ny); |
325 | 22 | akiss | |
326 | 22 | akiss | /*************************************************************
|
327 | 22 | akiss | * PRINT RESULTS
|
328 | 22 | akiss | * **********************************************************/
|
329 | 22 | akiss | cout<<"----------------------"<<endl;
|
330 | 22 | akiss | cout<<"Areachanges (Awet/Adry) :"<<endl;
|
331 | 22 | akiss | cout<<"----------------------"<<endl;
|
332 | 22 | akiss | cout<<"cortex -> "<<am<<endl;
|
333 | 22 | akiss | cout<<"floral podium -> "<<an<<endl;
|
334 | 22 | akiss | cout<<"side -> "<<as<<endl;
|
335 | 22 | akiss | cout<<"vasculature -> "<<av<<endl;
|
336 | 22 | akiss | cout<<"----------------------"<<endl;
|
337 | 22 | akiss | cout<<"Generated side angle = "<<sideangle<<" degrees"<<endl; |
338 | 22 | akiss | cout<<"----------------------"<<endl; |