root / Parameters_fs / pulvinus-images.cpp @ 19
Historique | Voir | Annoter | Télécharger (10,32 ko)
1 |
include "getARGV.idp"
|
---|---|
2 |
//include "bib_meca2d.cpp"
|
3 |
|
4 |
//usage :
|
5 |
//Freefem++ pulvinus.edp [-fE fEvalue] [-Nit Nit] [-geometry g]
|
6 |
//arguments:
|
7 |
//-fE fEvalue:
|
8 |
//-Nit Nit: number of iterations
|
9 |
//-geometry g: differnet geometries
|
10 |
//1:
|
11 |
//2:
|
12 |
//3:
|
13 |
|
14 |
|
15 |
|
16 |
func real lineD(real xA, real xB, real yA, real yB) |
17 |
{ return (yB-yA)/(xB-xA);
|
18 |
} |
19 |
|
20 |
func real lineC(real xA, real xB, real yA, real yB) |
21 |
{ return (yA*xB-yB*xA)/(xB-xA);
|
22 |
} |
23 |
|
24 |
//real PI=3.14159265;
|
25 |
|
26 |
func real angleToVertical(real Mx, real My, real Nx, real Ny) |
27 |
{ /* Computes the sinus of angle between the MN vector and Oy */
|
28 |
return asin((Nx-Mx)/sqrt((Mx-Nx)^2+(My-Ny)^2))*180/pi; |
29 |
} |
30 |
|
31 |
|
32 |
/*************************************************************
|
33 |
* PARAMETERS
|
34 |
* **********************************************************/
|
35 |
|
36 |
// reading script arguments
|
37 |
for (int i=0;i<ARGV.n;++i) |
38 |
{ cout << ARGV[i] << " ";}
|
39 |
cout<<endl; |
40 |
|
41 |
verbosity = getARGV("-vv", 0); |
42 |
int vdebug = getARGV("-d", 1); |
43 |
//real fE = getARGV("-fE", 0.2);
|
44 |
real sm = -getARGV("-sm", 0.95);// measured value |
45 |
real fs = getARGV("-fs", 0.02); |
46 |
int Nit = getARGV("-Nit", 1); |
47 |
string geom = getARGV("-geometry", "1"); |
48 |
string output = getARGV("-out", "."); |
49 |
|
50 |
|
51 |
int hyp=getARGV("-hyp", 1); |
52 |
|
53 |
cout<<"----------------------------------------------"<< endl;
|
54 |
cout<<"Hypothesis no. "<<hyp<< ": sm="<<sm<< endl; |
55 |
|
56 |
// ---------------- geometrical parameters
|
57 |
|
58 |
// (lengths are measured in micrometers)
|
59 |
real units=200;
|
60 |
|
61 |
// pulvinus dimensions
|
62 |
real lx=491.0/units; //sd =34.4 |
63 |
real ly= 240.0/units; //sd=36.0 |
64 |
|
65 |
// nectary height
|
66 |
real hnect = 38.8/units; //sd=9.6 |
67 |
real R=363.0/units; //sd=49.4 |
68 |
|
69 |
// side dimensions
|
70 |
real hside=91.4/units; //12.6 |
71 |
real lside=47.6/units/2; //6.6 |
72 |
|
73 |
// vasculature dimensions
|
74 |
real vthickness=34.3/units;//5.5 |
75 |
real cwidth=74.8/units; //15.2 |
76 |
real cwidthdry=44.2/units; //8.4 |
77 |
|
78 |
// vasculature displacement (from vascular bundle distance)
|
79 |
real vd=(cwidth-cwidthdry)/2;
|
80 |
real vposition=lx/2-vthickness-hnect/ly*(lx/2-cwidth/2-vthickness); //cout<<"vposition="<<vposition<<endl; |
81 |
|
82 |
// mesh parameters
|
83 |
int nvertex=50; cout << "nvertex="<<nvertex<<endl; |
84 |
real pinned=lx/nvertex/2;
|
85 |
|
86 |
|
87 |
// ---------------- Material properties
|
88 |
|
89 |
real nu = 0.29; // Poisson's ratio |
90 |
|
91 |
// Young modulus
|
92 |
real Ev; // vasculature Young modulus
|
93 |
real fEm; // mesophyl Em/Ev
|
94 |
real fEn; // nectary En/Ev
|
95 |
real fEs; // side Es/Ev
|
96 |
|
97 |
// hydrophobicity as swelling ability
|
98 |
// sm // mesophyl swelling property
|
99 |
real fsn; // nectary sn/sm
|
100 |
real fss; // side ss/sm
|
101 |
real fsv; // vasculature sv/sm
|
102 |
|
103 |
|
104 |
|
105 |
// measured values for the density
|
106 |
//Region,Mean_tissue_density,SD_tissue_density
|
107 |
real dm=0.668060839; //sd=0.04091249 |
108 |
real dn=1.01896008; //sd=0.015464575 |
109 |
real ds=0.918032482; //sd=0.075097509 |
110 |
real dv=0.882171532; //sd=0.066651037 |
111 |
|
112 |
real nEd=1.0; |
113 |
|
114 |
|
115 |
// Young modulus
|
116 |
Ev=1; // vasculature Young modulus |
117 |
fEm=(dm/dv)^nEd; // mesophyl Em/Ev
|
118 |
fEn=(dn/dv)^nEd; // nectary En/Ev
|
119 |
fEs=(ds/dv)^nEd; // side Es/Ev
|
120 |
|
121 |
// hydrophobicity as swelling ability
|
122 |
cout << "hyp="<<hyp<<"============================="<<endl; |
123 |
|
124 |
if (hyp==1) |
125 |
{ |
126 |
fsn=fs; // nectary sn/sm
|
127 |
fss=fs; // side ss/sm
|
128 |
fsv=fs; // vasculature sv/sm
|
129 |
} |
130 |
|
131 |
|
132 |
if (hyp==2) |
133 |
{ |
134 |
fsn=fs; // nectary sn/sm
|
135 |
fss=1; // side ss/sm |
136 |
fsv=fs; // vasculature sv/sm
|
137 |
} |
138 |
|
139 |
if (hyp==3) |
140 |
{ |
141 |
fsn=1; // nectary sn/sm |
142 |
fss=1; // side ss/sm |
143 |
fsv=fs; // vasculature sv/sm
|
144 |
} |
145 |
|
146 |
if (hyp==4) |
147 |
{ |
148 |
fsn=1; // nectary sn/sm |
149 |
fss=fs; // side ss/sm
|
150 |
fsv=fs; // vasculature sv/sm
|
151 |
} |
152 |
|
153 |
|
154 |
|
155 |
/*************************************************************
|
156 |
* GEOMETRY and MESH
|
157 |
* **********************************************************/
|
158 |
|
159 |
string geomfilename="geometry"+geom+".cpp"; |
160 |
cout<<"including "<<geomfilename<<endl;
|
161 |
include "geometry1.cpp";
|
162 |
|
163 |
// -------------------- define the finite element space
|
164 |
|
165 |
fespace Vh(Th,[P2,P2]); // vector on the mesh (displacement vector)
|
166 |
Vh [u1,u2], [v1,v2]; |
167 |
|
168 |
fespace Sh(Th, P2); // scalar on the mesh, P2 elements
|
169 |
fespace Sh0(Th,P0); // scalar on the mesh, P0 elements
|
170 |
fespace Sh1(Th,P1); // scalar on the mesh, P1 elements
|
171 |
|
172 |
Sh0 strain, stress; |
173 |
|
174 |
// bounding box for the plot (use the same for all images so that they can be superposed)
|
175 |
func bb=[[-lx/2*1.5,-ly*1],[lx/2*1.5,ly*.1]]; |
176 |
real coef=1;
|
177 |
cout << "Coefficent of amplification:"<<coef<<endl;
|
178 |
//plot(Th, fill=1, ps=output+"/original_geometry.png", bb=bb); -------------------------------
|
179 |
|
180 |
// macro to redefine variables on the displaced mesh
|
181 |
macro redefineVariable(vvv) |
182 |
{ real[int] temp(vvv[].n);
|
183 |
temp=vvv[]; vvv=0; vvv[]=temp;
|
184 |
vvv=vvv; |
185 |
}//
|
186 |
|
187 |
|
188 |
real sqrt2=sqrt(2.);
|
189 |
macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
|
190 |
//the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $== \epsilon(\bm{u}): \epsilon(\bm{v})$
|
191 |
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
|
192 |
|
193 |
/*************************************************************
|
194 |
* MECHANICS
|
195 |
* **********************************************************/
|
196 |
|
197 |
// definition of integer functions for the structural domains
|
198 |
func vasculature=int(vasculatureBool(x,y));
|
199 |
func nectary=int(nectaryBool(x,y));
|
200 |
func side=int(sideBool(x,y));
|
201 |
func mesophyl=int(mesophylBool(x,y));
|
202 |
func geometry = 1*vasculature + 3*nectary + 2*side + 4*mesophyl; |
203 |
|
204 |
// definition of FE variables for the structural domains
|
205 |
Sh0 vasculatureh=vasculature; |
206 |
//plot(vasculatureh,wait=1,value=true,fill=1, ps=output+"/vasculature-original.png", bb=bb);
|
207 |
|
208 |
Sh0 nectaryh=nectary; |
209 |
//plot(nectaryh,wait=1,value=true,fill=1, ps=output+"/nectary-original.png", bb=bb);
|
210 |
|
211 |
Sh0 sideh=side; |
212 |
//plot(sideh,wait=1,value=true,fill=1, ps=output+"/side-original.png", bb=bb);
|
213 |
|
214 |
Sh0 mesophylh=mesophyl; |
215 |
//plot(mesophylh,wait=1,value=true,fill=1, ps=output+"/mesophyl-original.png", bb=bb);
|
216 |
|
217 |
Sh0 geometryh=geometry; |
218 |
string fname=output+"/geometry-original.png"; |
219 |
plot(geometryh,fill=1, ps=fname, bb=bb);
|
220 |
|
221 |
// spatial dependence of Young modulus
|
222 |
func E=Ev*(vasculature + fEn*nectary + fEs*side + fEm*mesophyl); |
223 |
Sh0 Eh=E; |
224 |
|
225 |
// spatial dependence of the swelling property
|
226 |
func s=sm*(fsv*vasculature + fsn*nectary + fss*side + mesophyl); |
227 |
Sh0 sh=s; |
228 |
|
229 |
func mu=E/(2*(1+nu)); |
230 |
func lambda=E*nu/((1+nu)*(1-2*nu)); |
231 |
func K=lambda+2*mu/3; |
232 |
|
233 |
// ------ iterations
|
234 |
|
235 |
{ |
236 |
|
237 |
|
238 |
/*************************************************************
|
239 |
* SOLVING THE FEM
|
240 |
* **********************************************************/
|
241 |
|
242 |
solve Lame([u1,u2],[v1,v2])= |
243 |
int2d(Th)( |
244 |
lambda*div(u1,u2)*div(v1,v2) |
245 |
+ 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) ) |
246 |
) |
247 |
- int2d(Th) ( K*sh*div(v1,v2)) |
248 |
+ on(32,u1=vd,u2=0) |
249 |
+ on(33,u1=-vd,u2=0) |
250 |
; |
251 |
|
252 |
|
253 |
stress=2*K*(strain-s);
|
254 |
|
255 |
Sh0 e11=dx(u1)+1.;
|
256 |
Sh0 e12=1/2.*(dx(u2) + dy(u1)); |
257 |
Sh0 e22=dy(u2)+1.;
|
258 |
|
259 |
strain=e11+e22 ; |
260 |
Sh0 Det=e11*e22-e12*e12; |
261 |
|
262 |
Sh0 l1=abs(strain+sqrt(strain*strain-4*Det))/2.; |
263 |
Sh0 l2=abs(strain-sqrt(strain*strain-4*Det))/2.; |
264 |
|
265 |
Sh0 lmax=(l1-l2+abs(l1-l2))/2.+l2;
|
266 |
Sh0 lmin=(l1-l2-abs(l1-l2))/2.+l2;
|
267 |
|
268 |
Sh0 strainanisotropy=lmin/lmax; |
269 |
|
270 |
|
271 |
/*************************************************************
|
272 |
* VISUALISATION
|
273 |
* **********************************************************/
|
274 |
real voltotal0=int2d(Th)(1);
|
275 |
real volvasculature0=int2d(Th)(vasculatureh); |
276 |
real volnectary0=int2d(Th)(nectaryh); |
277 |
real volmesophyl0=int2d(Th)(mesophylh); |
278 |
real volside0=int2d(Th)(sideh); |
279 |
|
280 |
cout<<"Original volume="<<voltotal0<<endl;
|
281 |
cout<<"Original vasculature volume="<<volvasculature0<<endl;
|
282 |
|
283 |
|
284 |
// compute mean strain per region
|
285 |
real straintotal=int2d(Th)(strain)/voltotal0; |
286 |
real strainvasculature=int2d(Th)(strain*vasculatureh)/volvasculature0; |
287 |
real strainnectary=int2d(Th)(strain*nectaryh)/volnectary0; |
288 |
real strainside=int2d(Th)(strain*sideh)/volside0; |
289 |
real strainmesophyl=int2d(Th)(strain*mesophylh)/volmesophyl0; |
290 |
|
291 |
|
292 |
// compute mean strain anisotropy per region
|
293 |
real satotal=int2d(Th)(strainanisotropy)/voltotal0; |
294 |
real savasculature=int2d(Th)(strainanisotropy*vasculatureh)/volvasculature0; |
295 |
real sanectary=int2d(Th)(strainanisotropy*nectaryh)/volnectary0; |
296 |
real saside=int2d(Th)(strainanisotropy*sideh)/volside0; |
297 |
real samesophyl=int2d(Th)(strainanisotropy*mesophylh)/volmesophyl0; |
298 |
|
299 |
|
300 |
cout<<"Mean strain and strain anisotropy per region :"<<endl;
|
301 |
cout<<"Mesophyll:"<<strainmesophyl<<" "<<samesophyl<<endl; |
302 |
cout<<"Nectary:"<<strainnectary<<" "<<sanectary<<endl; |
303 |
cout<<"Side:"<<strainside<<" "<<saside<<endl; |
304 |
cout<<"Vasculature:"<<strainvasculature<<" "<<savasculature<<endl; |
305 |
cout<<"Total:"<<straintotal<<" "<<satotal<<endl; |
306 |
|
307 |
mesh Th0=Th; |
308 |
Th=movemesh(Th,[x+u1*coef,y+u2*coef]); |
309 |
|
310 |
plot(Th, Th0, ps=output+"/geometry-deformed-superposed_hyp"+string(hyp)+"_sm"+string(sm)+"_fs"+string(fs)+".png",bb=bb); |
311 |
|
312 |
|
313 |
redefineVariable(strain); |
314 |
redefineVariable(stress); |
315 |
plot(strain, fill=1,wait=1,value=true, ps="strain.png",bb=bb); |
316 |
plot(stress, fill=1,wait=1,value=true, ps="stress.png",bb=bb); |
317 |
|
318 |
|
319 |
redefineVariable(geometryh); |
320 |
plot(geometryh, fill=1, ps=output+"/geometry-deformed_hyp"+string(hyp)+"_sm"+string(sm)+".png",bb=bb); |
321 |
|
322 |
redefineVariable(vasculatureh); |
323 |
redefineVariable(nectaryh); |
324 |
redefineVariable(sideh); |
325 |
redefineVariable(mesophylh); |
326 |
|
327 |
// compute structure volumes
|
328 |
real voltotal=int2d(Th)(1);
|
329 |
real volvasculature=int2d(Th)(vasculatureh); |
330 |
real volnectary=int2d(Th)(nectaryh); |
331 |
real volside=int2d(Th)(sideh); |
332 |
real volmesophyl=int2d(Th)(mesophylh); |
333 |
|
334 |
cout<<"Deformed total volume="<<voltotal<<endl;
|
335 |
cout<<"Deformed vasculature volume="<<volvasculature<<endl;
|
336 |
|
337 |
|
338 |
/*************************************************************
|
339 |
* LOOKING FOR ANGLE AND NECKHEIGHT
|
340 |
* **********************************************************/
|
341 |
|
342 |
// displaced upper corner
|
343 |
real Nx=lx/2+u1(lx/2.,0), Ny=u2(lx/2.,0); |
344 |
|
345 |
|
346 |
// compute tangentangle
|
347 |
real height=ly/nvertex/100;
|
348 |
real Mx=lx/2+u1(lx/2.,-height), My=-height+u2(lx/2.,-height); |
349 |
real tangentangle=angleToVertical(Mx, My, Nx, Ny); |
350 |
cout<<"Tangent angle="<<tangentangle<<endl;
|
351 |
|
352 |
// compute sideangle
|
353 |
height=hside; |
354 |
Mx=lx/2+u1(lx/2.,-height); My=-height+u2(lx/2.,-height); |
355 |
real sideangle=angleToVertical(Mx, My, Nx, Ny); |
356 |
|
357 |
|
358 |
cout<<"Side angle="<<sideangle<<endl;
|
359 |
|
360 |
|
361 |
real am=volmesophyl0/volmesophyl; |
362 |
real an=volnectary0/volnectary; |
363 |
real as=volside0/volside; |
364 |
real av=volvasculature0/volvasculature; |
365 |
|
366 |
|
367 |
|
368 |
ofstream textfile(output+"/results.csv", append);
|
369 |
|
370 |
/*
|
371 |
hyp;fs;tangentangle;sideangle;am;an;as;av;sam;san;sas;sav
|
372 |
*/
|
373 |
|
374 |
textfile<<hyp<<";"<<fs<<";"<<tangentangle/38<<";"<<sideangle/38 |
375 |
<<";"<<am<<";"<<an<<";"<<as<<";"<<av |
376 |
<<";"<<samesophyl<<";"<<sanectary<<";"<<saside<<";"<<savasculature |
377 |
<<endl; |
378 |
|
379 |
|
380 |
|
381 |
|
382 |
}//end for iteration loop
|
383 |
|
384 |
|
385 |
|
386 |
/*************************************************************
|
387 |
* Writing results
|
388 |
* **********************************************************/
|
389 |
|
390 |
|
391 |
|