root / Parameters_fs / pulvinus-images.cpp @ 19
Historique | Voir | Annoter | Télécharger (10,32 ko)
1 | 2 | akiss | include "getARGV.idp"
|
---|---|---|---|
2 | 2 | akiss | //include "bib_meca2d.cpp"
|
3 | 2 | akiss | |
4 | 2 | akiss | //usage :
|
5 | 2 | akiss | //Freefem++ pulvinus.edp [-fE fEvalue] [-Nit Nit] [-geometry g]
|
6 | 2 | akiss | //arguments:
|
7 | 2 | akiss | //-fE fEvalue:
|
8 | 2 | akiss | //-Nit Nit: number of iterations
|
9 | 2 | akiss | //-geometry g: differnet geometries
|
10 | 2 | akiss | //1:
|
11 | 2 | akiss | //2:
|
12 | 2 | akiss | //3:
|
13 | 2 | akiss | |
14 | 2 | akiss | |
15 | 2 | akiss | |
16 | 2 | akiss | func real lineD(real xA, real xB, real yA, real yB) |
17 | 2 | akiss | { return (yB-yA)/(xB-xA);
|
18 | 2 | akiss | } |
19 | 2 | akiss | |
20 | 2 | akiss | func real lineC(real xA, real xB, real yA, real yB) |
21 | 2 | akiss | { return (yA*xB-yB*xA)/(xB-xA);
|
22 | 2 | akiss | } |
23 | 2 | akiss | |
24 | 2 | akiss | //real PI=3.14159265;
|
25 | 2 | akiss | |
26 | 2 | akiss | func real angleToVertical(real Mx, real My, real Nx, real Ny) |
27 | 2 | akiss | { /* Computes the sinus of angle between the MN vector and Oy */
|
28 | 2 | akiss | return asin((Nx-Mx)/sqrt((Mx-Nx)^2+(My-Ny)^2))*180/pi; |
29 | 2 | akiss | } |
30 | 2 | akiss | |
31 | 2 | akiss | |
32 | 2 | akiss | /*************************************************************
|
33 | 2 | akiss | * PARAMETERS
|
34 | 2 | akiss | * **********************************************************/
|
35 | 2 | akiss | |
36 | 2 | akiss | // reading script arguments
|
37 | 2 | akiss | for (int i=0;i<ARGV.n;++i) |
38 | 2 | akiss | { cout << ARGV[i] << " ";}
|
39 | 2 | akiss | cout<<endl; |
40 | 2 | akiss | |
41 | 2 | akiss | verbosity = getARGV("-vv", 0); |
42 | 2 | akiss | int vdebug = getARGV("-d", 1); |
43 | 2 | akiss | //real fE = getARGV("-fE", 0.2);
|
44 | 2 | akiss | real sm = -getARGV("-sm", 0.95);// measured value |
45 | 2 | akiss | real fs = getARGV("-fs", 0.02); |
46 | 2 | akiss | int Nit = getARGV("-Nit", 1); |
47 | 2 | akiss | string geom = getARGV("-geometry", "1"); |
48 | 2 | akiss | string output = getARGV("-out", "."); |
49 | 2 | akiss | |
50 | 2 | akiss | |
51 | 2 | akiss | int hyp=getARGV("-hyp", 1); |
52 | 2 | akiss | |
53 | 2 | akiss | cout<<"----------------------------------------------"<< endl;
|
54 | 2 | akiss | cout<<"Hypothesis no. "<<hyp<< ": sm="<<sm<< endl; |
55 | 2 | akiss | |
56 | 2 | akiss | // ---------------- geometrical parameters
|
57 | 2 | akiss | |
58 | 2 | akiss | // (lengths are measured in micrometers)
|
59 | 2 | akiss | real units=200;
|
60 | 2 | akiss | |
61 | 2 | akiss | // pulvinus dimensions
|
62 | 2 | akiss | real lx=491.0/units; //sd =34.4 |
63 | 2 | akiss | real ly= 240.0/units; //sd=36.0 |
64 | 2 | akiss | |
65 | 2 | akiss | // nectary height
|
66 | 2 | akiss | real hnect = 38.8/units; //sd=9.6 |
67 | 2 | akiss | real R=363.0/units; //sd=49.4 |
68 | 2 | akiss | |
69 | 2 | akiss | // side dimensions
|
70 | 2 | akiss | real hside=91.4/units; //12.6 |
71 | 2 | akiss | real lside=47.6/units/2; //6.6 |
72 | 2 | akiss | |
73 | 2 | akiss | // vasculature dimensions
|
74 | 2 | akiss | real vthickness=34.3/units;//5.5 |
75 | 2 | akiss | real cwidth=74.8/units; //15.2 |
76 | 2 | akiss | real cwidthdry=44.2/units; //8.4 |
77 | 2 | akiss | |
78 | 2 | akiss | // vasculature displacement (from vascular bundle distance)
|
79 | 2 | akiss | real vd=(cwidth-cwidthdry)/2;
|
80 | 2 | akiss | real vposition=lx/2-vthickness-hnect/ly*(lx/2-cwidth/2-vthickness); //cout<<"vposition="<<vposition<<endl; |
81 | 2 | akiss | |
82 | 2 | akiss | // mesh parameters
|
83 | 2 | akiss | int nvertex=50; cout << "nvertex="<<nvertex<<endl; |
84 | 2 | akiss | real pinned=lx/nvertex/2;
|
85 | 2 | akiss | |
86 | 2 | akiss | |
87 | 2 | akiss | // ---------------- Material properties
|
88 | 2 | akiss | |
89 | 2 | akiss | real nu = 0.29; // Poisson's ratio |
90 | 2 | akiss | |
91 | 2 | akiss | // Young modulus
|
92 | 2 | akiss | real Ev; // vasculature Young modulus
|
93 | 2 | akiss | real fEm; // mesophyl Em/Ev
|
94 | 2 | akiss | real fEn; // nectary En/Ev
|
95 | 2 | akiss | real fEs; // side Es/Ev
|
96 | 2 | akiss | |
97 | 2 | akiss | // hydrophobicity as swelling ability
|
98 | 2 | akiss | // sm // mesophyl swelling property
|
99 | 2 | akiss | real fsn; // nectary sn/sm
|
100 | 2 | akiss | real fss; // side ss/sm
|
101 | 2 | akiss | real fsv; // vasculature sv/sm
|
102 | 2 | akiss | |
103 | 2 | akiss | |
104 | 2 | akiss | |
105 | 2 | akiss | // measured values for the density
|
106 | 2 | akiss | //Region,Mean_tissue_density,SD_tissue_density
|
107 | 2 | akiss | real dm=0.668060839; //sd=0.04091249 |
108 | 2 | akiss | real dn=1.01896008; //sd=0.015464575 |
109 | 2 | akiss | real ds=0.918032482; //sd=0.075097509 |
110 | 2 | akiss | real dv=0.882171532; //sd=0.066651037 |
111 | 2 | akiss | |
112 | 2 | akiss | real nEd=1.0; |
113 | 2 | akiss | |
114 | 2 | akiss | |
115 | 2 | akiss | // Young modulus
|
116 | 2 | akiss | Ev=1; // vasculature Young modulus |
117 | 2 | akiss | fEm=(dm/dv)^nEd; // mesophyl Em/Ev
|
118 | 2 | akiss | fEn=(dn/dv)^nEd; // nectary En/Ev
|
119 | 2 | akiss | fEs=(ds/dv)^nEd; // side Es/Ev
|
120 | 2 | akiss | |
121 | 2 | akiss | // hydrophobicity as swelling ability
|
122 | 2 | akiss | cout << "hyp="<<hyp<<"============================="<<endl; |
123 | 2 | akiss | |
124 | 2 | akiss | if (hyp==1) |
125 | 2 | akiss | { |
126 | 2 | akiss | fsn=fs; // nectary sn/sm
|
127 | 2 | akiss | fss=fs; // side ss/sm
|
128 | 2 | akiss | fsv=fs; // vasculature sv/sm
|
129 | 2 | akiss | } |
130 | 2 | akiss | |
131 | 2 | akiss | |
132 | 2 | akiss | if (hyp==2) |
133 | 2 | akiss | { |
134 | 2 | akiss | fsn=fs; // nectary sn/sm
|
135 | 2 | akiss | fss=1; // side ss/sm |
136 | 2 | akiss | fsv=fs; // vasculature sv/sm
|
137 | 2 | akiss | } |
138 | 2 | akiss | |
139 | 2 | akiss | if (hyp==3) |
140 | 2 | akiss | { |
141 | 2 | akiss | fsn=1; // nectary sn/sm |
142 | 2 | akiss | fss=1; // side ss/sm |
143 | 2 | akiss | fsv=fs; // vasculature sv/sm
|
144 | 2 | akiss | } |
145 | 2 | akiss | |
146 | 2 | akiss | if (hyp==4) |
147 | 2 | akiss | { |
148 | 2 | akiss | fsn=1; // nectary sn/sm |
149 | 2 | akiss | fss=fs; // side ss/sm
|
150 | 2 | akiss | fsv=fs; // vasculature sv/sm
|
151 | 2 | akiss | } |
152 | 2 | akiss | |
153 | 2 | akiss | |
154 | 2 | akiss | |
155 | 2 | akiss | /*************************************************************
|
156 | 2 | akiss | * GEOMETRY and MESH
|
157 | 2 | akiss | * **********************************************************/
|
158 | 2 | akiss | |
159 | 2 | akiss | string geomfilename="geometry"+geom+".cpp"; |
160 | 2 | akiss | cout<<"including "<<geomfilename<<endl;
|
161 | 2 | akiss | include "geometry1.cpp";
|
162 | 2 | akiss | |
163 | 2 | akiss | // -------------------- define the finite element space
|
164 | 2 | akiss | |
165 | 2 | akiss | fespace Vh(Th,[P2,P2]); // vector on the mesh (displacement vector)
|
166 | 2 | akiss | Vh [u1,u2], [v1,v2]; |
167 | 2 | akiss | |
168 | 2 | akiss | fespace Sh(Th, P2); // scalar on the mesh, P2 elements
|
169 | 2 | akiss | fespace Sh0(Th,P0); // scalar on the mesh, P0 elements
|
170 | 2 | akiss | fespace Sh1(Th,P1); // scalar on the mesh, P1 elements
|
171 | 2 | akiss | |
172 | 2 | akiss | Sh0 strain, stress; |
173 | 2 | akiss | |
174 | 2 | akiss | // bounding box for the plot (use the same for all images so that they can be superposed)
|
175 | 2 | akiss | func bb=[[-lx/2*1.5,-ly*1],[lx/2*1.5,ly*.1]]; |
176 | 2 | akiss | real coef=1;
|
177 | 2 | akiss | cout << "Coefficent of amplification:"<<coef<<endl;
|
178 | 2 | akiss | //plot(Th, fill=1, ps=output+"/original_geometry.png", bb=bb); -------------------------------
|
179 | 2 | akiss | |
180 | 2 | akiss | // macro to redefine variables on the displaced mesh
|
181 | 2 | akiss | macro redefineVariable(vvv) |
182 | 2 | akiss | { real[int] temp(vvv[].n);
|
183 | 2 | akiss | temp=vvv[]; vvv=0; vvv[]=temp;
|
184 | 2 | akiss | vvv=vvv; |
185 | 2 | akiss | }//
|
186 | 2 | akiss | |
187 | 2 | akiss | |
188 | 2 | akiss | real sqrt2=sqrt(2.);
|
189 | 2 | akiss | macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
|
190 | 2 | akiss | //the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $== \epsilon(\bm{u}): \epsilon(\bm{v})$
|
191 | 2 | akiss | macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
|
192 | 2 | akiss | |
193 | 2 | akiss | /*************************************************************
|
194 | 2 | akiss | * MECHANICS
|
195 | 2 | akiss | * **********************************************************/
|
196 | 2 | akiss | |
197 | 2 | akiss | // definition of integer functions for the structural domains
|
198 | 2 | akiss | func vasculature=int(vasculatureBool(x,y));
|
199 | 2 | akiss | func nectary=int(nectaryBool(x,y));
|
200 | 2 | akiss | func side=int(sideBool(x,y));
|
201 | 2 | akiss | func mesophyl=int(mesophylBool(x,y));
|
202 | 2 | akiss | func geometry = 1*vasculature + 3*nectary + 2*side + 4*mesophyl; |
203 | 2 | akiss | |
204 | 2 | akiss | // definition of FE variables for the structural domains
|
205 | 2 | akiss | Sh0 vasculatureh=vasculature; |
206 | 2 | akiss | //plot(vasculatureh,wait=1,value=true,fill=1, ps=output+"/vasculature-original.png", bb=bb);
|
207 | 2 | akiss | |
208 | 2 | akiss | Sh0 nectaryh=nectary; |
209 | 2 | akiss | //plot(nectaryh,wait=1,value=true,fill=1, ps=output+"/nectary-original.png", bb=bb);
|
210 | 2 | akiss | |
211 | 2 | akiss | Sh0 sideh=side; |
212 | 2 | akiss | //plot(sideh,wait=1,value=true,fill=1, ps=output+"/side-original.png", bb=bb);
|
213 | 2 | akiss | |
214 | 2 | akiss | Sh0 mesophylh=mesophyl; |
215 | 2 | akiss | //plot(mesophylh,wait=1,value=true,fill=1, ps=output+"/mesophyl-original.png", bb=bb);
|
216 | 2 | akiss | |
217 | 2 | akiss | Sh0 geometryh=geometry; |
218 | 2 | akiss | string fname=output+"/geometry-original.png"; |
219 | 2 | akiss | plot(geometryh,fill=1, ps=fname, bb=bb);
|
220 | 2 | akiss | |
221 | 2 | akiss | // spatial dependence of Young modulus
|
222 | 2 | akiss | func E=Ev*(vasculature + fEn*nectary + fEs*side + fEm*mesophyl); |
223 | 2 | akiss | Sh0 Eh=E; |
224 | 2 | akiss | |
225 | 2 | akiss | // spatial dependence of the swelling property
|
226 | 2 | akiss | func s=sm*(fsv*vasculature + fsn*nectary + fss*side + mesophyl); |
227 | 2 | akiss | Sh0 sh=s; |
228 | 2 | akiss | |
229 | 2 | akiss | func mu=E/(2*(1+nu)); |
230 | 2 | akiss | func lambda=E*nu/((1+nu)*(1-2*nu)); |
231 | 2 | akiss | func K=lambda+2*mu/3; |
232 | 2 | akiss | |
233 | 2 | akiss | // ------ iterations
|
234 | 2 | akiss | |
235 | 2 | akiss | { |
236 | 2 | akiss | |
237 | 2 | akiss | |
238 | 2 | akiss | /*************************************************************
|
239 | 2 | akiss | * SOLVING THE FEM
|
240 | 2 | akiss | * **********************************************************/
|
241 | 2 | akiss | |
242 | 2 | akiss | solve Lame([u1,u2],[v1,v2])= |
243 | 2 | akiss | int2d(Th)( |
244 | 2 | akiss | lambda*div(u1,u2)*div(v1,v2) |
245 | 2 | akiss | + 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) ) |
246 | 2 | akiss | ) |
247 | 2 | akiss | - int2d(Th) ( K*sh*div(v1,v2)) |
248 | 2 | akiss | + on(32,u1=vd,u2=0) |
249 | 2 | akiss | + on(33,u1=-vd,u2=0) |
250 | 2 | akiss | ; |
251 | 2 | akiss | |
252 | 2 | akiss | |
253 | 2 | akiss | stress=2*K*(strain-s);
|
254 | 2 | akiss | |
255 | 2 | akiss | Sh0 e11=dx(u1)+1.;
|
256 | 2 | akiss | Sh0 e12=1/2.*(dx(u2) + dy(u1)); |
257 | 2 | akiss | Sh0 e22=dy(u2)+1.;
|
258 | 2 | akiss | |
259 | 2 | akiss | strain=e11+e22 ; |
260 | 2 | akiss | Sh0 Det=e11*e22-e12*e12; |
261 | 2 | akiss | |
262 | 2 | akiss | Sh0 l1=abs(strain+sqrt(strain*strain-4*Det))/2.; |
263 | 2 | akiss | Sh0 l2=abs(strain-sqrt(strain*strain-4*Det))/2.; |
264 | 2 | akiss | |
265 | 2 | akiss | Sh0 lmax=(l1-l2+abs(l1-l2))/2.+l2;
|
266 | 2 | akiss | Sh0 lmin=(l1-l2-abs(l1-l2))/2.+l2;
|
267 | 2 | akiss | |
268 | 2 | akiss | Sh0 strainanisotropy=lmin/lmax; |
269 | 2 | akiss | |
270 | 2 | akiss | |
271 | 2 | akiss | /*************************************************************
|
272 | 2 | akiss | * VISUALISATION
|
273 | 2 | akiss | * **********************************************************/
|
274 | 2 | akiss | real voltotal0=int2d(Th)(1);
|
275 | 2 | akiss | real volvasculature0=int2d(Th)(vasculatureh); |
276 | 2 | akiss | real volnectary0=int2d(Th)(nectaryh); |
277 | 2 | akiss | real volmesophyl0=int2d(Th)(mesophylh); |
278 | 2 | akiss | real volside0=int2d(Th)(sideh); |
279 | 2 | akiss | |
280 | 2 | akiss | cout<<"Original volume="<<voltotal0<<endl;
|
281 | 2 | akiss | cout<<"Original vasculature volume="<<volvasculature0<<endl;
|
282 | 2 | akiss | |
283 | 2 | akiss | |
284 | 2 | akiss | // compute mean strain per region
|
285 | 2 | akiss | real straintotal=int2d(Th)(strain)/voltotal0; |
286 | 2 | akiss | real strainvasculature=int2d(Th)(strain*vasculatureh)/volvasculature0; |
287 | 2 | akiss | real strainnectary=int2d(Th)(strain*nectaryh)/volnectary0; |
288 | 2 | akiss | real strainside=int2d(Th)(strain*sideh)/volside0; |
289 | 2 | akiss | real strainmesophyl=int2d(Th)(strain*mesophylh)/volmesophyl0; |
290 | 2 | akiss | |
291 | 2 | akiss | |
292 | 2 | akiss | // compute mean strain anisotropy per region
|
293 | 2 | akiss | real satotal=int2d(Th)(strainanisotropy)/voltotal0; |
294 | 2 | akiss | real savasculature=int2d(Th)(strainanisotropy*vasculatureh)/volvasculature0; |
295 | 2 | akiss | real sanectary=int2d(Th)(strainanisotropy*nectaryh)/volnectary0; |
296 | 2 | akiss | real saside=int2d(Th)(strainanisotropy*sideh)/volside0; |
297 | 2 | akiss | real samesophyl=int2d(Th)(strainanisotropy*mesophylh)/volmesophyl0; |
298 | 2 | akiss | |
299 | 2 | akiss | |
300 | 2 | akiss | cout<<"Mean strain and strain anisotropy per region :"<<endl;
|
301 | 2 | akiss | cout<<"Mesophyll:"<<strainmesophyl<<" "<<samesophyl<<endl; |
302 | 2 | akiss | cout<<"Nectary:"<<strainnectary<<" "<<sanectary<<endl; |
303 | 2 | akiss | cout<<"Side:"<<strainside<<" "<<saside<<endl; |
304 | 2 | akiss | cout<<"Vasculature:"<<strainvasculature<<" "<<savasculature<<endl; |
305 | 2 | akiss | cout<<"Total:"<<straintotal<<" "<<satotal<<endl; |
306 | 2 | akiss | |
307 | 2 | akiss | mesh Th0=Th; |
308 | 2 | akiss | Th=movemesh(Th,[x+u1*coef,y+u2*coef]); |
309 | 2 | akiss | |
310 | 2 | akiss | plot(Th, Th0, ps=output+"/geometry-deformed-superposed_hyp"+string(hyp)+"_sm"+string(sm)+"_fs"+string(fs)+".png",bb=bb); |
311 | 2 | akiss | |
312 | 2 | akiss | |
313 | 2 | akiss | redefineVariable(strain); |
314 | 2 | akiss | redefineVariable(stress); |
315 | 2 | akiss | plot(strain, fill=1,wait=1,value=true, ps="strain.png",bb=bb); |
316 | 2 | akiss | plot(stress, fill=1,wait=1,value=true, ps="stress.png",bb=bb); |
317 | 2 | akiss | |
318 | 2 | akiss | |
319 | 2 | akiss | redefineVariable(geometryh); |
320 | 2 | akiss | plot(geometryh, fill=1, ps=output+"/geometry-deformed_hyp"+string(hyp)+"_sm"+string(sm)+".png",bb=bb); |
321 | 2 | akiss | |
322 | 2 | akiss | redefineVariable(vasculatureh); |
323 | 2 | akiss | redefineVariable(nectaryh); |
324 | 2 | akiss | redefineVariable(sideh); |
325 | 2 | akiss | redefineVariable(mesophylh); |
326 | 2 | akiss | |
327 | 2 | akiss | // compute structure volumes
|
328 | 2 | akiss | real voltotal=int2d(Th)(1);
|
329 | 2 | akiss | real volvasculature=int2d(Th)(vasculatureh); |
330 | 2 | akiss | real volnectary=int2d(Th)(nectaryh); |
331 | 2 | akiss | real volside=int2d(Th)(sideh); |
332 | 2 | akiss | real volmesophyl=int2d(Th)(mesophylh); |
333 | 2 | akiss | |
334 | 2 | akiss | cout<<"Deformed total volume="<<voltotal<<endl;
|
335 | 2 | akiss | cout<<"Deformed vasculature volume="<<volvasculature<<endl;
|
336 | 2 | akiss | |
337 | 2 | akiss | |
338 | 2 | akiss | /*************************************************************
|
339 | 2 | akiss | * LOOKING FOR ANGLE AND NECKHEIGHT
|
340 | 2 | akiss | * **********************************************************/
|
341 | 2 | akiss | |
342 | 2 | akiss | // displaced upper corner
|
343 | 2 | akiss | real Nx=lx/2+u1(lx/2.,0), Ny=u2(lx/2.,0); |
344 | 2 | akiss | |
345 | 2 | akiss | |
346 | 2 | akiss | // compute tangentangle
|
347 | 2 | akiss | real height=ly/nvertex/100;
|
348 | 2 | akiss | real Mx=lx/2+u1(lx/2.,-height), My=-height+u2(lx/2.,-height); |
349 | 2 | akiss | real tangentangle=angleToVertical(Mx, My, Nx, Ny); |
350 | 2 | akiss | cout<<"Tangent angle="<<tangentangle<<endl;
|
351 | 2 | akiss | |
352 | 2 | akiss | // compute sideangle
|
353 | 2 | akiss | height=hside; |
354 | 2 | akiss | Mx=lx/2+u1(lx/2.,-height); My=-height+u2(lx/2.,-height); |
355 | 2 | akiss | real sideangle=angleToVertical(Mx, My, Nx, Ny); |
356 | 2 | akiss | |
357 | 2 | akiss | |
358 | 2 | akiss | cout<<"Side angle="<<sideangle<<endl;
|
359 | 2 | akiss | |
360 | 2 | akiss | |
361 | 2 | akiss | real am=volmesophyl0/volmesophyl; |
362 | 2 | akiss | real an=volnectary0/volnectary; |
363 | 2 | akiss | real as=volside0/volside; |
364 | 2 | akiss | real av=volvasculature0/volvasculature; |
365 | 2 | akiss | |
366 | 2 | akiss | |
367 | 2 | akiss | |
368 | 2 | akiss | ofstream textfile(output+"/results.csv", append);
|
369 | 2 | akiss | |
370 | 2 | akiss | /*
|
371 | 2 | akiss | hyp;fs;tangentangle;sideangle;am;an;as;av;sam;san;sas;sav
|
372 | 2 | akiss | */
|
373 | 2 | akiss | |
374 | 2 | akiss | textfile<<hyp<<";"<<fs<<";"<<tangentangle/38<<";"<<sideangle/38 |
375 | 2 | akiss | <<";"<<am<<";"<<an<<";"<<as<<";"<<av |
376 | 2 | akiss | <<";"<<samesophyl<<";"<<sanectary<<";"<<saside<<";"<<savasculature |
377 | 2 | akiss | <<endl; |
378 | 2 | akiss | |
379 | 2 | akiss | |
380 | 2 | akiss | |
381 | 2 | akiss | |
382 | 2 | akiss | }//end for iteration loop
|
383 | 2 | akiss | |
384 | 2 | akiss | |
385 | 2 | akiss | |
386 | 2 | akiss | /*************************************************************
|
387 | 2 | akiss | * Writing results
|
388 | 2 | akiss | * **********************************************************/
|
389 | 2 | akiss | |
390 | 2 | akiss |