Statistiques
| Révision :

root / ETSN / MyDFT_3.py @ 270

Historique | Voir | Annoter | Télécharger (10,3 ko)

1
#!/usr/bin/env python3
2

    
3
import numpy as np
4
import pyopencl as cl
5
from numpy import pi,cos,sin
6

    
7
# piling 16 arithmetical functions
8
def MySillyFunction(x):
9
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
10

    
11
# Native Operation under Numpy (for prototyping & tests
12
def NativeAddition(a_np,b_np):
13
    return(a_np+b_np)
14

    
15
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
16
def NativeSillyAddition(a_np,b_np):
17
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
18

    
19
# Naive Discrete Fourier Transform
20
def MyDFT(x,y):
21
    from numpy import pi,cos,sin
22
    size=x.shape[0]
23
    X=np.zeros(size).astype(np.float32)
24
    Y=np.zeros(size).astype(np.float32)
25
    for i in range(size):
26
        for j in range(size):
27
            X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size)
28
            Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size)
29
    return(X,Y)
30

    
31
# Numpy Discrete Fourier Transform
32
def NumpyDFT(x,y):
33
    size=x.shape[0]
34
    X=np.zeros(size).astype(np.float32)
35
    Y=np.zeros(size).astype(np.float32)
36
    nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
37
    for i in range(size):
38
        X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y)))
39
        Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y)))
40
    return(X,Y)
41

    
42
# Numba Discrete Fourier Transform
43
import numba
44
@numba.njit(parallel=True)
45
def NumbaDFT(x,y):
46
    size=x.shape[0]
47
    X=np.zeros(size)
48
    Y=np.zeros(size)
49
    nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
50
    for i in numba.prange(size):
51
        X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y)))
52
        Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y)))
53
    return(X,Y)
54

    
55
# CUDA complete operation
56
def CUDAAddition(a_np,b_np):
57
    import pycuda.autoinit
58
    import pycuda.driver as drv
59
    import numpy
60

    
61
    from pycuda.compiler import SourceModule
62
    mod = SourceModule("""
63
    __global__ void sum(float *dest, float *a, float *b)
64
{
65
  // const int i = threadIdx.x;
66
  const int i = blockIdx.x;
67
  dest[i] = a[i] + b[i];
68
}
69
""")
70

    
71
    # sum = mod.get_function("sum")
72
    sum = mod.get_function("sum")
73

    
74
    res_np = numpy.zeros_like(a_np)
75
    sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
76
        block=(1,1,1), grid=(a_np.size,1))
77
    return(res_np)
78

    
79
# CUDA Silly complete operation
80
def CUDASillyAddition(a_np,b_np):
81
    import pycuda.autoinit
82
    import pycuda.driver as drv
83
    import numpy
84

    
85
    from pycuda.compiler import SourceModule
86
    TimeIn=time.time()
87
    mod = SourceModule("""
88
__device__ float MySillyFunction(float x)
89
{
90
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); 
91
}
92

93
__global__ void sillysum(float *dest, float *a, float *b)
94
{
95
  const int i = blockIdx.x;
96
  dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
97
}
98
""")
99
    Elapsed=time.time()-TimeIn
100
    print("Definition of kernel : %.3f" % Elapsed)
101

    
102
    TimeIn=time.time()
103
    # sum = mod.get_function("sum")
104
    sillysum = mod.get_function("sillysum")
105
    Elapsed=time.time()-TimeIn
106
    print("Synthesis of kernel : %.3f" % Elapsed)
107

    
108
    TimeIn=time.time()
109
    res_np = numpy.zeros_like(a_np)
110
    Elapsed=time.time()-TimeIn
111
    print("Allocation on Host for results : %.3f" % Elapsed)
112

    
113
    TimeIn=time.time()
114
    sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
115
             block=(1,1,1), grid=(a_np.size,1))
116
    Elapsed=time.time()-TimeIn
117
    print("Execution of kernel : %.3f" % Elapsed)
118
    return(res_np)
119

    
120
# OpenCL complete operation
121
def OpenCLAddition(a_np,b_np):
122

    
123
    # Context creation
124
    ctx = cl.create_some_context()
125
    # Every process is stored in a queue
126
    queue = cl.CommandQueue(ctx)
127

    
128
    TimeIn=time.time()
129
    # Copy from Host to Device using pointers
130
    mf = cl.mem_flags
131
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
132
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
133
    Elapsed=time.time()-TimeIn
134
    print("Copy from Host 2 Device : %.3f" % Elapsed)
135

    
136
    TimeIn=time.time()
137
    # Definition of kernel under OpenCL
138
    prg = cl.Program(ctx, """
139
__kernel void sum(
140
    __global const float *a_g, __global const float *b_g, __global float *res_g)
141
{
142
  int gid = get_global_id(0);
143
  res_g[gid] = a_g[gid] + b_g[gid];
144
}
145
""").build()
146
    Elapsed=time.time()-TimeIn
147
    print("Building kernels : %.3f" % Elapsed)
148
    
149
    TimeIn=time.time()
150
    # Memory allocation on Device for result
151
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
152
    Elapsed=time.time()-TimeIn
153
    print("Allocation on Device for results : %.3f" % Elapsed)
154

    
155
    TimeIn=time.time()
156
    # Synthesis of function "sum" inside Kernel Sources
157
    knl = prg.sum  # Use this Kernel object for repeated calls
158
    Elapsed=time.time()-TimeIn
159
    print("Synthesis of kernel : %.3f" % Elapsed)
160

    
161
    TimeIn=time.time()
162
    # Call of kernel previously defined 
163
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
164
    Elapsed=time.time()-TimeIn
165
    print("Execution of kernel : %.3f" % Elapsed)
166

    
167
    TimeIn=time.time()
168
    # Creation of vector for result with same size as input vectors
169
    res_np = np.empty_like(a_np)
170
    Elapsed=time.time()-TimeIn
171
    print("Allocation on Host for results: %.3f" % Elapsed)
172

    
173
    TimeIn=time.time()
174
    # Copy from Device to Host
175
    cl.enqueue_copy(queue, res_np, res_g)
176
    Elapsed=time.time()-TimeIn
177
    print("Copy from Device 2 Host : %.3f" % Elapsed)
178

    
179
    return(res_np)
180

    
181
# OpenCL complete operation
182
def OpenCLSillyAddition(a_np,b_np):
183

    
184
    # Context creation
185
    ctx = cl.create_some_context()
186
    # Every process is stored in a queue
187
    queue = cl.CommandQueue(ctx)
188

    
189
    TimeIn=time.time()
190
    # Copy from Host to Device using pointers
191
    mf = cl.mem_flags
192
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
193
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
194
    Elapsed=time.time()-TimeIn
195
    print("Copy from Host 2 Device : %.3f" % Elapsed)
196

    
197
    TimeIn=time.time()
198
    # Definition of kernel under OpenCL
199
    prg = cl.Program(ctx, """
200

201
float MySillyFunction(float x)
202
{
203
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2)); 
204
}
205

206
__kernel void sillysum(
207
    __global const float *a_g, __global const float *b_g, __global float *res_g)
208
{
209
  int gid = get_global_id(0);
210
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
211
}
212

213
__kernel void sum(
214
    __global const float *a_g, __global const float *b_g, __global float *res_g)
215
{
216
  int gid = get_global_id(0);
217
  res_g[gid] = a_g[gid] + b_g[gid];
218
}
219
""").build()
220
    Elapsed=time.time()-TimeIn
221
    print("Building kernels : %.3f" % Elapsed)
222
    
223
    TimeIn=time.time()
224
    # Memory allocation on Device for result
225
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
226
    Elapsed=time.time()-TimeIn
227
    print("Allocation on Device for results : %.3f" % Elapsed)
228

    
229
    TimeIn=time.time()
230
    # Synthesis of function "sillysum" inside Kernel Sources
231
    knl = prg.sillysum  # Use this Kernel object for repeated calls
232
    Elapsed=time.time()-TimeIn
233
    print("Synthesis of kernel : %.3f" % Elapsed)
234

    
235
    TimeIn=time.time()
236
    # Call of kernel previously defined 
237
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
238
    # 
239
    CallCL.wait()
240
    Elapsed=time.time()-TimeIn
241
    print("Execution of kernel : %.3f" % Elapsed)
242

    
243
    TimeIn=time.time()
244
    # Creation of vector for result with same size as input vectors
245
    res_np = np.empty_like(a_np)
246
    Elapsed=time.time()-TimeIn
247
    print("Allocation on Host for results: %.3f" % Elapsed)
248

    
249
    TimeIn=time.time()
250
    # Copy from Device to Host
251
    cl.enqueue_copy(queue, res_np, res_g)
252
    Elapsed=time.time()-TimeIn
253
    print("Copy from Device 2 Host : %.3f" % Elapsed)
254

    
255
    return(res_np)
256

    
257
import sys
258
import time
259

    
260
if __name__=='__main__':
261

    
262
    # Size of input vectors definition based on stdin
263
    import sys
264
    try:
265
        SIZE=int(sys.argv[1])
266
        print("Size of vectors set to %i" % SIZE)
267
    except: 
268
        SIZE=50000
269
        print("Size of vectors set to default size %i" % SIZE)
270
        
271
    # a_np = np.random.rand(SIZE).astype(np.float32)
272
    # b_np = np.random.rand(SIZE).astype(np.float32)
273
    
274
    a_np = np.ones(SIZE).astype(np.float32)
275
    b_np = np.ones(SIZE).astype(np.float32)
276

    
277
    # Native & Naive Implementation
278
    print("Performing naive implementation")
279
    TimeIn=time.time()
280
    c_np,d_np=MyDFT(a_np,b_np)
281
    NativeElapsed=time.time()-TimeIn
282
    NativeRate=int(SIZE/NativeElapsed)
283
    print("NativeRate: %i" % NativeRate)
284
    
285
    # Native & Numpy Implementation
286
    print("Performing Numpy implementation")
287
    TimeIn=time.time()
288
    e_np,f_np=NumpyDFT(a_np,b_np)
289
    NumpyElapsed=time.time()-TimeIn
290
    NumpyRate=int(SIZE/NumpyElapsed)
291
    print("NumpyRate: %i" % NumpyRate)
292

    
293
    print(np.linalg.norm(c_np-e_np))
294
    print(np.linalg.norm(d_np-f_np))
295
    
296
    # Native & Numpy Implementation
297
    print("Performing Numba implementation")
298
    TimeIn=time.time()
299
    g_np,h_np=NumbaDFT(a_np,b_np)
300
    NumpyElapsed=time.time()-TimeIn
301
    NumpyRate=int(SIZE/NumpyElapsed)
302
    print("NumpyRate: %i" % NumpyRate)
303

    
304
    print(np.linalg.norm(c_np-g_np))
305
    print(np.linalg.norm(d_np-h_np))
306
    
307
   #  # OpenCL Implementation
308
   #  TimeIn=time.time()
309
   #  # res_cl=OpenCLAddition(a_np,b_np)
310
   #  res_cl=OpenCLSillyAddition(a_np,b_np)
311
   #  OpenCLElapsed=time.time()-TimeIn
312
   #  OpenCLRate=int(SIZE/OpenCLElapsed)
313
   #  print("OpenCLRate: %i" % OpenCLRate)
314

    
315
   #  # CUDA Implementation
316
   #  TimeIn=time.time()
317
   #  # res_cuda=CUDAAddition(a_np,b_np)
318
   #  res_cuda=CUDASillyAddition(a_np,b_np)
319
   #  CUDAElapsed=time.time()-TimeIn
320
   #  CUDARate=int(SIZE/CUDAElapsed)
321
   #  print("CUDARate: %i" % CUDARate)
322
    
323
   #  print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
324
   #  print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
325
    
326
   # # Check on OpenCL with Numpy:
327
   #  print(res_cl - res_np)
328
   #  print(np.linalg.norm(res_cl - res_np))
329
   #  try:
330
   #      assert np.allclose(res_np, res_cl)
331
   #  except:
332
   #      print("Results between Native & OpenCL seem to be too different!")
333
        
334
   #  # Check on CUDA with Numpy:
335
   #  print(res_cuda - res_np)
336
   #  print(np.linalg.norm(res_cuda - res_np))
337
   #  try:
338
   #      assert np.allclose(res_np, res_cuda)
339
   #  except:
340
   #      print("Results between Native & CUDA seem to be too different!")
341

    
342