root / ETSN / MyDFT_3.py @ 270
Historique | Voir | Annoter | Télécharger (10,3 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
|
3 |
import numpy as np |
4 |
import pyopencl as cl |
5 |
from numpy import pi,cos,sin |
6 |
|
7 |
# piling 16 arithmetical functions
|
8 |
def MySillyFunction(x): |
9 |
return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
10 |
|
11 |
# Native Operation under Numpy (for prototyping & tests
|
12 |
def NativeAddition(a_np,b_np): |
13 |
return(a_np+b_np)
|
14 |
|
15 |
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
|
16 |
def NativeSillyAddition(a_np,b_np): |
17 |
return(MySillyFunction(a_np)+MySillyFunction(b_np))
|
18 |
|
19 |
# Naive Discrete Fourier Transform
|
20 |
def MyDFT(x,y): |
21 |
from numpy import pi,cos,sin |
22 |
size=x.shape[0]
|
23 |
X=np.zeros(size).astype(np.float32) |
24 |
Y=np.zeros(size).astype(np.float32) |
25 |
for i in range(size): |
26 |
for j in range(size): |
27 |
X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
28 |
Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
29 |
return(X,Y)
|
30 |
|
31 |
# Numpy Discrete Fourier Transform
|
32 |
def NumpyDFT(x,y): |
33 |
size=x.shape[0]
|
34 |
X=np.zeros(size).astype(np.float32) |
35 |
Y=np.zeros(size).astype(np.float32) |
36 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
37 |
for i in range(size): |
38 |
X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
39 |
Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
40 |
return(X,Y)
|
41 |
|
42 |
# Numba Discrete Fourier Transform
|
43 |
import numba |
44 |
@numba.njit(parallel=True) |
45 |
def NumbaDFT(x,y): |
46 |
size=x.shape[0]
|
47 |
X=np.zeros(size) |
48 |
Y=np.zeros(size) |
49 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
50 |
for i in numba.prange(size): |
51 |
X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
52 |
Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
53 |
return(X,Y)
|
54 |
|
55 |
# CUDA complete operation
|
56 |
def CUDAAddition(a_np,b_np): |
57 |
import pycuda.autoinit |
58 |
import pycuda.driver as drv |
59 |
import numpy |
60 |
|
61 |
from pycuda.compiler import SourceModule |
62 |
mod = SourceModule("""
|
63 |
__global__ void sum(float *dest, float *a, float *b)
|
64 |
{
|
65 |
// const int i = threadIdx.x;
|
66 |
const int i = blockIdx.x;
|
67 |
dest[i] = a[i] + b[i];
|
68 |
}
|
69 |
""")
|
70 |
|
71 |
# sum = mod.get_function("sum")
|
72 |
sum = mod.get_function("sum")
|
73 |
|
74 |
res_np = numpy.zeros_like(a_np) |
75 |
sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
|
76 |
block=(1,1,1), grid=(a_np.size,1)) |
77 |
return(res_np)
|
78 |
|
79 |
# CUDA Silly complete operation
|
80 |
def CUDASillyAddition(a_np,b_np): |
81 |
import pycuda.autoinit |
82 |
import pycuda.driver as drv |
83 |
import numpy |
84 |
|
85 |
from pycuda.compiler import SourceModule |
86 |
TimeIn=time.time() |
87 |
mod = SourceModule("""
|
88 |
__device__ float MySillyFunction(float x)
|
89 |
{
|
90 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
91 |
}
|
92 |
|
93 |
__global__ void sillysum(float *dest, float *a, float *b)
|
94 |
{
|
95 |
const int i = blockIdx.x;
|
96 |
dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
|
97 |
}
|
98 |
""")
|
99 |
Elapsed=time.time()-TimeIn |
100 |
print("Definition of kernel : %.3f" % Elapsed)
|
101 |
|
102 |
TimeIn=time.time() |
103 |
# sum = mod.get_function("sum")
|
104 |
sillysum = mod.get_function("sillysum")
|
105 |
Elapsed=time.time()-TimeIn |
106 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
107 |
|
108 |
TimeIn=time.time() |
109 |
res_np = numpy.zeros_like(a_np) |
110 |
Elapsed=time.time()-TimeIn |
111 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
112 |
|
113 |
TimeIn=time.time() |
114 |
sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
115 |
block=(1,1,1), grid=(a_np.size,1)) |
116 |
Elapsed=time.time()-TimeIn |
117 |
print("Execution of kernel : %.3f" % Elapsed)
|
118 |
return(res_np)
|
119 |
|
120 |
# OpenCL complete operation
|
121 |
def OpenCLAddition(a_np,b_np): |
122 |
|
123 |
# Context creation
|
124 |
ctx = cl.create_some_context() |
125 |
# Every process is stored in a queue
|
126 |
queue = cl.CommandQueue(ctx) |
127 |
|
128 |
TimeIn=time.time() |
129 |
# Copy from Host to Device using pointers
|
130 |
mf = cl.mem_flags |
131 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
132 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
133 |
Elapsed=time.time()-TimeIn |
134 |
print("Copy from Host 2 Device : %.3f" % Elapsed)
|
135 |
|
136 |
TimeIn=time.time() |
137 |
# Definition of kernel under OpenCL
|
138 |
prg = cl.Program(ctx, """
|
139 |
__kernel void sum(
|
140 |
__global const float *a_g, __global const float *b_g, __global float *res_g)
|
141 |
{
|
142 |
int gid = get_global_id(0);
|
143 |
res_g[gid] = a_g[gid] + b_g[gid];
|
144 |
}
|
145 |
""").build()
|
146 |
Elapsed=time.time()-TimeIn |
147 |
print("Building kernels : %.3f" % Elapsed)
|
148 |
|
149 |
TimeIn=time.time() |
150 |
# Memory allocation on Device for result
|
151 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
152 |
Elapsed=time.time()-TimeIn |
153 |
print("Allocation on Device for results : %.3f" % Elapsed)
|
154 |
|
155 |
TimeIn=time.time() |
156 |
# Synthesis of function "sum" inside Kernel Sources
|
157 |
knl = prg.sum # Use this Kernel object for repeated calls
|
158 |
Elapsed=time.time()-TimeIn |
159 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
160 |
|
161 |
TimeIn=time.time() |
162 |
# Call of kernel previously defined
|
163 |
knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
164 |
Elapsed=time.time()-TimeIn |
165 |
print("Execution of kernel : %.3f" % Elapsed)
|
166 |
|
167 |
TimeIn=time.time() |
168 |
# Creation of vector for result with same size as input vectors
|
169 |
res_np = np.empty_like(a_np) |
170 |
Elapsed=time.time()-TimeIn |
171 |
print("Allocation on Host for results: %.3f" % Elapsed)
|
172 |
|
173 |
TimeIn=time.time() |
174 |
# Copy from Device to Host
|
175 |
cl.enqueue_copy(queue, res_np, res_g) |
176 |
Elapsed=time.time()-TimeIn |
177 |
print("Copy from Device 2 Host : %.3f" % Elapsed)
|
178 |
|
179 |
return(res_np)
|
180 |
|
181 |
# OpenCL complete operation
|
182 |
def OpenCLSillyAddition(a_np,b_np): |
183 |
|
184 |
# Context creation
|
185 |
ctx = cl.create_some_context() |
186 |
# Every process is stored in a queue
|
187 |
queue = cl.CommandQueue(ctx) |
188 |
|
189 |
TimeIn=time.time() |
190 |
# Copy from Host to Device using pointers
|
191 |
mf = cl.mem_flags |
192 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
193 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
194 |
Elapsed=time.time()-TimeIn |
195 |
print("Copy from Host 2 Device : %.3f" % Elapsed)
|
196 |
|
197 |
TimeIn=time.time() |
198 |
# Definition of kernel under OpenCL
|
199 |
prg = cl.Program(ctx, """
|
200 |
|
201 |
float MySillyFunction(float x)
|
202 |
{
|
203 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
204 |
}
|
205 |
|
206 |
__kernel void sillysum(
|
207 |
__global const float *a_g, __global const float *b_g, __global float *res_g)
|
208 |
{
|
209 |
int gid = get_global_id(0);
|
210 |
res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
|
211 |
}
|
212 |
|
213 |
__kernel void sum(
|
214 |
__global const float *a_g, __global const float *b_g, __global float *res_g)
|
215 |
{
|
216 |
int gid = get_global_id(0);
|
217 |
res_g[gid] = a_g[gid] + b_g[gid];
|
218 |
}
|
219 |
""").build()
|
220 |
Elapsed=time.time()-TimeIn |
221 |
print("Building kernels : %.3f" % Elapsed)
|
222 |
|
223 |
TimeIn=time.time() |
224 |
# Memory allocation on Device for result
|
225 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
226 |
Elapsed=time.time()-TimeIn |
227 |
print("Allocation on Device for results : %.3f" % Elapsed)
|
228 |
|
229 |
TimeIn=time.time() |
230 |
# Synthesis of function "sillysum" inside Kernel Sources
|
231 |
knl = prg.sillysum # Use this Kernel object for repeated calls
|
232 |
Elapsed=time.time()-TimeIn |
233 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
234 |
|
235 |
TimeIn=time.time() |
236 |
# Call of kernel previously defined
|
237 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
238 |
#
|
239 |
CallCL.wait() |
240 |
Elapsed=time.time()-TimeIn |
241 |
print("Execution of kernel : %.3f" % Elapsed)
|
242 |
|
243 |
TimeIn=time.time() |
244 |
# Creation of vector for result with same size as input vectors
|
245 |
res_np = np.empty_like(a_np) |
246 |
Elapsed=time.time()-TimeIn |
247 |
print("Allocation on Host for results: %.3f" % Elapsed)
|
248 |
|
249 |
TimeIn=time.time() |
250 |
# Copy from Device to Host
|
251 |
cl.enqueue_copy(queue, res_np, res_g) |
252 |
Elapsed=time.time()-TimeIn |
253 |
print("Copy from Device 2 Host : %.3f" % Elapsed)
|
254 |
|
255 |
return(res_np)
|
256 |
|
257 |
import sys |
258 |
import time |
259 |
|
260 |
if __name__=='__main__': |
261 |
|
262 |
# Size of input vectors definition based on stdin
|
263 |
import sys |
264 |
try:
|
265 |
SIZE=int(sys.argv[1]) |
266 |
print("Size of vectors set to %i" % SIZE)
|
267 |
except:
|
268 |
SIZE=50000
|
269 |
print("Size of vectors set to default size %i" % SIZE)
|
270 |
|
271 |
# a_np = np.random.rand(SIZE).astype(np.float32)
|
272 |
# b_np = np.random.rand(SIZE).astype(np.float32)
|
273 |
|
274 |
a_np = np.ones(SIZE).astype(np.float32) |
275 |
b_np = np.ones(SIZE).astype(np.float32) |
276 |
|
277 |
# Native & Naive Implementation
|
278 |
print("Performing naive implementation")
|
279 |
TimeIn=time.time() |
280 |
c_np,d_np=MyDFT(a_np,b_np) |
281 |
NativeElapsed=time.time()-TimeIn |
282 |
NativeRate=int(SIZE/NativeElapsed)
|
283 |
print("NativeRate: %i" % NativeRate)
|
284 |
|
285 |
# Native & Numpy Implementation
|
286 |
print("Performing Numpy implementation")
|
287 |
TimeIn=time.time() |
288 |
e_np,f_np=NumpyDFT(a_np,b_np) |
289 |
NumpyElapsed=time.time()-TimeIn |
290 |
NumpyRate=int(SIZE/NumpyElapsed)
|
291 |
print("NumpyRate: %i" % NumpyRate)
|
292 |
|
293 |
print(np.linalg.norm(c_np-e_np)) |
294 |
print(np.linalg.norm(d_np-f_np)) |
295 |
|
296 |
# Native & Numpy Implementation
|
297 |
print("Performing Numba implementation")
|
298 |
TimeIn=time.time() |
299 |
g_np,h_np=NumbaDFT(a_np,b_np) |
300 |
NumpyElapsed=time.time()-TimeIn |
301 |
NumpyRate=int(SIZE/NumpyElapsed)
|
302 |
print("NumpyRate: %i" % NumpyRate)
|
303 |
|
304 |
print(np.linalg.norm(c_np-g_np)) |
305 |
print(np.linalg.norm(d_np-h_np)) |
306 |
|
307 |
# # OpenCL Implementation
|
308 |
# TimeIn=time.time()
|
309 |
# # res_cl=OpenCLAddition(a_np,b_np)
|
310 |
# res_cl=OpenCLSillyAddition(a_np,b_np)
|
311 |
# OpenCLElapsed=time.time()-TimeIn
|
312 |
# OpenCLRate=int(SIZE/OpenCLElapsed)
|
313 |
# print("OpenCLRate: %i" % OpenCLRate)
|
314 |
|
315 |
# # CUDA Implementation
|
316 |
# TimeIn=time.time()
|
317 |
# # res_cuda=CUDAAddition(a_np,b_np)
|
318 |
# res_cuda=CUDASillyAddition(a_np,b_np)
|
319 |
# CUDAElapsed=time.time()-TimeIn
|
320 |
# CUDARate=int(SIZE/CUDAElapsed)
|
321 |
# print("CUDARate: %i" % CUDARate)
|
322 |
|
323 |
# print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
|
324 |
# print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
|
325 |
|
326 |
# # Check on OpenCL with Numpy:
|
327 |
# print(res_cl - res_np)
|
328 |
# print(np.linalg.norm(res_cl - res_np))
|
329 |
# try:
|
330 |
# assert np.allclose(res_np, res_cl)
|
331 |
# except:
|
332 |
# print("Results between Native & OpenCL seem to be too different!")
|
333 |
|
334 |
# # Check on CUDA with Numpy:
|
335 |
# print(res_cuda - res_np)
|
336 |
# print(np.linalg.norm(res_cuda - res_np))
|
337 |
# try:
|
338 |
# assert np.allclose(res_np, res_cuda)
|
339 |
# except:
|
340 |
# print("Results between Native & CUDA seem to be too different!")
|
341 |
|
342 |
|