Statistiques
| Révision :

root / ETSN / MyDFT_3.py @ 270

Historique | Voir | Annoter | Télécharger (10,3 ko)

1 270 equemene
#!/usr/bin/env python3
2 270 equemene
3 270 equemene
import numpy as np
4 270 equemene
import pyopencl as cl
5 270 equemene
from numpy import pi,cos,sin
6 270 equemene
7 270 equemene
# piling 16 arithmetical functions
8 270 equemene
def MySillyFunction(x):
9 270 equemene
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
10 270 equemene
11 270 equemene
# Native Operation under Numpy (for prototyping & tests
12 270 equemene
def NativeAddition(a_np,b_np):
13 270 equemene
    return(a_np+b_np)
14 270 equemene
15 270 equemene
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
16 270 equemene
def NativeSillyAddition(a_np,b_np):
17 270 equemene
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
18 270 equemene
19 270 equemene
# Naive Discrete Fourier Transform
20 270 equemene
def MyDFT(x,y):
21 270 equemene
    from numpy import pi,cos,sin
22 270 equemene
    size=x.shape[0]
23 270 equemene
    X=np.zeros(size).astype(np.float32)
24 270 equemene
    Y=np.zeros(size).astype(np.float32)
25 270 equemene
    for i in range(size):
26 270 equemene
        for j in range(size):
27 270 equemene
            X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size)
28 270 equemene
            Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size)
29 270 equemene
    return(X,Y)
30 270 equemene
31 270 equemene
# Numpy Discrete Fourier Transform
32 270 equemene
def NumpyDFT(x,y):
33 270 equemene
    size=x.shape[0]
34 270 equemene
    X=np.zeros(size).astype(np.float32)
35 270 equemene
    Y=np.zeros(size).astype(np.float32)
36 270 equemene
    nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
37 270 equemene
    for i in range(size):
38 270 equemene
        X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y)))
39 270 equemene
        Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y)))
40 270 equemene
    return(X,Y)
41 270 equemene
42 270 equemene
# Numba Discrete Fourier Transform
43 270 equemene
import numba
44 270 equemene
@numba.njit(parallel=True)
45 270 equemene
def NumbaDFT(x,y):
46 270 equemene
    size=x.shape[0]
47 270 equemene
    X=np.zeros(size)
48 270 equemene
    Y=np.zeros(size)
49 270 equemene
    nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
50 270 equemene
    for i in numba.prange(size):
51 270 equemene
        X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y)))
52 270 equemene
        Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y)))
53 270 equemene
    return(X,Y)
54 270 equemene
55 270 equemene
# CUDA complete operation
56 270 equemene
def CUDAAddition(a_np,b_np):
57 270 equemene
    import pycuda.autoinit
58 270 equemene
    import pycuda.driver as drv
59 270 equemene
    import numpy
60 270 equemene
61 270 equemene
    from pycuda.compiler import SourceModule
62 270 equemene
    mod = SourceModule("""
63 270 equemene
    __global__ void sum(float *dest, float *a, float *b)
64 270 equemene
{
65 270 equemene
  // const int i = threadIdx.x;
66 270 equemene
  const int i = blockIdx.x;
67 270 equemene
  dest[i] = a[i] + b[i];
68 270 equemene
}
69 270 equemene
""")
70 270 equemene
71 270 equemene
    # sum = mod.get_function("sum")
72 270 equemene
    sum = mod.get_function("sum")
73 270 equemene
74 270 equemene
    res_np = numpy.zeros_like(a_np)
75 270 equemene
    sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
76 270 equemene
        block=(1,1,1), grid=(a_np.size,1))
77 270 equemene
    return(res_np)
78 270 equemene
79 270 equemene
# CUDA Silly complete operation
80 270 equemene
def CUDASillyAddition(a_np,b_np):
81 270 equemene
    import pycuda.autoinit
82 270 equemene
    import pycuda.driver as drv
83 270 equemene
    import numpy
84 270 equemene
85 270 equemene
    from pycuda.compiler import SourceModule
86 270 equemene
    TimeIn=time.time()
87 270 equemene
    mod = SourceModule("""
88 270 equemene
__device__ float MySillyFunction(float x)
89 270 equemene
{
90 270 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
91 270 equemene
}
92 270 equemene

93 270 equemene
__global__ void sillysum(float *dest, float *a, float *b)
94 270 equemene
{
95 270 equemene
  const int i = blockIdx.x;
96 270 equemene
  dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
97 270 equemene
}
98 270 equemene
""")
99 270 equemene
    Elapsed=time.time()-TimeIn
100 270 equemene
    print("Definition of kernel : %.3f" % Elapsed)
101 270 equemene
102 270 equemene
    TimeIn=time.time()
103 270 equemene
    # sum = mod.get_function("sum")
104 270 equemene
    sillysum = mod.get_function("sillysum")
105 270 equemene
    Elapsed=time.time()-TimeIn
106 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
107 270 equemene
108 270 equemene
    TimeIn=time.time()
109 270 equemene
    res_np = numpy.zeros_like(a_np)
110 270 equemene
    Elapsed=time.time()-TimeIn
111 270 equemene
    print("Allocation on Host for results : %.3f" % Elapsed)
112 270 equemene
113 270 equemene
    TimeIn=time.time()
114 270 equemene
    sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
115 270 equemene
             block=(1,1,1), grid=(a_np.size,1))
116 270 equemene
    Elapsed=time.time()-TimeIn
117 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
118 270 equemene
    return(res_np)
119 270 equemene
120 270 equemene
# OpenCL complete operation
121 270 equemene
def OpenCLAddition(a_np,b_np):
122 270 equemene
123 270 equemene
    # Context creation
124 270 equemene
    ctx = cl.create_some_context()
125 270 equemene
    # Every process is stored in a queue
126 270 equemene
    queue = cl.CommandQueue(ctx)
127 270 equemene
128 270 equemene
    TimeIn=time.time()
129 270 equemene
    # Copy from Host to Device using pointers
130 270 equemene
    mf = cl.mem_flags
131 270 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
132 270 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
133 270 equemene
    Elapsed=time.time()-TimeIn
134 270 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
135 270 equemene
136 270 equemene
    TimeIn=time.time()
137 270 equemene
    # Definition of kernel under OpenCL
138 270 equemene
    prg = cl.Program(ctx, """
139 270 equemene
__kernel void sum(
140 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
141 270 equemene
{
142 270 equemene
  int gid = get_global_id(0);
143 270 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
144 270 equemene
}
145 270 equemene
""").build()
146 270 equemene
    Elapsed=time.time()-TimeIn
147 270 equemene
    print("Building kernels : %.3f" % Elapsed)
148 270 equemene
149 270 equemene
    TimeIn=time.time()
150 270 equemene
    # Memory allocation on Device for result
151 270 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
152 270 equemene
    Elapsed=time.time()-TimeIn
153 270 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
154 270 equemene
155 270 equemene
    TimeIn=time.time()
156 270 equemene
    # Synthesis of function "sum" inside Kernel Sources
157 270 equemene
    knl = prg.sum  # Use this Kernel object for repeated calls
158 270 equemene
    Elapsed=time.time()-TimeIn
159 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
160 270 equemene
161 270 equemene
    TimeIn=time.time()
162 270 equemene
    # Call of kernel previously defined
163 270 equemene
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
164 270 equemene
    Elapsed=time.time()-TimeIn
165 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
166 270 equemene
167 270 equemene
    TimeIn=time.time()
168 270 equemene
    # Creation of vector for result with same size as input vectors
169 270 equemene
    res_np = np.empty_like(a_np)
170 270 equemene
    Elapsed=time.time()-TimeIn
171 270 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
172 270 equemene
173 270 equemene
    TimeIn=time.time()
174 270 equemene
    # Copy from Device to Host
175 270 equemene
    cl.enqueue_copy(queue, res_np, res_g)
176 270 equemene
    Elapsed=time.time()-TimeIn
177 270 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
178 270 equemene
179 270 equemene
    return(res_np)
180 270 equemene
181 270 equemene
# OpenCL complete operation
182 270 equemene
def OpenCLSillyAddition(a_np,b_np):
183 270 equemene
184 270 equemene
    # Context creation
185 270 equemene
    ctx = cl.create_some_context()
186 270 equemene
    # Every process is stored in a queue
187 270 equemene
    queue = cl.CommandQueue(ctx)
188 270 equemene
189 270 equemene
    TimeIn=time.time()
190 270 equemene
    # Copy from Host to Device using pointers
191 270 equemene
    mf = cl.mem_flags
192 270 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
193 270 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
194 270 equemene
    Elapsed=time.time()-TimeIn
195 270 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
196 270 equemene
197 270 equemene
    TimeIn=time.time()
198 270 equemene
    # Definition of kernel under OpenCL
199 270 equemene
    prg = cl.Program(ctx, """
200 270 equemene

201 270 equemene
float MySillyFunction(float x)
202 270 equemene
{
203 270 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
204 270 equemene
}
205 270 equemene

206 270 equemene
__kernel void sillysum(
207 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
208 270 equemene
{
209 270 equemene
  int gid = get_global_id(0);
210 270 equemene
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
211 270 equemene
}
212 270 equemene

213 270 equemene
__kernel void sum(
214 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
215 270 equemene
{
216 270 equemene
  int gid = get_global_id(0);
217 270 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
218 270 equemene
}
219 270 equemene
""").build()
220 270 equemene
    Elapsed=time.time()-TimeIn
221 270 equemene
    print("Building kernels : %.3f" % Elapsed)
222 270 equemene
223 270 equemene
    TimeIn=time.time()
224 270 equemene
    # Memory allocation on Device for result
225 270 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
226 270 equemene
    Elapsed=time.time()-TimeIn
227 270 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
228 270 equemene
229 270 equemene
    TimeIn=time.time()
230 270 equemene
    # Synthesis of function "sillysum" inside Kernel Sources
231 270 equemene
    knl = prg.sillysum  # Use this Kernel object for repeated calls
232 270 equemene
    Elapsed=time.time()-TimeIn
233 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
234 270 equemene
235 270 equemene
    TimeIn=time.time()
236 270 equemene
    # Call of kernel previously defined
237 270 equemene
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
238 270 equemene
    #
239 270 equemene
    CallCL.wait()
240 270 equemene
    Elapsed=time.time()-TimeIn
241 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
242 270 equemene
243 270 equemene
    TimeIn=time.time()
244 270 equemene
    # Creation of vector for result with same size as input vectors
245 270 equemene
    res_np = np.empty_like(a_np)
246 270 equemene
    Elapsed=time.time()-TimeIn
247 270 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
248 270 equemene
249 270 equemene
    TimeIn=time.time()
250 270 equemene
    # Copy from Device to Host
251 270 equemene
    cl.enqueue_copy(queue, res_np, res_g)
252 270 equemene
    Elapsed=time.time()-TimeIn
253 270 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
254 270 equemene
255 270 equemene
    return(res_np)
256 270 equemene
257 270 equemene
import sys
258 270 equemene
import time
259 270 equemene
260 270 equemene
if __name__=='__main__':
261 270 equemene
262 270 equemene
    # Size of input vectors definition based on stdin
263 270 equemene
    import sys
264 270 equemene
    try:
265 270 equemene
        SIZE=int(sys.argv[1])
266 270 equemene
        print("Size of vectors set to %i" % SIZE)
267 270 equemene
    except:
268 270 equemene
        SIZE=50000
269 270 equemene
        print("Size of vectors set to default size %i" % SIZE)
270 270 equemene
271 270 equemene
    # a_np = np.random.rand(SIZE).astype(np.float32)
272 270 equemene
    # b_np = np.random.rand(SIZE).astype(np.float32)
273 270 equemene
274 270 equemene
    a_np = np.ones(SIZE).astype(np.float32)
275 270 equemene
    b_np = np.ones(SIZE).astype(np.float32)
276 270 equemene
277 270 equemene
    # Native & Naive Implementation
278 270 equemene
    print("Performing naive implementation")
279 270 equemene
    TimeIn=time.time()
280 270 equemene
    c_np,d_np=MyDFT(a_np,b_np)
281 270 equemene
    NativeElapsed=time.time()-TimeIn
282 270 equemene
    NativeRate=int(SIZE/NativeElapsed)
283 270 equemene
    print("NativeRate: %i" % NativeRate)
284 270 equemene
285 270 equemene
    # Native & Numpy Implementation
286 270 equemene
    print("Performing Numpy implementation")
287 270 equemene
    TimeIn=time.time()
288 270 equemene
    e_np,f_np=NumpyDFT(a_np,b_np)
289 270 equemene
    NumpyElapsed=time.time()-TimeIn
290 270 equemene
    NumpyRate=int(SIZE/NumpyElapsed)
291 270 equemene
    print("NumpyRate: %i" % NumpyRate)
292 270 equemene
293 270 equemene
    print(np.linalg.norm(c_np-e_np))
294 270 equemene
    print(np.linalg.norm(d_np-f_np))
295 270 equemene
296 270 equemene
    # Native & Numpy Implementation
297 270 equemene
    print("Performing Numba implementation")
298 270 equemene
    TimeIn=time.time()
299 270 equemene
    g_np,h_np=NumbaDFT(a_np,b_np)
300 270 equemene
    NumpyElapsed=time.time()-TimeIn
301 270 equemene
    NumpyRate=int(SIZE/NumpyElapsed)
302 270 equemene
    print("NumpyRate: %i" % NumpyRate)
303 270 equemene
304 270 equemene
    print(np.linalg.norm(c_np-g_np))
305 270 equemene
    print(np.linalg.norm(d_np-h_np))
306 270 equemene
307 270 equemene
   #  # OpenCL Implementation
308 270 equemene
   #  TimeIn=time.time()
309 270 equemene
   #  # res_cl=OpenCLAddition(a_np,b_np)
310 270 equemene
   #  res_cl=OpenCLSillyAddition(a_np,b_np)
311 270 equemene
   #  OpenCLElapsed=time.time()-TimeIn
312 270 equemene
   #  OpenCLRate=int(SIZE/OpenCLElapsed)
313 270 equemene
   #  print("OpenCLRate: %i" % OpenCLRate)
314 270 equemene
315 270 equemene
   #  # CUDA Implementation
316 270 equemene
   #  TimeIn=time.time()
317 270 equemene
   #  # res_cuda=CUDAAddition(a_np,b_np)
318 270 equemene
   #  res_cuda=CUDASillyAddition(a_np,b_np)
319 270 equemene
   #  CUDAElapsed=time.time()-TimeIn
320 270 equemene
   #  CUDARate=int(SIZE/CUDAElapsed)
321 270 equemene
   #  print("CUDARate: %i" % CUDARate)
322 270 equemene
323 270 equemene
   #  print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
324 270 equemene
   #  print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
325 270 equemene
326 270 equemene
   # # Check on OpenCL with Numpy:
327 270 equemene
   #  print(res_cl - res_np)
328 270 equemene
   #  print(np.linalg.norm(res_cl - res_np))
329 270 equemene
   #  try:
330 270 equemene
   #      assert np.allclose(res_np, res_cl)
331 270 equemene
   #  except:
332 270 equemene
   #      print("Results between Native & OpenCL seem to be too different!")
333 270 equemene
334 270 equemene
   #  # Check on CUDA with Numpy:
335 270 equemene
   #  print(res_cuda - res_np)
336 270 equemene
   #  print(np.linalg.norm(res_cuda - res_np))
337 270 equemene
   #  try:
338 270 equemene
   #      assert np.allclose(res_np, res_cuda)
339 270 equemene
   #  except:
340 270 equemene
   #      print("Results between Native & CUDA seem to be too different!")
341 270 equemene