root / ETSN / MyDFT_3.py @ 270
Historique | Voir | Annoter | Télécharger (10,3 ko)
1 | 270 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 270 | equemene | |
3 | 270 | equemene | import numpy as np |
4 | 270 | equemene | import pyopencl as cl |
5 | 270 | equemene | from numpy import pi,cos,sin |
6 | 270 | equemene | |
7 | 270 | equemene | # piling 16 arithmetical functions
|
8 | 270 | equemene | def MySillyFunction(x): |
9 | 270 | equemene | return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
10 | 270 | equemene | |
11 | 270 | equemene | # Native Operation under Numpy (for prototyping & tests
|
12 | 270 | equemene | def NativeAddition(a_np,b_np): |
13 | 270 | equemene | return(a_np+b_np)
|
14 | 270 | equemene | |
15 | 270 | equemene | # Native Operation with MySillyFunction under Numpy (for prototyping & tests
|
16 | 270 | equemene | def NativeSillyAddition(a_np,b_np): |
17 | 270 | equemene | return(MySillyFunction(a_np)+MySillyFunction(b_np))
|
18 | 270 | equemene | |
19 | 270 | equemene | # Naive Discrete Fourier Transform
|
20 | 270 | equemene | def MyDFT(x,y): |
21 | 270 | equemene | from numpy import pi,cos,sin |
22 | 270 | equemene | size=x.shape[0]
|
23 | 270 | equemene | X=np.zeros(size).astype(np.float32) |
24 | 270 | equemene | Y=np.zeros(size).astype(np.float32) |
25 | 270 | equemene | for i in range(size): |
26 | 270 | equemene | for j in range(size): |
27 | 270 | equemene | X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
28 | 270 | equemene | Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
29 | 270 | equemene | return(X,Y)
|
30 | 270 | equemene | |
31 | 270 | equemene | # Numpy Discrete Fourier Transform
|
32 | 270 | equemene | def NumpyDFT(x,y): |
33 | 270 | equemene | size=x.shape[0]
|
34 | 270 | equemene | X=np.zeros(size).astype(np.float32) |
35 | 270 | equemene | Y=np.zeros(size).astype(np.float32) |
36 | 270 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
37 | 270 | equemene | for i in range(size): |
38 | 270 | equemene | X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
39 | 270 | equemene | Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
40 | 270 | equemene | return(X,Y)
|
41 | 270 | equemene | |
42 | 270 | equemene | # Numba Discrete Fourier Transform
|
43 | 270 | equemene | import numba |
44 | 270 | equemene | @numba.njit(parallel=True) |
45 | 270 | equemene | def NumbaDFT(x,y): |
46 | 270 | equemene | size=x.shape[0]
|
47 | 270 | equemene | X=np.zeros(size) |
48 | 270 | equemene | Y=np.zeros(size) |
49 | 270 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
50 | 270 | equemene | for i in numba.prange(size): |
51 | 270 | equemene | X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
52 | 270 | equemene | Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
53 | 270 | equemene | return(X,Y)
|
54 | 270 | equemene | |
55 | 270 | equemene | # CUDA complete operation
|
56 | 270 | equemene | def CUDAAddition(a_np,b_np): |
57 | 270 | equemene | import pycuda.autoinit |
58 | 270 | equemene | import pycuda.driver as drv |
59 | 270 | equemene | import numpy |
60 | 270 | equemene | |
61 | 270 | equemene | from pycuda.compiler import SourceModule |
62 | 270 | equemene | mod = SourceModule("""
|
63 | 270 | equemene | __global__ void sum(float *dest, float *a, float *b)
|
64 | 270 | equemene | {
|
65 | 270 | equemene | // const int i = threadIdx.x;
|
66 | 270 | equemene | const int i = blockIdx.x;
|
67 | 270 | equemene | dest[i] = a[i] + b[i];
|
68 | 270 | equemene | }
|
69 | 270 | equemene | """)
|
70 | 270 | equemene | |
71 | 270 | equemene | # sum = mod.get_function("sum")
|
72 | 270 | equemene | sum = mod.get_function("sum")
|
73 | 270 | equemene | |
74 | 270 | equemene | res_np = numpy.zeros_like(a_np) |
75 | 270 | equemene | sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
|
76 | 270 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
77 | 270 | equemene | return(res_np)
|
78 | 270 | equemene | |
79 | 270 | equemene | # CUDA Silly complete operation
|
80 | 270 | equemene | def CUDASillyAddition(a_np,b_np): |
81 | 270 | equemene | import pycuda.autoinit |
82 | 270 | equemene | import pycuda.driver as drv |
83 | 270 | equemene | import numpy |
84 | 270 | equemene | |
85 | 270 | equemene | from pycuda.compiler import SourceModule |
86 | 270 | equemene | TimeIn=time.time() |
87 | 270 | equemene | mod = SourceModule("""
|
88 | 270 | equemene | __device__ float MySillyFunction(float x)
|
89 | 270 | equemene | {
|
90 | 270 | equemene | return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
91 | 270 | equemene | }
|
92 | 270 | equemene |
|
93 | 270 | equemene | __global__ void sillysum(float *dest, float *a, float *b)
|
94 | 270 | equemene | {
|
95 | 270 | equemene | const int i = blockIdx.x;
|
96 | 270 | equemene | dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
|
97 | 270 | equemene | }
|
98 | 270 | equemene | """)
|
99 | 270 | equemene | Elapsed=time.time()-TimeIn |
100 | 270 | equemene | print("Definition of kernel : %.3f" % Elapsed)
|
101 | 270 | equemene | |
102 | 270 | equemene | TimeIn=time.time() |
103 | 270 | equemene | # sum = mod.get_function("sum")
|
104 | 270 | equemene | sillysum = mod.get_function("sillysum")
|
105 | 270 | equemene | Elapsed=time.time()-TimeIn |
106 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
107 | 270 | equemene | |
108 | 270 | equemene | TimeIn=time.time() |
109 | 270 | equemene | res_np = numpy.zeros_like(a_np) |
110 | 270 | equemene | Elapsed=time.time()-TimeIn |
111 | 270 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
112 | 270 | equemene | |
113 | 270 | equemene | TimeIn=time.time() |
114 | 270 | equemene | sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
115 | 270 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
116 | 270 | equemene | Elapsed=time.time()-TimeIn |
117 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
118 | 270 | equemene | return(res_np)
|
119 | 270 | equemene | |
120 | 270 | equemene | # OpenCL complete operation
|
121 | 270 | equemene | def OpenCLAddition(a_np,b_np): |
122 | 270 | equemene | |
123 | 270 | equemene | # Context creation
|
124 | 270 | equemene | ctx = cl.create_some_context() |
125 | 270 | equemene | # Every process is stored in a queue
|
126 | 270 | equemene | queue = cl.CommandQueue(ctx) |
127 | 270 | equemene | |
128 | 270 | equemene | TimeIn=time.time() |
129 | 270 | equemene | # Copy from Host to Device using pointers
|
130 | 270 | equemene | mf = cl.mem_flags |
131 | 270 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
132 | 270 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
133 | 270 | equemene | Elapsed=time.time()-TimeIn |
134 | 270 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
135 | 270 | equemene | |
136 | 270 | equemene | TimeIn=time.time() |
137 | 270 | equemene | # Definition of kernel under OpenCL
|
138 | 270 | equemene | prg = cl.Program(ctx, """
|
139 | 270 | equemene | __kernel void sum(
|
140 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
141 | 270 | equemene | {
|
142 | 270 | equemene | int gid = get_global_id(0);
|
143 | 270 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
144 | 270 | equemene | }
|
145 | 270 | equemene | """).build()
|
146 | 270 | equemene | Elapsed=time.time()-TimeIn |
147 | 270 | equemene | print("Building kernels : %.3f" % Elapsed)
|
148 | 270 | equemene | |
149 | 270 | equemene | TimeIn=time.time() |
150 | 270 | equemene | # Memory allocation on Device for result
|
151 | 270 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
152 | 270 | equemene | Elapsed=time.time()-TimeIn |
153 | 270 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
154 | 270 | equemene | |
155 | 270 | equemene | TimeIn=time.time() |
156 | 270 | equemene | # Synthesis of function "sum" inside Kernel Sources
|
157 | 270 | equemene | knl = prg.sum # Use this Kernel object for repeated calls
|
158 | 270 | equemene | Elapsed=time.time()-TimeIn |
159 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
160 | 270 | equemene | |
161 | 270 | equemene | TimeIn=time.time() |
162 | 270 | equemene | # Call of kernel previously defined
|
163 | 270 | equemene | knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
164 | 270 | equemene | Elapsed=time.time()-TimeIn |
165 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
166 | 270 | equemene | |
167 | 270 | equemene | TimeIn=time.time() |
168 | 270 | equemene | # Creation of vector for result with same size as input vectors
|
169 | 270 | equemene | res_np = np.empty_like(a_np) |
170 | 270 | equemene | Elapsed=time.time()-TimeIn |
171 | 270 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
172 | 270 | equemene | |
173 | 270 | equemene | TimeIn=time.time() |
174 | 270 | equemene | # Copy from Device to Host
|
175 | 270 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
176 | 270 | equemene | Elapsed=time.time()-TimeIn |
177 | 270 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
178 | 270 | equemene | |
179 | 270 | equemene | return(res_np)
|
180 | 270 | equemene | |
181 | 270 | equemene | # OpenCL complete operation
|
182 | 270 | equemene | def OpenCLSillyAddition(a_np,b_np): |
183 | 270 | equemene | |
184 | 270 | equemene | # Context creation
|
185 | 270 | equemene | ctx = cl.create_some_context() |
186 | 270 | equemene | # Every process is stored in a queue
|
187 | 270 | equemene | queue = cl.CommandQueue(ctx) |
188 | 270 | equemene | |
189 | 270 | equemene | TimeIn=time.time() |
190 | 270 | equemene | # Copy from Host to Device using pointers
|
191 | 270 | equemene | mf = cl.mem_flags |
192 | 270 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
193 | 270 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
194 | 270 | equemene | Elapsed=time.time()-TimeIn |
195 | 270 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
196 | 270 | equemene | |
197 | 270 | equemene | TimeIn=time.time() |
198 | 270 | equemene | # Definition of kernel under OpenCL
|
199 | 270 | equemene | prg = cl.Program(ctx, """
|
200 | 270 | equemene |
|
201 | 270 | equemene | float MySillyFunction(float x)
|
202 | 270 | equemene | {
|
203 | 270 | equemene | return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
204 | 270 | equemene | }
|
205 | 270 | equemene |
|
206 | 270 | equemene | __kernel void sillysum(
|
207 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
208 | 270 | equemene | {
|
209 | 270 | equemene | int gid = get_global_id(0);
|
210 | 270 | equemene | res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
|
211 | 270 | equemene | }
|
212 | 270 | equemene |
|
213 | 270 | equemene | __kernel void sum(
|
214 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
215 | 270 | equemene | {
|
216 | 270 | equemene | int gid = get_global_id(0);
|
217 | 270 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
218 | 270 | equemene | }
|
219 | 270 | equemene | """).build()
|
220 | 270 | equemene | Elapsed=time.time()-TimeIn |
221 | 270 | equemene | print("Building kernels : %.3f" % Elapsed)
|
222 | 270 | equemene | |
223 | 270 | equemene | TimeIn=time.time() |
224 | 270 | equemene | # Memory allocation on Device for result
|
225 | 270 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
226 | 270 | equemene | Elapsed=time.time()-TimeIn |
227 | 270 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
228 | 270 | equemene | |
229 | 270 | equemene | TimeIn=time.time() |
230 | 270 | equemene | # Synthesis of function "sillysum" inside Kernel Sources
|
231 | 270 | equemene | knl = prg.sillysum # Use this Kernel object for repeated calls
|
232 | 270 | equemene | Elapsed=time.time()-TimeIn |
233 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
234 | 270 | equemene | |
235 | 270 | equemene | TimeIn=time.time() |
236 | 270 | equemene | # Call of kernel previously defined
|
237 | 270 | equemene | CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
238 | 270 | equemene | #
|
239 | 270 | equemene | CallCL.wait() |
240 | 270 | equemene | Elapsed=time.time()-TimeIn |
241 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
242 | 270 | equemene | |
243 | 270 | equemene | TimeIn=time.time() |
244 | 270 | equemene | # Creation of vector for result with same size as input vectors
|
245 | 270 | equemene | res_np = np.empty_like(a_np) |
246 | 270 | equemene | Elapsed=time.time()-TimeIn |
247 | 270 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
248 | 270 | equemene | |
249 | 270 | equemene | TimeIn=time.time() |
250 | 270 | equemene | # Copy from Device to Host
|
251 | 270 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
252 | 270 | equemene | Elapsed=time.time()-TimeIn |
253 | 270 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
254 | 270 | equemene | |
255 | 270 | equemene | return(res_np)
|
256 | 270 | equemene | |
257 | 270 | equemene | import sys |
258 | 270 | equemene | import time |
259 | 270 | equemene | |
260 | 270 | equemene | if __name__=='__main__': |
261 | 270 | equemene | |
262 | 270 | equemene | # Size of input vectors definition based on stdin
|
263 | 270 | equemene | import sys |
264 | 270 | equemene | try:
|
265 | 270 | equemene | SIZE=int(sys.argv[1]) |
266 | 270 | equemene | print("Size of vectors set to %i" % SIZE)
|
267 | 270 | equemene | except:
|
268 | 270 | equemene | SIZE=50000
|
269 | 270 | equemene | print("Size of vectors set to default size %i" % SIZE)
|
270 | 270 | equemene | |
271 | 270 | equemene | # a_np = np.random.rand(SIZE).astype(np.float32)
|
272 | 270 | equemene | # b_np = np.random.rand(SIZE).astype(np.float32)
|
273 | 270 | equemene | |
274 | 270 | equemene | a_np = np.ones(SIZE).astype(np.float32) |
275 | 270 | equemene | b_np = np.ones(SIZE).astype(np.float32) |
276 | 270 | equemene | |
277 | 270 | equemene | # Native & Naive Implementation
|
278 | 270 | equemene | print("Performing naive implementation")
|
279 | 270 | equemene | TimeIn=time.time() |
280 | 270 | equemene | c_np,d_np=MyDFT(a_np,b_np) |
281 | 270 | equemene | NativeElapsed=time.time()-TimeIn |
282 | 270 | equemene | NativeRate=int(SIZE/NativeElapsed)
|
283 | 270 | equemene | print("NativeRate: %i" % NativeRate)
|
284 | 270 | equemene | |
285 | 270 | equemene | # Native & Numpy Implementation
|
286 | 270 | equemene | print("Performing Numpy implementation")
|
287 | 270 | equemene | TimeIn=time.time() |
288 | 270 | equemene | e_np,f_np=NumpyDFT(a_np,b_np) |
289 | 270 | equemene | NumpyElapsed=time.time()-TimeIn |
290 | 270 | equemene | NumpyRate=int(SIZE/NumpyElapsed)
|
291 | 270 | equemene | print("NumpyRate: %i" % NumpyRate)
|
292 | 270 | equemene | |
293 | 270 | equemene | print(np.linalg.norm(c_np-e_np)) |
294 | 270 | equemene | print(np.linalg.norm(d_np-f_np)) |
295 | 270 | equemene | |
296 | 270 | equemene | # Native & Numpy Implementation
|
297 | 270 | equemene | print("Performing Numba implementation")
|
298 | 270 | equemene | TimeIn=time.time() |
299 | 270 | equemene | g_np,h_np=NumbaDFT(a_np,b_np) |
300 | 270 | equemene | NumpyElapsed=time.time()-TimeIn |
301 | 270 | equemene | NumpyRate=int(SIZE/NumpyElapsed)
|
302 | 270 | equemene | print("NumpyRate: %i" % NumpyRate)
|
303 | 270 | equemene | |
304 | 270 | equemene | print(np.linalg.norm(c_np-g_np)) |
305 | 270 | equemene | print(np.linalg.norm(d_np-h_np)) |
306 | 270 | equemene | |
307 | 270 | equemene | # # OpenCL Implementation
|
308 | 270 | equemene | # TimeIn=time.time()
|
309 | 270 | equemene | # # res_cl=OpenCLAddition(a_np,b_np)
|
310 | 270 | equemene | # res_cl=OpenCLSillyAddition(a_np,b_np)
|
311 | 270 | equemene | # OpenCLElapsed=time.time()-TimeIn
|
312 | 270 | equemene | # OpenCLRate=int(SIZE/OpenCLElapsed)
|
313 | 270 | equemene | # print("OpenCLRate: %i" % OpenCLRate)
|
314 | 270 | equemene | |
315 | 270 | equemene | # # CUDA Implementation
|
316 | 270 | equemene | # TimeIn=time.time()
|
317 | 270 | equemene | # # res_cuda=CUDAAddition(a_np,b_np)
|
318 | 270 | equemene | # res_cuda=CUDASillyAddition(a_np,b_np)
|
319 | 270 | equemene | # CUDAElapsed=time.time()-TimeIn
|
320 | 270 | equemene | # CUDARate=int(SIZE/CUDAElapsed)
|
321 | 270 | equemene | # print("CUDARate: %i" % CUDARate)
|
322 | 270 | equemene | |
323 | 270 | equemene | # print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
|
324 | 270 | equemene | # print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
|
325 | 270 | equemene | |
326 | 270 | equemene | # # Check on OpenCL with Numpy:
|
327 | 270 | equemene | # print(res_cl - res_np)
|
328 | 270 | equemene | # print(np.linalg.norm(res_cl - res_np))
|
329 | 270 | equemene | # try:
|
330 | 270 | equemene | # assert np.allclose(res_np, res_cl)
|
331 | 270 | equemene | # except:
|
332 | 270 | equemene | # print("Results between Native & OpenCL seem to be too different!")
|
333 | 270 | equemene | |
334 | 270 | equemene | # # Check on CUDA with Numpy:
|
335 | 270 | equemene | # print(res_cuda - res_np)
|
336 | 270 | equemene | # print(np.linalg.norm(res_cuda - res_np))
|
337 | 270 | equemene | # try:
|
338 | 270 | equemene | # assert np.allclose(res_np, res_cuda)
|
339 | 270 | equemene | # except:
|
340 | 270 | equemene | # print("Results between Native & CUDA seem to be too different!")
|
341 | 270 | equemene |