root / ETSN / MyDFT_1.py @ 270
Historique | Voir | Annoter | Télécharger (8,81 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
|
3 |
import numpy as np |
4 |
import pyopencl as cl |
5 |
|
6 |
# piling 16 arithmetical functions
|
7 |
def MySillyFunction(x): |
8 |
return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
9 |
|
10 |
# Native Operation under Numpy (for prototyping & tests
|
11 |
def NativeAddition(a_np,b_np): |
12 |
return(a_np+b_np)
|
13 |
|
14 |
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
|
15 |
def NativeSillyAddition(a_np,b_np): |
16 |
return(MySillyFunction(a_np)+MySillyFunction(b_np))
|
17 |
|
18 |
# Naive Discrete Fourier Transform
|
19 |
def MyDFT(x,y): |
20 |
from numpy import pi,cos,sin |
21 |
size=x.shape[0]
|
22 |
X=np.zeros(size).astype(np.float32) |
23 |
Y=np.zeros(size).astype(np.float32) |
24 |
for i in range(size): |
25 |
for j in range(size): |
26 |
X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
27 |
Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
28 |
return(X,Y)
|
29 |
|
30 |
# CUDA complete operation
|
31 |
def CUDAAddition(a_np,b_np): |
32 |
import pycuda.autoinit |
33 |
import pycuda.driver as drv |
34 |
import numpy |
35 |
|
36 |
from pycuda.compiler import SourceModule |
37 |
mod = SourceModule("""
|
38 |
__global__ void sum(float *dest, float *a, float *b)
|
39 |
{
|
40 |
// const int i = threadIdx.x;
|
41 |
const int i = blockIdx.x;
|
42 |
dest[i] = a[i] + b[i];
|
43 |
}
|
44 |
""")
|
45 |
|
46 |
# sum = mod.get_function("sum")
|
47 |
sum = mod.get_function("sum")
|
48 |
|
49 |
res_np = numpy.zeros_like(a_np) |
50 |
sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
|
51 |
block=(1,1,1), grid=(a_np.size,1)) |
52 |
return(res_np)
|
53 |
|
54 |
# CUDA Silly complete operation
|
55 |
def CUDASillyAddition(a_np,b_np): |
56 |
import pycuda.autoinit |
57 |
import pycuda.driver as drv |
58 |
import numpy |
59 |
|
60 |
from pycuda.compiler import SourceModule |
61 |
TimeIn=time.time() |
62 |
mod = SourceModule("""
|
63 |
__device__ float MySillyFunction(float x)
|
64 |
{
|
65 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
66 |
}
|
67 |
|
68 |
__global__ void sillysum(float *dest, float *a, float *b)
|
69 |
{
|
70 |
const int i = blockIdx.x;
|
71 |
dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
|
72 |
}
|
73 |
""")
|
74 |
Elapsed=time.time()-TimeIn |
75 |
print("Definition of kernel : %.3f" % Elapsed)
|
76 |
|
77 |
TimeIn=time.time() |
78 |
# sum = mod.get_function("sum")
|
79 |
sillysum = mod.get_function("sillysum")
|
80 |
Elapsed=time.time()-TimeIn |
81 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
82 |
|
83 |
TimeIn=time.time() |
84 |
res_np = numpy.zeros_like(a_np) |
85 |
Elapsed=time.time()-TimeIn |
86 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
87 |
|
88 |
TimeIn=time.time() |
89 |
sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
90 |
block=(1,1,1), grid=(a_np.size,1)) |
91 |
Elapsed=time.time()-TimeIn |
92 |
print("Execution of kernel : %.3f" % Elapsed)
|
93 |
return(res_np)
|
94 |
|
95 |
# OpenCL complete operation
|
96 |
def OpenCLAddition(a_np,b_np): |
97 |
|
98 |
# Context creation
|
99 |
ctx = cl.create_some_context() |
100 |
# Every process is stored in a queue
|
101 |
queue = cl.CommandQueue(ctx) |
102 |
|
103 |
TimeIn=time.time() |
104 |
# Copy from Host to Device using pointers
|
105 |
mf = cl.mem_flags |
106 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
107 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
108 |
Elapsed=time.time()-TimeIn |
109 |
print("Copy from Host 2 Device : %.3f" % Elapsed)
|
110 |
|
111 |
TimeIn=time.time() |
112 |
# Definition of kernel under OpenCL
|
113 |
prg = cl.Program(ctx, """
|
114 |
__kernel void sum(
|
115 |
__global const float *a_g, __global const float *b_g, __global float *res_g)
|
116 |
{
|
117 |
int gid = get_global_id(0);
|
118 |
res_g[gid] = a_g[gid] + b_g[gid];
|
119 |
}
|
120 |
""").build()
|
121 |
Elapsed=time.time()-TimeIn |
122 |
print("Building kernels : %.3f" % Elapsed)
|
123 |
|
124 |
TimeIn=time.time() |
125 |
# Memory allocation on Device for result
|
126 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
127 |
Elapsed=time.time()-TimeIn |
128 |
print("Allocation on Device for results : %.3f" % Elapsed)
|
129 |
|
130 |
TimeIn=time.time() |
131 |
# Synthesis of function "sum" inside Kernel Sources
|
132 |
knl = prg.sum # Use this Kernel object for repeated calls
|
133 |
Elapsed=time.time()-TimeIn |
134 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
135 |
|
136 |
TimeIn=time.time() |
137 |
# Call of kernel previously defined
|
138 |
knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
139 |
Elapsed=time.time()-TimeIn |
140 |
print("Execution of kernel : %.3f" % Elapsed)
|
141 |
|
142 |
TimeIn=time.time() |
143 |
# Creation of vector for result with same size as input vectors
|
144 |
res_np = np.empty_like(a_np) |
145 |
Elapsed=time.time()-TimeIn |
146 |
print("Allocation on Host for results: %.3f" % Elapsed)
|
147 |
|
148 |
TimeIn=time.time() |
149 |
# Copy from Device to Host
|
150 |
cl.enqueue_copy(queue, res_np, res_g) |
151 |
Elapsed=time.time()-TimeIn |
152 |
print("Copy from Device 2 Host : %.3f" % Elapsed)
|
153 |
|
154 |
return(res_np)
|
155 |
|
156 |
# OpenCL complete operation
|
157 |
def OpenCLSillyAddition(a_np,b_np): |
158 |
|
159 |
# Context creation
|
160 |
ctx = cl.create_some_context() |
161 |
# Every process is stored in a queue
|
162 |
queue = cl.CommandQueue(ctx) |
163 |
|
164 |
TimeIn=time.time() |
165 |
# Copy from Host to Device using pointers
|
166 |
mf = cl.mem_flags |
167 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
168 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
169 |
Elapsed=time.time()-TimeIn |
170 |
print("Copy from Host 2 Device : %.3f" % Elapsed)
|
171 |
|
172 |
TimeIn=time.time() |
173 |
# Definition of kernel under OpenCL
|
174 |
prg = cl.Program(ctx, """
|
175 |
|
176 |
float MySillyFunction(float x)
|
177 |
{
|
178 |
return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
179 |
}
|
180 |
|
181 |
__kernel void sillysum(
|
182 |
__global const float *a_g, __global const float *b_g, __global float *res_g)
|
183 |
{
|
184 |
int gid = get_global_id(0);
|
185 |
res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
|
186 |
}
|
187 |
|
188 |
__kernel void sum(
|
189 |
__global const float *a_g, __global const float *b_g, __global float *res_g)
|
190 |
{
|
191 |
int gid = get_global_id(0);
|
192 |
res_g[gid] = a_g[gid] + b_g[gid];
|
193 |
}
|
194 |
""").build()
|
195 |
Elapsed=time.time()-TimeIn |
196 |
print("Building kernels : %.3f" % Elapsed)
|
197 |
|
198 |
TimeIn=time.time() |
199 |
# Memory allocation on Device for result
|
200 |
res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
201 |
Elapsed=time.time()-TimeIn |
202 |
print("Allocation on Device for results : %.3f" % Elapsed)
|
203 |
|
204 |
TimeIn=time.time() |
205 |
# Synthesis of function "sillysum" inside Kernel Sources
|
206 |
knl = prg.sillysum # Use this Kernel object for repeated calls
|
207 |
Elapsed=time.time()-TimeIn |
208 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
209 |
|
210 |
TimeIn=time.time() |
211 |
# Call of kernel previously defined
|
212 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
213 |
#
|
214 |
CallCL.wait() |
215 |
Elapsed=time.time()-TimeIn |
216 |
print("Execution of kernel : %.3f" % Elapsed)
|
217 |
|
218 |
TimeIn=time.time() |
219 |
# Creation of vector for result with same size as input vectors
|
220 |
res_np = np.empty_like(a_np) |
221 |
Elapsed=time.time()-TimeIn |
222 |
print("Allocation on Host for results: %.3f" % Elapsed)
|
223 |
|
224 |
TimeIn=time.time() |
225 |
# Copy from Device to Host
|
226 |
cl.enqueue_copy(queue, res_np, res_g) |
227 |
Elapsed=time.time()-TimeIn |
228 |
print("Copy from Device 2 Host : %.3f" % Elapsed)
|
229 |
|
230 |
return(res_np)
|
231 |
|
232 |
import sys |
233 |
import time |
234 |
|
235 |
if __name__=='__main__': |
236 |
|
237 |
# Size of input vectors definition based on stdin
|
238 |
import sys |
239 |
try:
|
240 |
SIZE=int(sys.argv[1]) |
241 |
print("Size of vectors set to %i" % SIZE)
|
242 |
except:
|
243 |
SIZE=50000
|
244 |
print("Size of vectors set to default size %i" % SIZE)
|
245 |
|
246 |
# a_np = np.random.rand(SIZE).astype(np.float32)
|
247 |
# b_np = np.random.rand(SIZE).astype(np.float32)
|
248 |
|
249 |
a_np = np.ones(SIZE).astype(np.float32) |
250 |
b_np = np.ones(SIZE).astype(np.float32) |
251 |
|
252 |
# Native Implementation
|
253 |
TimeIn=time.time() |
254 |
# res_np=NativeAddition(a_np,b_np)
|
255 |
# res_np=NativeSillyAddition(a_np,b_np)
|
256 |
c_np,d_np=MyDFT(a_np,b_np) |
257 |
NativeElapsed=time.time()-TimeIn |
258 |
NativeRate=int(SIZE/NativeElapsed)
|
259 |
print("NativeRate: %i" % NativeRate)
|
260 |
|
261 |
print(c_np,d_np) |
262 |
|
263 |
# # OpenCL Implementation
|
264 |
# TimeIn=time.time()
|
265 |
# # res_cl=OpenCLAddition(a_np,b_np)
|
266 |
# res_cl=OpenCLSillyAddition(a_np,b_np)
|
267 |
# OpenCLElapsed=time.time()-TimeIn
|
268 |
# OpenCLRate=int(SIZE/OpenCLElapsed)
|
269 |
# print("OpenCLRate: %i" % OpenCLRate)
|
270 |
|
271 |
# # CUDA Implementation
|
272 |
# TimeIn=time.time()
|
273 |
# # res_cuda=CUDAAddition(a_np,b_np)
|
274 |
# res_cuda=CUDASillyAddition(a_np,b_np)
|
275 |
# CUDAElapsed=time.time()-TimeIn
|
276 |
# CUDARate=int(SIZE/CUDAElapsed)
|
277 |
# print("CUDARate: %i" % CUDARate)
|
278 |
|
279 |
# print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
|
280 |
# print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
|
281 |
|
282 |
# # Check on OpenCL with Numpy:
|
283 |
# print(res_cl - res_np)
|
284 |
# print(np.linalg.norm(res_cl - res_np))
|
285 |
# try:
|
286 |
# assert np.allclose(res_np, res_cl)
|
287 |
# except:
|
288 |
# print("Results between Native & OpenCL seem to be too different!")
|
289 |
|
290 |
# # Check on CUDA with Numpy:
|
291 |
# print(res_cuda - res_np)
|
292 |
# print(np.linalg.norm(res_cuda - res_np))
|
293 |
# try:
|
294 |
# assert np.allclose(res_np, res_cuda)
|
295 |
# except:
|
296 |
# print("Results between Native & CUDA seem to be too different!")
|
297 |
|
298 |
|