root / ETSN / MyDFT_1.py @ 270
Historique | Voir | Annoter | Télécharger (8,81 ko)
1 | 270 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 270 | equemene | |
3 | 270 | equemene | import numpy as np |
4 | 270 | equemene | import pyopencl as cl |
5 | 270 | equemene | |
6 | 270 | equemene | # piling 16 arithmetical functions
|
7 | 270 | equemene | def MySillyFunction(x): |
8 | 270 | equemene | return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
9 | 270 | equemene | |
10 | 270 | equemene | # Native Operation under Numpy (for prototyping & tests
|
11 | 270 | equemene | def NativeAddition(a_np,b_np): |
12 | 270 | equemene | return(a_np+b_np)
|
13 | 270 | equemene | |
14 | 270 | equemene | # Native Operation with MySillyFunction under Numpy (for prototyping & tests
|
15 | 270 | equemene | def NativeSillyAddition(a_np,b_np): |
16 | 270 | equemene | return(MySillyFunction(a_np)+MySillyFunction(b_np))
|
17 | 270 | equemene | |
18 | 270 | equemene | # Naive Discrete Fourier Transform
|
19 | 270 | equemene | def MyDFT(x,y): |
20 | 270 | equemene | from numpy import pi,cos,sin |
21 | 270 | equemene | size=x.shape[0]
|
22 | 270 | equemene | X=np.zeros(size).astype(np.float32) |
23 | 270 | equemene | Y=np.zeros(size).astype(np.float32) |
24 | 270 | equemene | for i in range(size): |
25 | 270 | equemene | for j in range(size): |
26 | 270 | equemene | X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
27 | 270 | equemene | Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
28 | 270 | equemene | return(X,Y)
|
29 | 270 | equemene | |
30 | 270 | equemene | # CUDA complete operation
|
31 | 270 | equemene | def CUDAAddition(a_np,b_np): |
32 | 270 | equemene | import pycuda.autoinit |
33 | 270 | equemene | import pycuda.driver as drv |
34 | 270 | equemene | import numpy |
35 | 270 | equemene | |
36 | 270 | equemene | from pycuda.compiler import SourceModule |
37 | 270 | equemene | mod = SourceModule("""
|
38 | 270 | equemene | __global__ void sum(float *dest, float *a, float *b)
|
39 | 270 | equemene | {
|
40 | 270 | equemene | // const int i = threadIdx.x;
|
41 | 270 | equemene | const int i = blockIdx.x;
|
42 | 270 | equemene | dest[i] = a[i] + b[i];
|
43 | 270 | equemene | }
|
44 | 270 | equemene | """)
|
45 | 270 | equemene | |
46 | 270 | equemene | # sum = mod.get_function("sum")
|
47 | 270 | equemene | sum = mod.get_function("sum")
|
48 | 270 | equemene | |
49 | 270 | equemene | res_np = numpy.zeros_like(a_np) |
50 | 270 | equemene | sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
|
51 | 270 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
52 | 270 | equemene | return(res_np)
|
53 | 270 | equemene | |
54 | 270 | equemene | # CUDA Silly complete operation
|
55 | 270 | equemene | def CUDASillyAddition(a_np,b_np): |
56 | 270 | equemene | import pycuda.autoinit |
57 | 270 | equemene | import pycuda.driver as drv |
58 | 270 | equemene | import numpy |
59 | 270 | equemene | |
60 | 270 | equemene | from pycuda.compiler import SourceModule |
61 | 270 | equemene | TimeIn=time.time() |
62 | 270 | equemene | mod = SourceModule("""
|
63 | 270 | equemene | __device__ float MySillyFunction(float x)
|
64 | 270 | equemene | {
|
65 | 270 | equemene | return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
66 | 270 | equemene | }
|
67 | 270 | equemene |
|
68 | 270 | equemene | __global__ void sillysum(float *dest, float *a, float *b)
|
69 | 270 | equemene | {
|
70 | 270 | equemene | const int i = blockIdx.x;
|
71 | 270 | equemene | dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
|
72 | 270 | equemene | }
|
73 | 270 | equemene | """)
|
74 | 270 | equemene | Elapsed=time.time()-TimeIn |
75 | 270 | equemene | print("Definition of kernel : %.3f" % Elapsed)
|
76 | 270 | equemene | |
77 | 270 | equemene | TimeIn=time.time() |
78 | 270 | equemene | # sum = mod.get_function("sum")
|
79 | 270 | equemene | sillysum = mod.get_function("sillysum")
|
80 | 270 | equemene | Elapsed=time.time()-TimeIn |
81 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
82 | 270 | equemene | |
83 | 270 | equemene | TimeIn=time.time() |
84 | 270 | equemene | res_np = numpy.zeros_like(a_np) |
85 | 270 | equemene | Elapsed=time.time()-TimeIn |
86 | 270 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
87 | 270 | equemene | |
88 | 270 | equemene | TimeIn=time.time() |
89 | 270 | equemene | sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np), |
90 | 270 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
91 | 270 | equemene | Elapsed=time.time()-TimeIn |
92 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
93 | 270 | equemene | return(res_np)
|
94 | 270 | equemene | |
95 | 270 | equemene | # OpenCL complete operation
|
96 | 270 | equemene | def OpenCLAddition(a_np,b_np): |
97 | 270 | equemene | |
98 | 270 | equemene | # Context creation
|
99 | 270 | equemene | ctx = cl.create_some_context() |
100 | 270 | equemene | # Every process is stored in a queue
|
101 | 270 | equemene | queue = cl.CommandQueue(ctx) |
102 | 270 | equemene | |
103 | 270 | equemene | TimeIn=time.time() |
104 | 270 | equemene | # Copy from Host to Device using pointers
|
105 | 270 | equemene | mf = cl.mem_flags |
106 | 270 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
107 | 270 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
108 | 270 | equemene | Elapsed=time.time()-TimeIn |
109 | 270 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
110 | 270 | equemene | |
111 | 270 | equemene | TimeIn=time.time() |
112 | 270 | equemene | # Definition of kernel under OpenCL
|
113 | 270 | equemene | prg = cl.Program(ctx, """
|
114 | 270 | equemene | __kernel void sum(
|
115 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
116 | 270 | equemene | {
|
117 | 270 | equemene | int gid = get_global_id(0);
|
118 | 270 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
119 | 270 | equemene | }
|
120 | 270 | equemene | """).build()
|
121 | 270 | equemene | Elapsed=time.time()-TimeIn |
122 | 270 | equemene | print("Building kernels : %.3f" % Elapsed)
|
123 | 270 | equemene | |
124 | 270 | equemene | TimeIn=time.time() |
125 | 270 | equemene | # Memory allocation on Device for result
|
126 | 270 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
127 | 270 | equemene | Elapsed=time.time()-TimeIn |
128 | 270 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
129 | 270 | equemene | |
130 | 270 | equemene | TimeIn=time.time() |
131 | 270 | equemene | # Synthesis of function "sum" inside Kernel Sources
|
132 | 270 | equemene | knl = prg.sum # Use this Kernel object for repeated calls
|
133 | 270 | equemene | Elapsed=time.time()-TimeIn |
134 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
135 | 270 | equemene | |
136 | 270 | equemene | TimeIn=time.time() |
137 | 270 | equemene | # Call of kernel previously defined
|
138 | 270 | equemene | knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
139 | 270 | equemene | Elapsed=time.time()-TimeIn |
140 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
141 | 270 | equemene | |
142 | 270 | equemene | TimeIn=time.time() |
143 | 270 | equemene | # Creation of vector for result with same size as input vectors
|
144 | 270 | equemene | res_np = np.empty_like(a_np) |
145 | 270 | equemene | Elapsed=time.time()-TimeIn |
146 | 270 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
147 | 270 | equemene | |
148 | 270 | equemene | TimeIn=time.time() |
149 | 270 | equemene | # Copy from Device to Host
|
150 | 270 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
151 | 270 | equemene | Elapsed=time.time()-TimeIn |
152 | 270 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
153 | 270 | equemene | |
154 | 270 | equemene | return(res_np)
|
155 | 270 | equemene | |
156 | 270 | equemene | # OpenCL complete operation
|
157 | 270 | equemene | def OpenCLSillyAddition(a_np,b_np): |
158 | 270 | equemene | |
159 | 270 | equemene | # Context creation
|
160 | 270 | equemene | ctx = cl.create_some_context() |
161 | 270 | equemene | # Every process is stored in a queue
|
162 | 270 | equemene | queue = cl.CommandQueue(ctx) |
163 | 270 | equemene | |
164 | 270 | equemene | TimeIn=time.time() |
165 | 270 | equemene | # Copy from Host to Device using pointers
|
166 | 270 | equemene | mf = cl.mem_flags |
167 | 270 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
168 | 270 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
169 | 270 | equemene | Elapsed=time.time()-TimeIn |
170 | 270 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
171 | 270 | equemene | |
172 | 270 | equemene | TimeIn=time.time() |
173 | 270 | equemene | # Definition of kernel under OpenCL
|
174 | 270 | equemene | prg = cl.Program(ctx, """
|
175 | 270 | equemene |
|
176 | 270 | equemene | float MySillyFunction(float x)
|
177 | 270 | equemene | {
|
178 | 270 | equemene | return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
179 | 270 | equemene | }
|
180 | 270 | equemene |
|
181 | 270 | equemene | __kernel void sillysum(
|
182 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
183 | 270 | equemene | {
|
184 | 270 | equemene | int gid = get_global_id(0);
|
185 | 270 | equemene | res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
|
186 | 270 | equemene | }
|
187 | 270 | equemene |
|
188 | 270 | equemene | __kernel void sum(
|
189 | 270 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
190 | 270 | equemene | {
|
191 | 270 | equemene | int gid = get_global_id(0);
|
192 | 270 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
193 | 270 | equemene | }
|
194 | 270 | equemene | """).build()
|
195 | 270 | equemene | Elapsed=time.time()-TimeIn |
196 | 270 | equemene | print("Building kernels : %.3f" % Elapsed)
|
197 | 270 | equemene | |
198 | 270 | equemene | TimeIn=time.time() |
199 | 270 | equemene | # Memory allocation on Device for result
|
200 | 270 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
201 | 270 | equemene | Elapsed=time.time()-TimeIn |
202 | 270 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
203 | 270 | equemene | |
204 | 270 | equemene | TimeIn=time.time() |
205 | 270 | equemene | # Synthesis of function "sillysum" inside Kernel Sources
|
206 | 270 | equemene | knl = prg.sillysum # Use this Kernel object for repeated calls
|
207 | 270 | equemene | Elapsed=time.time()-TimeIn |
208 | 270 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
209 | 270 | equemene | |
210 | 270 | equemene | TimeIn=time.time() |
211 | 270 | equemene | # Call of kernel previously defined
|
212 | 270 | equemene | CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
213 | 270 | equemene | #
|
214 | 270 | equemene | CallCL.wait() |
215 | 270 | equemene | Elapsed=time.time()-TimeIn |
216 | 270 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
217 | 270 | equemene | |
218 | 270 | equemene | TimeIn=time.time() |
219 | 270 | equemene | # Creation of vector for result with same size as input vectors
|
220 | 270 | equemene | res_np = np.empty_like(a_np) |
221 | 270 | equemene | Elapsed=time.time()-TimeIn |
222 | 270 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
223 | 270 | equemene | |
224 | 270 | equemene | TimeIn=time.time() |
225 | 270 | equemene | # Copy from Device to Host
|
226 | 270 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
227 | 270 | equemene | Elapsed=time.time()-TimeIn |
228 | 270 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
229 | 270 | equemene | |
230 | 270 | equemene | return(res_np)
|
231 | 270 | equemene | |
232 | 270 | equemene | import sys |
233 | 270 | equemene | import time |
234 | 270 | equemene | |
235 | 270 | equemene | if __name__=='__main__': |
236 | 270 | equemene | |
237 | 270 | equemene | # Size of input vectors definition based on stdin
|
238 | 270 | equemene | import sys |
239 | 270 | equemene | try:
|
240 | 270 | equemene | SIZE=int(sys.argv[1]) |
241 | 270 | equemene | print("Size of vectors set to %i" % SIZE)
|
242 | 270 | equemene | except:
|
243 | 270 | equemene | SIZE=50000
|
244 | 270 | equemene | print("Size of vectors set to default size %i" % SIZE)
|
245 | 270 | equemene | |
246 | 270 | equemene | # a_np = np.random.rand(SIZE).astype(np.float32)
|
247 | 270 | equemene | # b_np = np.random.rand(SIZE).astype(np.float32)
|
248 | 270 | equemene | |
249 | 270 | equemene | a_np = np.ones(SIZE).astype(np.float32) |
250 | 270 | equemene | b_np = np.ones(SIZE).astype(np.float32) |
251 | 270 | equemene | |
252 | 270 | equemene | # Native Implementation
|
253 | 270 | equemene | TimeIn=time.time() |
254 | 270 | equemene | # res_np=NativeAddition(a_np,b_np)
|
255 | 270 | equemene | # res_np=NativeSillyAddition(a_np,b_np)
|
256 | 270 | equemene | c_np,d_np=MyDFT(a_np,b_np) |
257 | 270 | equemene | NativeElapsed=time.time()-TimeIn |
258 | 270 | equemene | NativeRate=int(SIZE/NativeElapsed)
|
259 | 270 | equemene | print("NativeRate: %i" % NativeRate)
|
260 | 270 | equemene | |
261 | 270 | equemene | print(c_np,d_np) |
262 | 270 | equemene | |
263 | 270 | equemene | # # OpenCL Implementation
|
264 | 270 | equemene | # TimeIn=time.time()
|
265 | 270 | equemene | # # res_cl=OpenCLAddition(a_np,b_np)
|
266 | 270 | equemene | # res_cl=OpenCLSillyAddition(a_np,b_np)
|
267 | 270 | equemene | # OpenCLElapsed=time.time()-TimeIn
|
268 | 270 | equemene | # OpenCLRate=int(SIZE/OpenCLElapsed)
|
269 | 270 | equemene | # print("OpenCLRate: %i" % OpenCLRate)
|
270 | 270 | equemene | |
271 | 270 | equemene | # # CUDA Implementation
|
272 | 270 | equemene | # TimeIn=time.time()
|
273 | 270 | equemene | # # res_cuda=CUDAAddition(a_np,b_np)
|
274 | 270 | equemene | # res_cuda=CUDASillyAddition(a_np,b_np)
|
275 | 270 | equemene | # CUDAElapsed=time.time()-TimeIn
|
276 | 270 | equemene | # CUDARate=int(SIZE/CUDAElapsed)
|
277 | 270 | equemene | # print("CUDARate: %i" % CUDARate)
|
278 | 270 | equemene | |
279 | 270 | equemene | # print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
|
280 | 270 | equemene | # print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
|
281 | 270 | equemene | |
282 | 270 | equemene | # # Check on OpenCL with Numpy:
|
283 | 270 | equemene | # print(res_cl - res_np)
|
284 | 270 | equemene | # print(np.linalg.norm(res_cl - res_np))
|
285 | 270 | equemene | # try:
|
286 | 270 | equemene | # assert np.allclose(res_np, res_cl)
|
287 | 270 | equemene | # except:
|
288 | 270 | equemene | # print("Results between Native & OpenCL seem to be too different!")
|
289 | 270 | equemene | |
290 | 270 | equemene | # # Check on CUDA with Numpy:
|
291 | 270 | equemene | # print(res_cuda - res_np)
|
292 | 270 | equemene | # print(np.linalg.norm(res_cuda - res_np))
|
293 | 270 | equemene | # try:
|
294 | 270 | equemene | # assert np.allclose(res_np, res_cuda)
|
295 | 270 | equemene | # except:
|
296 | 270 | equemene | # print("Results between Native & CUDA seem to be too different!")
|
297 | 270 | equemene |