Statistiques
| Révision :

root / ETSN / MyDFT_1.py @ 270

Historique | Voir | Annoter | Télécharger (8,81 ko)

1 270 equemene
#!/usr/bin/env python3
2 270 equemene
3 270 equemene
import numpy as np
4 270 equemene
import pyopencl as cl
5 270 equemene
6 270 equemene
# piling 16 arithmetical functions
7 270 equemene
def MySillyFunction(x):
8 270 equemene
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
9 270 equemene
10 270 equemene
# Native Operation under Numpy (for prototyping & tests
11 270 equemene
def NativeAddition(a_np,b_np):
12 270 equemene
    return(a_np+b_np)
13 270 equemene
14 270 equemene
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
15 270 equemene
def NativeSillyAddition(a_np,b_np):
16 270 equemene
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
17 270 equemene
18 270 equemene
# Naive Discrete Fourier Transform
19 270 equemene
def MyDFT(x,y):
20 270 equemene
    from numpy import pi,cos,sin
21 270 equemene
    size=x.shape[0]
22 270 equemene
    X=np.zeros(size).astype(np.float32)
23 270 equemene
    Y=np.zeros(size).astype(np.float32)
24 270 equemene
    for i in range(size):
25 270 equemene
        for j in range(size):
26 270 equemene
            X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size)
27 270 equemene
            Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size)
28 270 equemene
    return(X,Y)
29 270 equemene
30 270 equemene
# CUDA complete operation
31 270 equemene
def CUDAAddition(a_np,b_np):
32 270 equemene
    import pycuda.autoinit
33 270 equemene
    import pycuda.driver as drv
34 270 equemene
    import numpy
35 270 equemene
36 270 equemene
    from pycuda.compiler import SourceModule
37 270 equemene
    mod = SourceModule("""
38 270 equemene
    __global__ void sum(float *dest, float *a, float *b)
39 270 equemene
{
40 270 equemene
  // const int i = threadIdx.x;
41 270 equemene
  const int i = blockIdx.x;
42 270 equemene
  dest[i] = a[i] + b[i];
43 270 equemene
}
44 270 equemene
""")
45 270 equemene
46 270 equemene
    # sum = mod.get_function("sum")
47 270 equemene
    sum = mod.get_function("sum")
48 270 equemene
49 270 equemene
    res_np = numpy.zeros_like(a_np)
50 270 equemene
    sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
51 270 equemene
        block=(1,1,1), grid=(a_np.size,1))
52 270 equemene
    return(res_np)
53 270 equemene
54 270 equemene
# CUDA Silly complete operation
55 270 equemene
def CUDASillyAddition(a_np,b_np):
56 270 equemene
    import pycuda.autoinit
57 270 equemene
    import pycuda.driver as drv
58 270 equemene
    import numpy
59 270 equemene
60 270 equemene
    from pycuda.compiler import SourceModule
61 270 equemene
    TimeIn=time.time()
62 270 equemene
    mod = SourceModule("""
63 270 equemene
__device__ float MySillyFunction(float x)
64 270 equemene
{
65 270 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
66 270 equemene
}
67 270 equemene

68 270 equemene
__global__ void sillysum(float *dest, float *a, float *b)
69 270 equemene
{
70 270 equemene
  const int i = blockIdx.x;
71 270 equemene
  dest[i] = MySillyFunction(a[i]) + MySillyFunction(b[i]);
72 270 equemene
}
73 270 equemene
""")
74 270 equemene
    Elapsed=time.time()-TimeIn
75 270 equemene
    print("Definition of kernel : %.3f" % Elapsed)
76 270 equemene
77 270 equemene
    TimeIn=time.time()
78 270 equemene
    # sum = mod.get_function("sum")
79 270 equemene
    sillysum = mod.get_function("sillysum")
80 270 equemene
    Elapsed=time.time()-TimeIn
81 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
82 270 equemene
83 270 equemene
    TimeIn=time.time()
84 270 equemene
    res_np = numpy.zeros_like(a_np)
85 270 equemene
    Elapsed=time.time()-TimeIn
86 270 equemene
    print("Allocation on Host for results : %.3f" % Elapsed)
87 270 equemene
88 270 equemene
    TimeIn=time.time()
89 270 equemene
    sillysum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
90 270 equemene
             block=(1,1,1), grid=(a_np.size,1))
91 270 equemene
    Elapsed=time.time()-TimeIn
92 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
93 270 equemene
    return(res_np)
94 270 equemene
95 270 equemene
# OpenCL complete operation
96 270 equemene
def OpenCLAddition(a_np,b_np):
97 270 equemene
98 270 equemene
    # Context creation
99 270 equemene
    ctx = cl.create_some_context()
100 270 equemene
    # Every process is stored in a queue
101 270 equemene
    queue = cl.CommandQueue(ctx)
102 270 equemene
103 270 equemene
    TimeIn=time.time()
104 270 equemene
    # Copy from Host to Device using pointers
105 270 equemene
    mf = cl.mem_flags
106 270 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
107 270 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
108 270 equemene
    Elapsed=time.time()-TimeIn
109 270 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
110 270 equemene
111 270 equemene
    TimeIn=time.time()
112 270 equemene
    # Definition of kernel under OpenCL
113 270 equemene
    prg = cl.Program(ctx, """
114 270 equemene
__kernel void sum(
115 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
116 270 equemene
{
117 270 equemene
  int gid = get_global_id(0);
118 270 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
119 270 equemene
}
120 270 equemene
""").build()
121 270 equemene
    Elapsed=time.time()-TimeIn
122 270 equemene
    print("Building kernels : %.3f" % Elapsed)
123 270 equemene
124 270 equemene
    TimeIn=time.time()
125 270 equemene
    # Memory allocation on Device for result
126 270 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
127 270 equemene
    Elapsed=time.time()-TimeIn
128 270 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
129 270 equemene
130 270 equemene
    TimeIn=time.time()
131 270 equemene
    # Synthesis of function "sum" inside Kernel Sources
132 270 equemene
    knl = prg.sum  # Use this Kernel object for repeated calls
133 270 equemene
    Elapsed=time.time()-TimeIn
134 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
135 270 equemene
136 270 equemene
    TimeIn=time.time()
137 270 equemene
    # Call of kernel previously defined
138 270 equemene
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
139 270 equemene
    Elapsed=time.time()-TimeIn
140 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
141 270 equemene
142 270 equemene
    TimeIn=time.time()
143 270 equemene
    # Creation of vector for result with same size as input vectors
144 270 equemene
    res_np = np.empty_like(a_np)
145 270 equemene
    Elapsed=time.time()-TimeIn
146 270 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
147 270 equemene
148 270 equemene
    TimeIn=time.time()
149 270 equemene
    # Copy from Device to Host
150 270 equemene
    cl.enqueue_copy(queue, res_np, res_g)
151 270 equemene
    Elapsed=time.time()-TimeIn
152 270 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
153 270 equemene
154 270 equemene
    return(res_np)
155 270 equemene
156 270 equemene
# OpenCL complete operation
157 270 equemene
def OpenCLSillyAddition(a_np,b_np):
158 270 equemene
159 270 equemene
    # Context creation
160 270 equemene
    ctx = cl.create_some_context()
161 270 equemene
    # Every process is stored in a queue
162 270 equemene
    queue = cl.CommandQueue(ctx)
163 270 equemene
164 270 equemene
    TimeIn=time.time()
165 270 equemene
    # Copy from Host to Device using pointers
166 270 equemene
    mf = cl.mem_flags
167 270 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
168 270 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
169 270 equemene
    Elapsed=time.time()-TimeIn
170 270 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
171 270 equemene
172 270 equemene
    TimeIn=time.time()
173 270 equemene
    # Definition of kernel under OpenCL
174 270 equemene
    prg = cl.Program(ctx, """
175 270 equemene

176 270 equemene
float MySillyFunction(float x)
177 270 equemene
{
178 270 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
179 270 equemene
}
180 270 equemene

181 270 equemene
__kernel void sillysum(
182 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
183 270 equemene
{
184 270 equemene
  int gid = get_global_id(0);
185 270 equemene
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
186 270 equemene
}
187 270 equemene

188 270 equemene
__kernel void sum(
189 270 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
190 270 equemene
{
191 270 equemene
  int gid = get_global_id(0);
192 270 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
193 270 equemene
}
194 270 equemene
""").build()
195 270 equemene
    Elapsed=time.time()-TimeIn
196 270 equemene
    print("Building kernels : %.3f" % Elapsed)
197 270 equemene
198 270 equemene
    TimeIn=time.time()
199 270 equemene
    # Memory allocation on Device for result
200 270 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
201 270 equemene
    Elapsed=time.time()-TimeIn
202 270 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
203 270 equemene
204 270 equemene
    TimeIn=time.time()
205 270 equemene
    # Synthesis of function "sillysum" inside Kernel Sources
206 270 equemene
    knl = prg.sillysum  # Use this Kernel object for repeated calls
207 270 equemene
    Elapsed=time.time()-TimeIn
208 270 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
209 270 equemene
210 270 equemene
    TimeIn=time.time()
211 270 equemene
    # Call of kernel previously defined
212 270 equemene
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
213 270 equemene
    #
214 270 equemene
    CallCL.wait()
215 270 equemene
    Elapsed=time.time()-TimeIn
216 270 equemene
    print("Execution of kernel : %.3f" % Elapsed)
217 270 equemene
218 270 equemene
    TimeIn=time.time()
219 270 equemene
    # Creation of vector for result with same size as input vectors
220 270 equemene
    res_np = np.empty_like(a_np)
221 270 equemene
    Elapsed=time.time()-TimeIn
222 270 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
223 270 equemene
224 270 equemene
    TimeIn=time.time()
225 270 equemene
    # Copy from Device to Host
226 270 equemene
    cl.enqueue_copy(queue, res_np, res_g)
227 270 equemene
    Elapsed=time.time()-TimeIn
228 270 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
229 270 equemene
230 270 equemene
    return(res_np)
231 270 equemene
232 270 equemene
import sys
233 270 equemene
import time
234 270 equemene
235 270 equemene
if __name__=='__main__':
236 270 equemene
237 270 equemene
    # Size of input vectors definition based on stdin
238 270 equemene
    import sys
239 270 equemene
    try:
240 270 equemene
        SIZE=int(sys.argv[1])
241 270 equemene
        print("Size of vectors set to %i" % SIZE)
242 270 equemene
    except:
243 270 equemene
        SIZE=50000
244 270 equemene
        print("Size of vectors set to default size %i" % SIZE)
245 270 equemene
246 270 equemene
    # a_np = np.random.rand(SIZE).astype(np.float32)
247 270 equemene
    # b_np = np.random.rand(SIZE).astype(np.float32)
248 270 equemene
249 270 equemene
    a_np = np.ones(SIZE).astype(np.float32)
250 270 equemene
    b_np = np.ones(SIZE).astype(np.float32)
251 270 equemene
252 270 equemene
    # Native Implementation
253 270 equemene
    TimeIn=time.time()
254 270 equemene
    # res_np=NativeAddition(a_np,b_np)
255 270 equemene
    # res_np=NativeSillyAddition(a_np,b_np)
256 270 equemene
    c_np,d_np=MyDFT(a_np,b_np)
257 270 equemene
    NativeElapsed=time.time()-TimeIn
258 270 equemene
    NativeRate=int(SIZE/NativeElapsed)
259 270 equemene
    print("NativeRate: %i" % NativeRate)
260 270 equemene
261 270 equemene
    print(c_np,d_np)
262 270 equemene
263 270 equemene
   #  # OpenCL Implementation
264 270 equemene
   #  TimeIn=time.time()
265 270 equemene
   #  # res_cl=OpenCLAddition(a_np,b_np)
266 270 equemene
   #  res_cl=OpenCLSillyAddition(a_np,b_np)
267 270 equemene
   #  OpenCLElapsed=time.time()-TimeIn
268 270 equemene
   #  OpenCLRate=int(SIZE/OpenCLElapsed)
269 270 equemene
   #  print("OpenCLRate: %i" % OpenCLRate)
270 270 equemene
271 270 equemene
   #  # CUDA Implementation
272 270 equemene
   #  TimeIn=time.time()
273 270 equemene
   #  # res_cuda=CUDAAddition(a_np,b_np)
274 270 equemene
   #  res_cuda=CUDASillyAddition(a_np,b_np)
275 270 equemene
   #  CUDAElapsed=time.time()-TimeIn
276 270 equemene
   #  CUDARate=int(SIZE/CUDAElapsed)
277 270 equemene
   #  print("CUDARate: %i" % CUDARate)
278 270 equemene
279 270 equemene
   #  print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
280 270 equemene
   #  print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
281 270 equemene
282 270 equemene
   # # Check on OpenCL with Numpy:
283 270 equemene
   #  print(res_cl - res_np)
284 270 equemene
   #  print(np.linalg.norm(res_cl - res_np))
285 270 equemene
   #  try:
286 270 equemene
   #      assert np.allclose(res_np, res_cl)
287 270 equemene
   #  except:
288 270 equemene
   #      print("Results between Native & OpenCL seem to be too different!")
289 270 equemene
290 270 equemene
   #  # Check on CUDA with Numpy:
291 270 equemene
   #  print(res_cuda - res_np)
292 270 equemene
   #  print(np.linalg.norm(res_cuda - res_np))
293 270 equemene
   #  try:
294 270 equemene
   #      assert np.allclose(res_np, res_cuda)
295 270 equemene
   #  except:
296 270 equemene
   #      print("Results between Native & CUDA seem to be too different!")
297 270 equemene