root / TrouNoir / TrouNoir.py @ 222
Historique | Voir | Annoter | Télécharger (39,17 ko)
1 |
#!/usr/bin/env python
|
---|---|
2 |
#
|
3 |
# TrouNoir model using PyOpenCL
|
4 |
#
|
5 |
# CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr>
|
6 |
#
|
7 |
# Thanks to Andreas Klockner for PyOpenCL:
|
8 |
# http://mathema.tician.de/software/pyopencl
|
9 |
#
|
10 |
# Original code programmed in Fortran 77 in mars 1994
|
11 |
# for Practical Work of Numerical Simulation
|
12 |
# DEA (old Master2) in astrophysics and spatial techniques in Meudon
|
13 |
# by Herve Aussel & Emmanuel Quemener
|
14 |
#
|
15 |
# Conversion in C done by Emmanuel Quemener in august 1997
|
16 |
# GPUfication in OpenCL under Python in july 2019
|
17 |
# GPUfication in CUDA under Python in august 2019
|
18 |
#
|
19 |
# Thanks to :
|
20 |
#
|
21 |
# - Herve Aussel for his part of code of black body spectrum
|
22 |
# - Didier Pelat for his help to perform this work
|
23 |
# - Jean-Pierre Luminet for his article published in 1979
|
24 |
# - Numerical Recipies for Runge Kutta recipies
|
25 |
# - Luc Blanchet for his disponibility about my questions in General Relativity
|
26 |
# - Pierre Lena for his passion about science and vulgarisation
|
27 |
|
28 |
import pyopencl as cl |
29 |
import numpy |
30 |
import time,string |
31 |
from numpy.random import randint as nprnd |
32 |
import sys |
33 |
import getopt |
34 |
import matplotlib.pyplot as plt |
35 |
from socket import gethostname |
36 |
|
37 |
def DictionariesAPI(): |
38 |
PhysicsList={'Einstein':0,'Newton':1} |
39 |
return(PhysicsList)
|
40 |
|
41 |
BlobOpenCL= """
|
42 |
|
43 |
#define PI (float)3.14159265359
|
44 |
#define nbr 256
|
45 |
|
46 |
#define EINSTEIN 0
|
47 |
#define NEWTON 1
|
48 |
|
49 |
#define TRACKPOINTS 2048
|
50 |
|
51 |
float atanp(float x,float y)
|
52 |
{
|
53 |
float angle;
|
54 |
|
55 |
angle=atan2(y,x);
|
56 |
|
57 |
if (angle<0.e0f)
|
58 |
{
|
59 |
angle+=(float)2.e0f*PI;
|
60 |
}
|
61 |
|
62 |
return angle;
|
63 |
}
|
64 |
|
65 |
float f(float v)
|
66 |
{
|
67 |
return v;
|
68 |
}
|
69 |
|
70 |
#if PHYSICS == NEWTON
|
71 |
float g(float u,float m,float b)
|
72 |
{
|
73 |
return (-u);
|
74 |
}
|
75 |
#else
|
76 |
float g(float u,float m,float b)
|
77 |
{
|
78 |
return (3.e0f*m/b*pow(u,2)-u);
|
79 |
}
|
80 |
#endif
|
81 |
|
82 |
void calcul(float *us,float *vs,float up,float vp,
|
83 |
float h,float m,float b)
|
84 |
{
|
85 |
float c0,c1,c2,c3,d0,d1,d2,d3;
|
86 |
|
87 |
c0=h*f(vp);
|
88 |
c1=h*f(vp+c0/2.);
|
89 |
c2=h*f(vp+c1/2.);
|
90 |
c3=h*f(vp+c2);
|
91 |
d0=h*g(up,m,b);
|
92 |
d1=h*g(up+d0/2.,m,b);
|
93 |
d2=h*g(up+d1/2.,m,b);
|
94 |
d3=h*g(up+d2,m,b);
|
95 |
|
96 |
*us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
97 |
*vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
98 |
}
|
99 |
|
100 |
void rungekutta(float *ps,float *us,float *vs,
|
101 |
float pp,float up,float vp,
|
102 |
float h,float m,float b)
|
103 |
{
|
104 |
calcul(us,vs,up,vp,h,m,b);
|
105 |
*ps=pp+h;
|
106 |
}
|
107 |
|
108 |
float decalage_spectral(float r,float b,float phi,
|
109 |
float tho,float m)
|
110 |
{
|
111 |
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
112 |
}
|
113 |
|
114 |
float spectre(float rf,int q,float b,float db,
|
115 |
float h,float r,float m,float bss)
|
116 |
{
|
117 |
float flx;
|
118 |
|
119 |
// flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
120 |
flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
|
121 |
return(flx);
|
122 |
}
|
123 |
|
124 |
float spectre_cn(float rf32,float b32,float db32,
|
125 |
float h32,float r32,float m32,float bss32)
|
126 |
{
|
127 |
|
128 |
#define MYFLOAT float
|
129 |
|
130 |
MYFLOAT rf=(MYFLOAT)(rf32);
|
131 |
MYFLOAT b=(MYFLOAT)(b32);
|
132 |
MYFLOAT db=(MYFLOAT)(db32);
|
133 |
MYFLOAT h=(MYFLOAT)(h32);
|
134 |
MYFLOAT r=(MYFLOAT)(r32);
|
135 |
MYFLOAT m=(MYFLOAT)(m32);
|
136 |
MYFLOAT bss=(MYFLOAT)(bss32);
|
137 |
|
138 |
MYFLOAT flx;
|
139 |
MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
140 |
int fi,posfreq;
|
141 |
|
142 |
#define planck 6.62e-34
|
143 |
#define k 1.38e-23
|
144 |
#define c2 9.e16
|
145 |
#define temp 3.e7
|
146 |
#define m_point 1.
|
147 |
|
148 |
#define lplanck (log(6.62)-34.*log(10.))
|
149 |
#define lk (log(1.38)-23.*log(10.))
|
150 |
#define lc2 (log(9.)+16.*log(10.))
|
151 |
|
152 |
MYFLOAT v=1.-3./r;
|
153 |
|
154 |
qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
155 |
|
156 |
temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
157 |
|
158 |
flux_int=0.;
|
159 |
flx=0.;
|
160 |
|
161 |
for (fi=0;fi<nbr;fi++)
|
162 |
{
|
163 |
nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
164 |
nu_rec=nu_em*rf;
|
165 |
posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
166 |
if ((posfreq>0)&&(posfreq<nbr))
|
167 |
{
|
168 |
// Initial version
|
169 |
// flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
170 |
// Version with log used
|
171 |
//flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
172 |
// flux_int*=pow(rf,3)*b*db*h;
|
173 |
//flux_int*=exp(3.*log(rf))*b*db*h;
|
174 |
flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
175 |
|
176 |
flx+=flux_int;
|
177 |
}
|
178 |
}
|
179 |
|
180 |
return((float)(flx));
|
181 |
}
|
182 |
|
183 |
void impact(float phi,float r,float b,float tho,float m,
|
184 |
float *zp,float *fp,
|
185 |
int q,float db,
|
186 |
float h,int raie)
|
187 |
{
|
188 |
float flx,rf,bss;
|
189 |
|
190 |
rf=decalage_spectral(r,b,phi,tho,m);
|
191 |
|
192 |
if (raie==0)
|
193 |
{
|
194 |
bss=1.e19;
|
195 |
flx=spectre_cn(rf,b,db,h,r,m,bss);
|
196 |
}
|
197 |
else
|
198 |
{
|
199 |
bss=2.;
|
200 |
flx=spectre(rf,q,b,db,h,r,m,bss);
|
201 |
}
|
202 |
|
203 |
*zp=1./rf;
|
204 |
*fp=flx;
|
205 |
|
206 |
}
|
207 |
|
208 |
__kernel void EachPixel(__global float *zImage,__global float *fImage,
|
209 |
float Mass,float InternalRadius,
|
210 |
float ExternalRadius,float Angle,
|
211 |
int Line)
|
212 |
{
|
213 |
uint xi=(uint)get_global_id(0);
|
214 |
uint yi=(uint)get_global_id(1);
|
215 |
uint sizex=(uint)get_global_size(0);
|
216 |
uint sizey=(uint)get_global_size(1);
|
217 |
|
218 |
// Perform trajectory for each pixel, exit on hit
|
219 |
|
220 |
private float m,rs,ri,re,tho;
|
221 |
private int q,raie;
|
222 |
|
223 |
m=Mass;
|
224 |
rs=2.*m;
|
225 |
ri=InternalRadius;
|
226 |
re=ExternalRadius;
|
227 |
tho=Angle;
|
228 |
q=-2;
|
229 |
raie=Line;
|
230 |
|
231 |
private float d,bmx,db,b,h;
|
232 |
private float rp0,rpp,rps;
|
233 |
private float phi,thi,phd,php,nr,r;
|
234 |
private int nh;
|
235 |
private float zp,fp;
|
236 |
|
237 |
// Autosize for image
|
238 |
bmx=1.25*re;
|
239 |
b=0.;
|
240 |
|
241 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
242 |
|
243 |
// set origin as center of image
|
244 |
float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
245 |
float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
246 |
// angle extracted from cylindric symmetry
|
247 |
phi=atanp(x,y);
|
248 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
249 |
|
250 |
float up,vp,pp,us,vs,ps;
|
251 |
|
252 |
// impact parameter
|
253 |
b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
254 |
// step of impact parameter;
|
255 |
db=bmx/(float)(sizex);
|
256 |
|
257 |
up=0.;
|
258 |
vp=1.;
|
259 |
|
260 |
pp=0.;
|
261 |
nh=0;
|
262 |
|
263 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
264 |
|
265 |
rps=fabs(b/us);
|
266 |
rp0=rps;
|
267 |
|
268 |
int ExitOnImpact=0;
|
269 |
|
270 |
do
|
271 |
{
|
272 |
nh++;
|
273 |
pp=ps;
|
274 |
up=us;
|
275 |
vp=vs;
|
276 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
277 |
rpp=rps;
|
278 |
rps=fabs(b/us);
|
279 |
ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;
|
280 |
|
281 |
} while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0));
|
282 |
|
283 |
if (ExitOnImpact==1) {
|
284 |
impact(phi,rpp,b,tho,m,&zp,&fp,q,db,h,raie);
|
285 |
}
|
286 |
else
|
287 |
{
|
288 |
zp=0.;
|
289 |
fp=0.;
|
290 |
}
|
291 |
|
292 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
293 |
|
294 |
zImage[yi+sizex*xi]=(float)zp;
|
295 |
fImage[yi+sizex*xi]=(float)fp;
|
296 |
}
|
297 |
|
298 |
__kernel void Pixel(__global float *zImage,__global float *fImage,
|
299 |
__global float *Trajectories,__global int *IdLast,
|
300 |
uint ImpactParameter,uint TrackPoints,
|
301 |
float Mass,float InternalRadius,
|
302 |
float ExternalRadius,float Angle,
|
303 |
int Line)
|
304 |
{
|
305 |
uint xi=(uint)get_global_id(0);
|
306 |
uint yi=(uint)get_global_id(1);
|
307 |
uint sizex=(uint)get_global_size(0);
|
308 |
uint sizey=(uint)get_global_size(1);
|
309 |
|
310 |
// Perform trajectory for each pixel
|
311 |
|
312 |
float m,rs,ri,re,tho;
|
313 |
int q,raie;
|
314 |
|
315 |
m=Mass;
|
316 |
rs=2.*m;
|
317 |
ri=InternalRadius;
|
318 |
re=ExternalRadius;
|
319 |
tho=Angle;
|
320 |
q=-2;
|
321 |
raie=Line;
|
322 |
|
323 |
float d,bmx,db,b,h;
|
324 |
float phi,thi,phd,php,nr,r;
|
325 |
int nh;
|
326 |
float zp=0,fp=0;
|
327 |
|
328 |
// Autosize for image, 25% greater than external radius
|
329 |
bmx=1.25*re;
|
330 |
|
331 |
// Angular step of integration
|
332 |
h=4.e0f*PI/(float)TrackPoints;
|
333 |
|
334 |
// Step of Impact Parameter
|
335 |
db=bmx/(2.e0*(float)ImpactParameter);
|
336 |
|
337 |
// set origin as center of image
|
338 |
float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
339 |
float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
340 |
|
341 |
// angle extracted from cylindric symmetry
|
342 |
phi=atanp(x,y);
|
343 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
344 |
|
345 |
// Real Impact Parameter
|
346 |
b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
347 |
|
348 |
// Integer Impact Parameter
|
349 |
uint bi=(uint)sqrt(x*x+y*y);
|
350 |
|
351 |
int HalfLap=0,ExitOnImpact=0,ni;
|
352 |
|
353 |
if (bi<ImpactParameter)
|
354 |
{
|
355 |
do
|
356 |
{
|
357 |
php=phd+(float)HalfLap*PI;
|
358 |
nr=php/h;
|
359 |
ni=(int)nr;
|
360 |
|
361 |
if (ni<IdLast[bi])
|
362 |
{
|
363 |
r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
364 |
}
|
365 |
else
|
366 |
{
|
367 |
r=Trajectories[bi*TrackPoints+ni];
|
368 |
}
|
369 |
|
370 |
if ((r<=re)&&(r>=ri))
|
371 |
{
|
372 |
ExitOnImpact=1;
|
373 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
374 |
}
|
375 |
|
376 |
HalfLap++;
|
377 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
378 |
|
379 |
}
|
380 |
|
381 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
382 |
|
383 |
zImage[yi+sizex*xi]=zp;
|
384 |
fImage[yi+sizex*xi]=fp;
|
385 |
}
|
386 |
|
387 |
__kernel void Circle(__global float *Trajectories,__global int *IdLast,
|
388 |
__global float *zImage,__global float *fImage,
|
389 |
int TrackPoints,
|
390 |
float Mass,float InternalRadius,
|
391 |
float ExternalRadius,float Angle,
|
392 |
int Line)
|
393 |
{
|
394 |
// Integer Impact Parameter ID
|
395 |
int bi=get_global_id(0);
|
396 |
// Integer points on circle
|
397 |
int i=get_global_id(1);
|
398 |
// Integer Impact Parameter Size (half of image)
|
399 |
int bmaxi=get_global_size(0);
|
400 |
// Integer Points on circle
|
401 |
int imx=get_global_size(1);
|
402 |
|
403 |
// Perform trajectory for each pixel
|
404 |
|
405 |
float m,rs,ri,re,tho;
|
406 |
int q,raie;
|
407 |
|
408 |
m=Mass;
|
409 |
rs=2.*m;
|
410 |
ri=InternalRadius;
|
411 |
re=ExternalRadius;
|
412 |
tho=Angle;
|
413 |
raie=Line;
|
414 |
|
415 |
float bmx,db,b,h;
|
416 |
float phi,thi,phd;
|
417 |
int nh;
|
418 |
float zp=0,fp=0;
|
419 |
|
420 |
// Autosize for image
|
421 |
bmx=1.25*re;
|
422 |
|
423 |
// Angular step of integration
|
424 |
h=4.e0f*PI/(float)TrackPoints;
|
425 |
|
426 |
// impact parameter
|
427 |
b=(float)bi/(float)bmaxi*bmx;
|
428 |
db=bmx/(2.e0*(float)bmaxi);
|
429 |
|
430 |
phi=2.*PI/(float)imx*(float)i;
|
431 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
432 |
int yi=(int)((float)bi*sin(phi))+bmaxi;
|
433 |
int xi=(int)((float)bi*cos(phi))+bmaxi;
|
434 |
|
435 |
int HalfLap=0,ExitOnImpact=0,ni;
|
436 |
float php,nr,r;
|
437 |
|
438 |
do
|
439 |
{
|
440 |
php=phd+(float)HalfLap*PI;
|
441 |
nr=php/h;
|
442 |
ni=(int)nr;
|
443 |
|
444 |
if (ni<IdLast[bi])
|
445 |
{
|
446 |
r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
447 |
}
|
448 |
else
|
449 |
{
|
450 |
r=Trajectories[bi*TrackPoints+ni];
|
451 |
}
|
452 |
|
453 |
if ((r<=re)&&(r>=ri))
|
454 |
{
|
455 |
ExitOnImpact=1;
|
456 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
457 |
}
|
458 |
|
459 |
HalfLap++;
|
460 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
461 |
|
462 |
zImage[yi+2*bmaxi*xi]=zp;
|
463 |
fImage[yi+2*bmaxi*xi]=fp;
|
464 |
|
465 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
466 |
|
467 |
}
|
468 |
|
469 |
__kernel void Trajectory(__global float *Trajectories,
|
470 |
__global int *IdLast,int TrackPoints,
|
471 |
float Mass,float InternalRadius,
|
472 |
float ExternalRadius,float Angle,
|
473 |
int Line)
|
474 |
{
|
475 |
// Integer Impact Parameter ID
|
476 |
int bi=get_global_id(0);
|
477 |
// Integer Impact Parameter Size (half of image)
|
478 |
int bmaxi=get_global_size(0);
|
479 |
|
480 |
// Perform trajectory for each pixel
|
481 |
|
482 |
float m,rs,ri,re,tho;
|
483 |
int raie,q;
|
484 |
|
485 |
m=Mass;
|
486 |
rs=2.*m;
|
487 |
ri=InternalRadius;
|
488 |
re=ExternalRadius;
|
489 |
tho=Angle;
|
490 |
q=-2;
|
491 |
raie=Line;
|
492 |
|
493 |
float d,bmx,db,b,h;
|
494 |
float phi,thi,phd,php,nr,r;
|
495 |
int nh;
|
496 |
float zp,fp;
|
497 |
|
498 |
// Autosize for image
|
499 |
bmx=1.25*re;
|
500 |
|
501 |
// Angular step of integration
|
502 |
h=4.e0f*PI/(float)TrackPoints;
|
503 |
|
504 |
// impact parameter
|
505 |
b=(float)bi/(float)bmaxi*bmx;
|
506 |
|
507 |
float up,vp,pp,us,vs,ps;
|
508 |
|
509 |
up=0.;
|
510 |
vp=1.;
|
511 |
|
512 |
pp=0.;
|
513 |
nh=0;
|
514 |
|
515 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
516 |
|
517 |
// b versus us
|
518 |
float bvus=fabs(b/us);
|
519 |
float bvus0=bvus;
|
520 |
Trajectories[bi*TrackPoints+nh]=bvus;
|
521 |
|
522 |
do
|
523 |
{
|
524 |
nh++;
|
525 |
pp=ps;
|
526 |
up=us;
|
527 |
vp=vs;
|
528 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
529 |
bvus=fabs(b/us);
|
530 |
Trajectories[bi*TrackPoints+nh]=bvus;
|
531 |
|
532 |
} while ((bvus>=rs)&&(bvus<=bvus0));
|
533 |
|
534 |
IdLast[bi]=nh;
|
535 |
|
536 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
537 |
|
538 |
}
|
539 |
"""
|
540 |
|
541 |
def KernelCodeCuda(): |
542 |
BlobCUDA= """
|
543 |
|
544 |
#define PI (float)3.14159265359
|
545 |
#define nbr 256
|
546 |
|
547 |
#define EINSTEIN 0
|
548 |
#define NEWTON 1
|
549 |
|
550 |
#define TRACKPOINTS 2048
|
551 |
|
552 |
__device__ float nothing(float x)
|
553 |
{
|
554 |
return(x);
|
555 |
}
|
556 |
|
557 |
__device__ float atanp(float x,float y)
|
558 |
{
|
559 |
float angle;
|
560 |
|
561 |
angle=atan2(y,x);
|
562 |
|
563 |
if (angle<0.e0f)
|
564 |
{
|
565 |
angle+=(float)2.e0f*PI;
|
566 |
}
|
567 |
|
568 |
return(angle);
|
569 |
}
|
570 |
|
571 |
__device__ float f(float v)
|
572 |
{
|
573 |
return(v);
|
574 |
}
|
575 |
|
576 |
#if PHYSICS == NEWTON
|
577 |
__device__ float g(float u,float m,float b)
|
578 |
{
|
579 |
return (-u);
|
580 |
}
|
581 |
#else
|
582 |
__device__ float g(float u,float m,float b)
|
583 |
{
|
584 |
return (3.e0f*m/b*pow(u,2)-u);
|
585 |
}
|
586 |
#endif
|
587 |
|
588 |
__device__ void calcul(float *us,float *vs,float up,float vp,
|
589 |
float h,float m,float b)
|
590 |
{
|
591 |
float c0,c1,c2,c3,d0,d1,d2,d3;
|
592 |
|
593 |
c0=h*f(vp);
|
594 |
c1=h*f(vp+c0/2.);
|
595 |
c2=h*f(vp+c1/2.);
|
596 |
c3=h*f(vp+c2);
|
597 |
d0=h*g(up,m,b);
|
598 |
d1=h*g(up+d0/2.,m,b);
|
599 |
d2=h*g(up+d1/2.,m,b);
|
600 |
d3=h*g(up+d2,m,b);
|
601 |
|
602 |
*us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
603 |
*vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
604 |
}
|
605 |
|
606 |
__device__ void rungekutta(float *ps,float *us,float *vs,
|
607 |
float pp,float up,float vp,
|
608 |
float h,float m,float b)
|
609 |
{
|
610 |
calcul(us,vs,up,vp,h,m,b);
|
611 |
*ps=pp+h;
|
612 |
}
|
613 |
|
614 |
__device__ float decalage_spectral(float r,float b,float phi,
|
615 |
float tho,float m)
|
616 |
{
|
617 |
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
618 |
}
|
619 |
|
620 |
__device__ float spectre(float rf,int q,float b,float db,
|
621 |
float h,float r,float m,float bss)
|
622 |
{
|
623 |
float flx;
|
624 |
|
625 |
// flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
626 |
flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
|
627 |
return(flx);
|
628 |
}
|
629 |
|
630 |
__device__ float spectre_cn(float rf32,float b32,float db32,
|
631 |
float h32,float r32,float m32,float bss32)
|
632 |
{
|
633 |
|
634 |
#define MYFLOAT float
|
635 |
|
636 |
MYFLOAT rf=(MYFLOAT)(rf32);
|
637 |
MYFLOAT b=(MYFLOAT)(b32);
|
638 |
MYFLOAT db=(MYFLOAT)(db32);
|
639 |
MYFLOAT h=(MYFLOAT)(h32);
|
640 |
MYFLOAT r=(MYFLOAT)(r32);
|
641 |
MYFLOAT m=(MYFLOAT)(m32);
|
642 |
MYFLOAT bss=(MYFLOAT)(bss32);
|
643 |
|
644 |
MYFLOAT flx;
|
645 |
MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
646 |
int fi,posfreq;
|
647 |
|
648 |
#define planck 6.62e-34
|
649 |
#define k 1.38e-23
|
650 |
#define c2 9.e16
|
651 |
#define temp 3.e7
|
652 |
#define m_point 1.
|
653 |
|
654 |
#define lplanck (log(6.62)-34.*log(10.))
|
655 |
#define lk (log(1.38)-23.*log(10.))
|
656 |
#define lc2 (log(9.)+16.*log(10.))
|
657 |
|
658 |
MYFLOAT v=1.-3./r;
|
659 |
|
660 |
qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
661 |
|
662 |
temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
663 |
|
664 |
flux_int=0.;
|
665 |
flx=0.;
|
666 |
|
667 |
for (fi=0;fi<nbr;fi++)
|
668 |
{
|
669 |
nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
670 |
nu_rec=nu_em*rf;
|
671 |
posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
672 |
if ((posfreq>0)&&(posfreq<nbr))
|
673 |
{
|
674 |
// Initial version
|
675 |
// flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
676 |
// Version with log used
|
677 |
//flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
678 |
// flux_int*=pow(rf,3)*b*db*h;
|
679 |
//flux_int*=exp(3.*log(rf))*b*db*h;
|
680 |
flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
681 |
|
682 |
flx+=flux_int;
|
683 |
}
|
684 |
}
|
685 |
|
686 |
return((float)(flx));
|
687 |
}
|
688 |
|
689 |
__device__ void impact(float phi,float r,float b,float tho,float m,
|
690 |
float *zp,float *fp,
|
691 |
int q,float db,
|
692 |
float h,int raie)
|
693 |
{
|
694 |
float flx,rf,bss;
|
695 |
|
696 |
rf=decalage_spectral(r,b,phi,tho,m);
|
697 |
|
698 |
if (raie==0)
|
699 |
{
|
700 |
bss=1.e19;
|
701 |
flx=spectre_cn(rf,b,db,h,r,m,bss);
|
702 |
}
|
703 |
else
|
704 |
{
|
705 |
bss=2.;
|
706 |
flx=spectre(rf,q,b,db,h,r,m,bss);
|
707 |
}
|
708 |
|
709 |
*zp=1./rf;
|
710 |
*fp=flx;
|
711 |
|
712 |
}
|
713 |
|
714 |
__global__ void EachPixel(float *zImage,float *fImage,
|
715 |
float Mass,float InternalRadius,
|
716 |
float ExternalRadius,float Angle,
|
717 |
int Line)
|
718 |
{
|
719 |
uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
720 |
uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
721 |
uint sizex=(uint)gridDim.x*blockDim.x;
|
722 |
uint sizey=(uint)gridDim.y*blockDim.y;
|
723 |
|
724 |
// Perform trajectory for each pixel, exit on hit
|
725 |
|
726 |
float m,rs,ri,re,tho;
|
727 |
int q,raie;
|
728 |
|
729 |
m=Mass;
|
730 |
rs=2.*m;
|
731 |
ri=InternalRadius;
|
732 |
re=ExternalRadius;
|
733 |
tho=Angle;
|
734 |
q=-2;
|
735 |
raie=Line;
|
736 |
|
737 |
float d,bmx,db,b,h;
|
738 |
float rp0,rpp,rps;
|
739 |
float phi,thi,phd,php,nr,r;
|
740 |
int nh;
|
741 |
float zp,fp;
|
742 |
|
743 |
// Autosize for image
|
744 |
bmx=1.25*re;
|
745 |
b=0.;
|
746 |
|
747 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
748 |
|
749 |
// set origin as center of image
|
750 |
float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
751 |
float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
752 |
// angle extracted from cylindric symmetry
|
753 |
phi=atanp(x,y);
|
754 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
755 |
|
756 |
float up,vp,pp,us,vs,ps;
|
757 |
|
758 |
// impact parameter
|
759 |
b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
760 |
// step of impact parameter;
|
761 |
// db=bmx/(float)(sizex/2);
|
762 |
db=bmx/(float)(sizex);
|
763 |
|
764 |
up=0.;
|
765 |
vp=1.;
|
766 |
|
767 |
pp=0.;
|
768 |
nh=0;
|
769 |
|
770 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
771 |
|
772 |
rps=fabs(b/us);
|
773 |
rp0=rps;
|
774 |
|
775 |
int ExitOnImpact=0;
|
776 |
|
777 |
do
|
778 |
{
|
779 |
nh++;
|
780 |
pp=ps;
|
781 |
up=us;
|
782 |
vp=vs;
|
783 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
784 |
rpp=rps;
|
785 |
rps=fabs(b/us);
|
786 |
ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;
|
787 |
|
788 |
} while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0));
|
789 |
|
790 |
if (ExitOnImpact==1) {
|
791 |
impact(phi,rpp,b,tho,m,&zp,&fp,q,db,h,raie);
|
792 |
}
|
793 |
else
|
794 |
{
|
795 |
zp=0.;
|
796 |
fp=0.;
|
797 |
}
|
798 |
|
799 |
__syncthreads();
|
800 |
|
801 |
zImage[yi+sizex*xi]=(float)zp;
|
802 |
fImage[yi+sizex*xi]=(float)fp;
|
803 |
}
|
804 |
|
805 |
__global__ void Pixel(float *zImage,float *fImage,
|
806 |
float *Trajectories,int *IdLast,
|
807 |
uint ImpactParameter,uint TrackPoints,
|
808 |
float Mass,float InternalRadius,
|
809 |
float ExternalRadius,float Angle,
|
810 |
int Line)
|
811 |
{
|
812 |
uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
813 |
uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
814 |
uint sizex=(uint)gridDim.x*blockDim.x;
|
815 |
uint sizey=(uint)gridDim.y*blockDim.y;
|
816 |
|
817 |
// Perform trajectory for each pixel
|
818 |
|
819 |
float m,rs,ri,re,tho;
|
820 |
int q,raie;
|
821 |
|
822 |
m=Mass;
|
823 |
rs=2.*m;
|
824 |
ri=InternalRadius;
|
825 |
re=ExternalRadius;
|
826 |
tho=Angle;
|
827 |
q=-2;
|
828 |
raie=Line;
|
829 |
|
830 |
float d,bmx,db,b,h;
|
831 |
float phi,thi,phd,php,nr,r;
|
832 |
int nh;
|
833 |
float zp=0,fp=0;
|
834 |
// Autosize for image, 25% greater than external radius
|
835 |
bmx=1.25*re;
|
836 |
|
837 |
// Angular step of integration
|
838 |
h=4.e0f*PI/(float)TrackPoints;
|
839 |
|
840 |
// Step of Impact Parameter
|
841 |
db=bmx/(2.e0*(float)ImpactParameter);
|
842 |
|
843 |
// set origin as center of image
|
844 |
float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
845 |
float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
846 |
// angle extracted from cylindric symmetry
|
847 |
phi=atanp(x,y);
|
848 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
849 |
|
850 |
// Real Impact Parameter
|
851 |
b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
852 |
|
853 |
// Integer Impact Parameter
|
854 |
uint bi=(uint)sqrt(x*x+y*y);
|
855 |
|
856 |
int HalfLap=0,ExitOnImpact=0,ni;
|
857 |
|
858 |
if (bi<ImpactParameter)
|
859 |
{
|
860 |
do
|
861 |
{
|
862 |
php=phd+(float)HalfLap*PI;
|
863 |
nr=php/h;
|
864 |
ni=(int)nr;
|
865 |
|
866 |
if (ni<IdLast[bi])
|
867 |
{
|
868 |
r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
869 |
}
|
870 |
else
|
871 |
{
|
872 |
r=Trajectories[bi*TrackPoints+ni];
|
873 |
}
|
874 |
|
875 |
if ((r<=re)&&(r>=ri))
|
876 |
{
|
877 |
ExitOnImpact=1;
|
878 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
879 |
}
|
880 |
|
881 |
HalfLap++;
|
882 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
883 |
|
884 |
}
|
885 |
|
886 |
zImage[yi+sizex*xi]=zp;
|
887 |
fImage[yi+sizex*xi]=fp;
|
888 |
}
|
889 |
|
890 |
__global__ void Circle(float *Trajectories,int *IdLast,
|
891 |
float *zImage,float *fImage,
|
892 |
int TrackPoints,
|
893 |
float Mass,float InternalRadius,
|
894 |
float ExternalRadius,float Angle,
|
895 |
int Line)
|
896 |
{
|
897 |
// Integer Impact Parameter ID
|
898 |
int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
899 |
// Integer points on circle
|
900 |
int i=blockIdx.y*blockDim.y+threadIdx.y;
|
901 |
// Integer Impact Parameter Size (half of image)
|
902 |
int bmaxi=gridDim.x*blockDim.x;
|
903 |
// Integer Points on circle
|
904 |
int imx=gridDim.y*blockDim.y;
|
905 |
|
906 |
// Perform trajectory for each pixel
|
907 |
|
908 |
float m,rs,ri,re,tho;
|
909 |
int q,raie;
|
910 |
|
911 |
m=Mass;
|
912 |
rs=2.*m;
|
913 |
ri=InternalRadius;
|
914 |
re=ExternalRadius;
|
915 |
tho=Angle;
|
916 |
raie=Line;
|
917 |
|
918 |
float bmx,db,b,h;
|
919 |
float phi,thi,phd;
|
920 |
int nh;
|
921 |
float zp=0,fp=0;
|
922 |
|
923 |
// Autosize for image
|
924 |
bmx=1.25*re;
|
925 |
|
926 |
// Angular step of integration
|
927 |
h=4.e0f*PI/(float)TrackPoints;
|
928 |
|
929 |
// impact parameter
|
930 |
b=(float)bi/(float)bmaxi*bmx;
|
931 |
db=bmx/(2.e0*(float)bmaxi);
|
932 |
|
933 |
phi=2.*PI/(float)imx*(float)i;
|
934 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
935 |
int yi=(int)((float)bi*sin(phi))+bmaxi;
|
936 |
int xi=(int)((float)bi*cos(phi))+bmaxi;
|
937 |
|
938 |
int HalfLap=0,ExitOnImpact=0,ni;
|
939 |
float php,nr,r;
|
940 |
|
941 |
do
|
942 |
{
|
943 |
php=phd+(float)HalfLap*PI;
|
944 |
nr=php/h;
|
945 |
ni=(int)nr;
|
946 |
|
947 |
if (ni<IdLast[bi])
|
948 |
{
|
949 |
r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
950 |
}
|
951 |
else
|
952 |
{
|
953 |
r=Trajectories[bi*TrackPoints+ni];
|
954 |
}
|
955 |
|
956 |
if ((r<=re)&&(r>=ri))
|
957 |
{
|
958 |
ExitOnImpact=1;
|
959 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
960 |
}
|
961 |
|
962 |
HalfLap++;
|
963 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
964 |
|
965 |
zImage[yi+2*bmaxi*xi]=zp;
|
966 |
fImage[yi+2*bmaxi*xi]=fp;
|
967 |
|
968 |
}
|
969 |
|
970 |
__global__ void Trajectory(float *Trajectories,
|
971 |
int *IdLast,int TrackPoints,
|
972 |
float Mass,float InternalRadius,
|
973 |
float ExternalRadius,float Angle,
|
974 |
int Line)
|
975 |
{
|
976 |
// Integer Impact Parameter ID
|
977 |
int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
978 |
// Integer Impact Parameter Size (half of image)
|
979 |
int bmaxi=gridDim.x*blockDim.x;
|
980 |
|
981 |
// Perform trajectory for each pixel
|
982 |
|
983 |
float m,rs,ri,re,tho;
|
984 |
int raie,q;
|
985 |
|
986 |
m=Mass;
|
987 |
rs=2.*m;
|
988 |
ri=InternalRadius;
|
989 |
re=ExternalRadius;
|
990 |
tho=Angle;
|
991 |
q=-2;
|
992 |
raie=Line;
|
993 |
|
994 |
float d,bmx,db,b,h;
|
995 |
float phi,thi,phd,php,nr,r;
|
996 |
int nh;
|
997 |
float zp,fp;
|
998 |
|
999 |
// Autosize for image
|
1000 |
bmx=1.25*re;
|
1001 |
|
1002 |
// Angular step of integration
|
1003 |
h=4.e0f*PI/(float)TrackPoints;
|
1004 |
|
1005 |
// impact parameter
|
1006 |
b=(float)bi/(float)bmaxi*bmx;
|
1007 |
|
1008 |
float up,vp,pp,us,vs,ps;
|
1009 |
|
1010 |
up=0.;
|
1011 |
vp=1.;
|
1012 |
|
1013 |
pp=0.;
|
1014 |
nh=0;
|
1015 |
|
1016 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1017 |
|
1018 |
// b versus us
|
1019 |
float bvus=fabs(b/us);
|
1020 |
float bvus0=bvus;
|
1021 |
Trajectories[bi*TrackPoints+nh]=bvus;
|
1022 |
|
1023 |
do
|
1024 |
{
|
1025 |
nh++;
|
1026 |
pp=ps;
|
1027 |
up=us;
|
1028 |
vp=vs;
|
1029 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1030 |
bvus=fabs(b/us);
|
1031 |
Trajectories[bi*TrackPoints+nh]=bvus;
|
1032 |
|
1033 |
} while ((bvus>=rs)&&(bvus<=bvus0));
|
1034 |
|
1035 |
IdLast[bi]=nh;
|
1036 |
|
1037 |
}
|
1038 |
"""
|
1039 |
return(BlobCUDA)
|
1040 |
|
1041 |
# def ImageOutput(sigma,prefix):
|
1042 |
# from PIL import Image
|
1043 |
# Max=sigma.max()
|
1044 |
# Min=sigma.min()
|
1045 |
|
1046 |
# # Normalize value as 8bits Integer
|
1047 |
# SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8')
|
1048 |
# image = Image.fromarray(SigmaInt)
|
1049 |
# image.save("%s.jpg" % prefix)
|
1050 |
|
1051 |
def ImageOutput(sigma,prefix,Colors): |
1052 |
import matplotlib.pyplot as plt |
1053 |
start_time=time.time() |
1054 |
if Colors == 'Red2Yellow': |
1055 |
plt.imsave("%s.png" % prefix, sigma, cmap='afmhot') |
1056 |
else:
|
1057 |
plt.imsave("%s.png" % prefix, sigma, cmap='Greys_r') |
1058 |
save_time = time.time()-start_time |
1059 |
print("Save Time : %f" % save_time)
|
1060 |
|
1061 |
def BlackHoleCL(zImage,fImage,InputCL): |
1062 |
|
1063 |
kernel_params = {} |
1064 |
|
1065 |
print(InputCL) |
1066 |
|
1067 |
Device=InputCL['Device']
|
1068 |
GpuStyle=InputCL['GpuStyle']
|
1069 |
VariableType=InputCL['VariableType']
|
1070 |
Size=InputCL['Size']
|
1071 |
Mass=InputCL['Mass']
|
1072 |
InternalRadius=InputCL['InternalRadius']
|
1073 |
ExternalRadius=InputCL['ExternalRadius']
|
1074 |
Angle=InputCL['Angle']
|
1075 |
Method=InputCL['Method']
|
1076 |
TrackPoints=InputCL['TrackPoints']
|
1077 |
Physics=InputCL['Physics']
|
1078 |
|
1079 |
PhysicsList=DictionariesAPI() |
1080 |
|
1081 |
if InputCL['BlackBody']: |
1082 |
# Spectrum is Black Body one
|
1083 |
Line=0
|
1084 |
else:
|
1085 |
# Spectrum is Monochromatic Line one
|
1086 |
Line=1
|
1087 |
|
1088 |
Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1089 |
IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1090 |
|
1091 |
# Je detecte un peripherique GPU dans la liste des peripheriques
|
1092 |
Id=0
|
1093 |
HasXPU=False
|
1094 |
for platform in cl.get_platforms(): |
1095 |
for device in platform.get_devices(): |
1096 |
if Id==Device:
|
1097 |
XPU=device |
1098 |
print("CPU/GPU selected: ",device.name.lstrip())
|
1099 |
HasXPU=True
|
1100 |
Id+=1
|
1101 |
|
1102 |
if HasXPU==False: |
1103 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
1104 |
sys.exit() |
1105 |
|
1106 |
ctx = cl.Context([XPU]) |
1107 |
queue = cl.CommandQueue(ctx, |
1108 |
properties=cl.command_queue_properties.PROFILING_ENABLE) |
1109 |
|
1110 |
|
1111 |
# BlackHoleCL = cl.Program(ctx,KERNEL_CODE.substitute(kernel_params)).build()
|
1112 |
|
1113 |
BuildOptions="-cl-mad-enable -DPHYSICS=%i " % (PhysicsList[Physics])
|
1114 |
|
1115 |
BlackHoleCL = cl.Program(ctx,BlobOpenCL).build(options = BuildOptions) |
1116 |
|
1117 |
# Je recupere les flag possibles pour les buffers
|
1118 |
mf = cl.mem_flags |
1119 |
|
1120 |
TrajectoriesCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=Trajectories) |
1121 |
zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=zImage) |
1122 |
fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=fImage) |
1123 |
IdLastCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=IdLast) |
1124 |
|
1125 |
start_time=time.time() |
1126 |
|
1127 |
if Method=='EachPixel': |
1128 |
CLLaunch=BlackHoleCL.EachPixel(queue,(zImage.shape[0],zImage.shape[1]), |
1129 |
None,zImageCL,fImageCL,
|
1130 |
numpy.float32(Mass), |
1131 |
numpy.float32(InternalRadius), |
1132 |
numpy.float32(ExternalRadius), |
1133 |
numpy.float32(Angle), |
1134 |
numpy.int32(Line)) |
1135 |
CLLaunch.wait() |
1136 |
elif Method=='TrajectoCircle': |
1137 |
CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1138 |
None,TrajectoriesCL,IdLastCL,
|
1139 |
numpy.uint32(Trajectories.shape[1]),
|
1140 |
numpy.float32(Mass), |
1141 |
numpy.float32(InternalRadius), |
1142 |
numpy.float32(ExternalRadius), |
1143 |
numpy.float32(Angle), |
1144 |
numpy.int32(Line)) |
1145 |
|
1146 |
CLLaunch=BlackHoleCL.Circle(queue,(Trajectories.shape[0],
|
1147 |
zImage.shape[0]*4),None, |
1148 |
TrajectoriesCL,IdLastCL, |
1149 |
zImageCL,fImageCL, |
1150 |
numpy.uint32(Trajectories.shape[1]),
|
1151 |
numpy.float32(Mass), |
1152 |
numpy.float32(InternalRadius), |
1153 |
numpy.float32(ExternalRadius), |
1154 |
numpy.float32(Angle), |
1155 |
numpy.int32(Line)) |
1156 |
CLLaunch.wait() |
1157 |
else:
|
1158 |
CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1159 |
None,TrajectoriesCL,IdLastCL,
|
1160 |
numpy.uint32(Trajectories.shape[1]),
|
1161 |
numpy.float32(Mass), |
1162 |
numpy.float32(InternalRadius), |
1163 |
numpy.float32(ExternalRadius), |
1164 |
numpy.float32(Angle), |
1165 |
numpy.int32(Line)) |
1166 |
|
1167 |
CLLaunch=BlackHoleCL.Pixel(queue,(zImage.shape[0],
|
1168 |
zImage.shape[1]),None, |
1169 |
zImageCL,fImageCL,TrajectoriesCL,IdLastCL, |
1170 |
numpy.uint32(Trajectories.shape[0]),
|
1171 |
numpy.uint32(Trajectories.shape[1]),
|
1172 |
numpy.float32(Mass), |
1173 |
numpy.float32(InternalRadius), |
1174 |
numpy.float32(ExternalRadius), |
1175 |
numpy.float32(Angle), |
1176 |
numpy.int32(Line)) |
1177 |
CLLaunch.wait() |
1178 |
|
1179 |
compute = time.time()-start_time |
1180 |
|
1181 |
cl.enqueue_copy(queue,zImage,zImageCL).wait() |
1182 |
cl.enqueue_copy(queue,fImage,fImageCL).wait() |
1183 |
cl.enqueue_copy(queue,Trajectories,TrajectoriesCL).wait() |
1184 |
cl.enqueue_copy(queue,IdLast,IdLastCL).wait() |
1185 |
elapsed = time.time()-start_time |
1186 |
print("\nCompute Time : %f" % compute)
|
1187 |
print("Elapsed Time : %f\n" % elapsed)
|
1188 |
|
1189 |
zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1190 |
fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1191 |
print("Z max @(%i,%i) : %f" % (zMaxPosition[1][0],zMaxPosition[0][0],zImage.max())) |
1192 |
print("Flux max @(%i,%i) : %f\n" % (fMaxPosition[1][0],fMaxPosition[0][0],fImage.max())) |
1193 |
zImageCL.release() |
1194 |
fImageCL.release() |
1195 |
|
1196 |
TrajectoriesCL.release() |
1197 |
IdLastCL.release() |
1198 |
|
1199 |
return(elapsed)
|
1200 |
|
1201 |
def BlackHoleCUDA(zImage,fImage,InputCL): |
1202 |
|
1203 |
kernel_params = {} |
1204 |
|
1205 |
print(InputCL) |
1206 |
|
1207 |
Device=InputCL['Device']
|
1208 |
GpuStyle=InputCL['GpuStyle']
|
1209 |
VariableType=InputCL['VariableType']
|
1210 |
Size=InputCL['Size']
|
1211 |
Mass=InputCL['Mass']
|
1212 |
InternalRadius=InputCL['InternalRadius']
|
1213 |
ExternalRadius=InputCL['ExternalRadius']
|
1214 |
Angle=InputCL['Angle']
|
1215 |
Method=InputCL['Method']
|
1216 |
TrackPoints=InputCL['TrackPoints']
|
1217 |
Physics=InputCL['Physics']
|
1218 |
|
1219 |
PhysicsList=DictionariesAPI() |
1220 |
|
1221 |
if InputCL['BlackBody']: |
1222 |
# Spectrum is Black Body one
|
1223 |
Line=0
|
1224 |
else:
|
1225 |
# Spectrum is Monochromatic Line one
|
1226 |
Line=1
|
1227 |
|
1228 |
Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1229 |
IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1230 |
|
1231 |
try:
|
1232 |
# For PyCUDA import
|
1233 |
import pycuda.driver as cuda |
1234 |
from pycuda.compiler import SourceModule |
1235 |
|
1236 |
cuda.init() |
1237 |
for Id in range(cuda.Device.count()): |
1238 |
if Id==Device:
|
1239 |
XPU=cuda.Device(Id) |
1240 |
print("GPU selected %s" % XPU.name())
|
1241 |
print
|
1242 |
|
1243 |
except ImportError: |
1244 |
print("Platform does not seem to support CUDA")
|
1245 |
|
1246 |
Context=XPU.make_context() |
1247 |
|
1248 |
try:
|
1249 |
mod = SourceModule(KernelCodeCuda(),options=['--compiler-options','-DPHYSICS=%i' % (PhysicsList[Physics])]) |
1250 |
print("Compilation seems to be OK")
|
1251 |
except:
|
1252 |
print("Compilation seems to break")
|
1253 |
|
1254 |
EachPixelCU=mod.get_function("EachPixel")
|
1255 |
TrajectoryCU=mod.get_function("Trajectory")
|
1256 |
PixelCU=mod.get_function("Pixel")
|
1257 |
CircleCU=mod.get_function("Circle")
|
1258 |
|
1259 |
TrajectoriesCU = cuda.mem_alloc(Trajectories.size*Trajectories.dtype.itemsize) |
1260 |
cuda.memcpy_htod(TrajectoriesCU, Trajectories) |
1261 |
zImageCU = cuda.mem_alloc(zImage.size*zImage.dtype.itemsize) |
1262 |
cuda.memcpy_htod(zImageCU, zImage) |
1263 |
fImageCU = cuda.mem_alloc(fImage.size*fImage.dtype.itemsize) |
1264 |
cuda.memcpy_htod(zImageCU, fImage) |
1265 |
IdLastCU = cuda.mem_alloc(IdLast.size*IdLast.dtype.itemsize) |
1266 |
cuda.memcpy_htod(IdLastCU, IdLast) |
1267 |
|
1268 |
start_time=time.time() |
1269 |
|
1270 |
if Method=='EachPixel': |
1271 |
EachPixelCU(zImageCU,fImageCU, |
1272 |
numpy.float32(Mass), |
1273 |
numpy.float32(InternalRadius), |
1274 |
numpy.float32(ExternalRadius), |
1275 |
numpy.float32(Angle), |
1276 |
numpy.int32(Line), |
1277 |
grid=(zImage.shape[0]/32,zImage.shape[1]/32), |
1278 |
block=(32,32,1)) |
1279 |
elif Method=='TrajectoCircle': |
1280 |
TrajectoryCU(TrajectoriesCU,IdLastCU, |
1281 |
numpy.uint32(Trajectories.shape[1]),
|
1282 |
numpy.float32(Mass), |
1283 |
numpy.float32(InternalRadius), |
1284 |
numpy.float32(ExternalRadius), |
1285 |
numpy.float32(Angle), |
1286 |
numpy.int32(Line), |
1287 |
grid=(Trajectories.shape[0]/32,1), |
1288 |
block=(32,1,1)) |
1289 |
|
1290 |
CircleCU(TrajectoriesCU,IdLastCU,zImageCU,fImageCU, |
1291 |
numpy.uint32(Trajectories.shape[1]),
|
1292 |
numpy.float32(Mass), |
1293 |
numpy.float32(InternalRadius), |
1294 |
numpy.float32(ExternalRadius), |
1295 |
numpy.float32(Angle), |
1296 |
numpy.int32(Line), |
1297 |
grid=(Trajectories.shape[0]/32,zImage.shape[0]*4/32), |
1298 |
block=(32,32,1)) |
1299 |
else:
|
1300 |
TrajectoryCU(TrajectoriesCU,IdLastCU, |
1301 |
numpy.uint32(Trajectories.shape[1]),
|
1302 |
numpy.float32(Mass), |
1303 |
numpy.float32(InternalRadius), |
1304 |
numpy.float32(ExternalRadius), |
1305 |
numpy.float32(Angle), |
1306 |
numpy.int32(Line), |
1307 |
grid=(Trajectories.shape[0]/32,1), |
1308 |
block=(32,1,1)) |
1309 |
|
1310 |
PixelCU(zImageCU,fImageCU,TrajectoriesCU,IdLastCU, |
1311 |
numpy.uint32(Trajectories.shape[0]),
|
1312 |
numpy.uint32(Trajectories.shape[1]),
|
1313 |
numpy.float32(Mass), |
1314 |
numpy.float32(InternalRadius), |
1315 |
numpy.float32(ExternalRadius), |
1316 |
numpy.float32(Angle), |
1317 |
numpy.int32(Line), |
1318 |
grid=(zImage.shape[0]/32,zImage.shape[1]/32,1), |
1319 |
block=(32,32,1)) |
1320 |
|
1321 |
Context.synchronize() |
1322 |
|
1323 |
compute = time.time()-start_time |
1324 |
|
1325 |
cuda.memcpy_dtoh(zImage,zImageCU) |
1326 |
cuda.memcpy_dtoh(fImage,fImageCU) |
1327 |
elapsed = time.time()-start_time |
1328 |
print("\nCompute Time : %f" % compute)
|
1329 |
print("Elapsed Time : %f\n" % elapsed)
|
1330 |
|
1331 |
zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1332 |
fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1333 |
print("Z max @(%i,%i) : %f" % (zMaxPosition[1][0],zMaxPosition[0][0],zImage.max())) |
1334 |
print("Flux max @(%i,%i) : %f\n" % (fMaxPosition[1][0],fMaxPosition[0][0],fImage.max())) |
1335 |
|
1336 |
|
1337 |
Context.pop() |
1338 |
|
1339 |
Context.detach() |
1340 |
|
1341 |
return(elapsed)
|
1342 |
|
1343 |
if __name__=='__main__': |
1344 |
|
1345 |
GpuStyle = 'OpenCL'
|
1346 |
Mass = 1.
|
1347 |
# Internal Radius 3 times de Schwarzschild Radius
|
1348 |
InternalRadius=6.*Mass
|
1349 |
#
|
1350 |
ExternalRadius=12.
|
1351 |
#
|
1352 |
# Angle with normal to disc 10 degrees
|
1353 |
Angle = numpy.pi/180.*(90.-10.) |
1354 |
# Radiation of disc : BlackBody or Monochromatic
|
1355 |
BlackBody = False
|
1356 |
# Size of image
|
1357 |
Size=256
|
1358 |
# Variable Type
|
1359 |
VariableType='FP32'
|
1360 |
# ?
|
1361 |
q=-2
|
1362 |
# Method of resolution
|
1363 |
Method='TrajectoPixel'
|
1364 |
# Colors for output image
|
1365 |
Colors='Greyscale'
|
1366 |
# Physics
|
1367 |
Physics='Einstein'
|
1368 |
# No output as image
|
1369 |
NoImage = False
|
1370 |
|
1371 |
HowToUse='%s -h [Help] -b [BlackBodyEmission] -n [NoImage] -p <Einstein/Newton> -s <SizeInPixels> -m <Mass> -i <DiscInternalRadius> -x <DiscExternalRadius> -a <AngleAboveDisc> -d <DeviceId> -c <Greyscale/Red2Yellow> -g <CUDA/OpenCL> -t <EachPixel/TrajectoCircle/TrajectoPixel> -v <FP32/FP64>'
|
1372 |
|
1373 |
try:
|
1374 |
opts, args = getopt.getopt(sys.argv[1:],"hbns:m:i:x:a:d:g:v:t:c:p:",["blackbody","noimage","camera","size=","mass=","internal=","external=","angle=","device=","gpustyle=","variabletype=","method=","colors=","physics="]) |
1375 |
except getopt.GetoptError:
|
1376 |
print(HowToUse % sys.argv[0])
|
1377 |
sys.exit(2)
|
1378 |
|
1379 |
# List of Devices
|
1380 |
Devices=[] |
1381 |
Alu={} |
1382 |
|
1383 |
for opt, arg in opts: |
1384 |
if opt == '-h': |
1385 |
print(HowToUse % sys.argv[0])
|
1386 |
|
1387 |
print("\nInformations about devices detected under OpenCL API:")
|
1388 |
# For PyOpenCL import
|
1389 |
try:
|
1390 |
import pyopencl as cl |
1391 |
Id=0
|
1392 |
for platform in cl.get_platforms(): |
1393 |
for device in platform.get_devices(): |
1394 |
#deviceType=cl.device_type.to_string(device.type)
|
1395 |
deviceType="xPU"
|
1396 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
1397 |
Id=Id+1
|
1398 |
|
1399 |
except:
|
1400 |
print("Your platform does not seem to support OpenCL")
|
1401 |
|
1402 |
print("\nInformations about devices detected under CUDA API:")
|
1403 |
# For PyCUDA import
|
1404 |
try:
|
1405 |
import pycuda.driver as cuda |
1406 |
cuda.init() |
1407 |
for Id in range(cuda.Device.count()): |
1408 |
device=cuda.Device(Id) |
1409 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
1410 |
print
|
1411 |
except:
|
1412 |
print("Your platform does not seem to support CUDA")
|
1413 |
|
1414 |
sys.exit() |
1415 |
|
1416 |
elif opt in ("-d", "--device"): |
1417 |
# Devices.append(int(arg))
|
1418 |
Device=int(arg)
|
1419 |
elif opt in ("-g", "--gpustyle"): |
1420 |
GpuStyle = arg |
1421 |
elif opt in ("-v", "--variabletype"): |
1422 |
VariableType = arg |
1423 |
elif opt in ("-s", "--size"): |
1424 |
Size = int(arg)
|
1425 |
elif opt in ("-m", "--mass"): |
1426 |
Mass = float(arg)
|
1427 |
elif opt in ("-i", "--internal"): |
1428 |
InternalRadius = float(arg)
|
1429 |
elif opt in ("-e", "--external"): |
1430 |
ExternalRadius = float(arg)
|
1431 |
elif opt in ("-a", "--angle"): |
1432 |
Angle = numpy.pi/180.*(90.-float(arg)) |
1433 |
elif opt in ("-b", "--blackbody"): |
1434 |
BlackBody = True
|
1435 |
elif opt in ("-n", "--noimage"): |
1436 |
NoImage = True
|
1437 |
elif opt in ("-t", "--method"): |
1438 |
Method = arg |
1439 |
elif opt in ("-c", "--colors"): |
1440 |
Colors = arg |
1441 |
elif opt in ("-p", "--physics"): |
1442 |
Physics = arg |
1443 |
|
1444 |
print("Device Identification selected : %s" % Device)
|
1445 |
print("GpuStyle used : %s" % GpuStyle)
|
1446 |
print("VariableType : %s" % VariableType)
|
1447 |
print("Size : %i" % Size)
|
1448 |
print("Mass : %f" % Mass)
|
1449 |
print("Internal Radius : %f" % InternalRadius)
|
1450 |
print("External Radius : %f" % ExternalRadius)
|
1451 |
print("Angle with normal of (in radians) : %f" % Angle)
|
1452 |
print("Black Body Disc Emission (monochromatic instead) : %s" % BlackBody)
|
1453 |
print("Method of resolution : %s" % Method)
|
1454 |
print("Colors for output images : %s" % Colors)
|
1455 |
print("Physics used for Trajectories : %s" % Physics)
|
1456 |
|
1457 |
if GpuStyle=='CUDA': |
1458 |
print("\nSelection of CUDA device")
|
1459 |
try:
|
1460 |
# For PyCUDA import
|
1461 |
import pycuda.driver as cuda |
1462 |
|
1463 |
cuda.init() |
1464 |
for Id in range(cuda.Device.count()): |
1465 |
device=cuda.Device(Id) |
1466 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
1467 |
if Id in Devices: |
1468 |
Alu[Id]='GPU'
|
1469 |
|
1470 |
except ImportError: |
1471 |
print("Platform does not seem to support CUDA")
|
1472 |
|
1473 |
if GpuStyle=='OpenCL': |
1474 |
print("\nSelection of OpenCL device")
|
1475 |
try:
|
1476 |
# For PyOpenCL import
|
1477 |
import pyopencl as cl |
1478 |
Id=0
|
1479 |
for platform in cl.get_platforms(): |
1480 |
for device in platform.get_devices(): |
1481 |
#deviceType=cl.device_type.to_string(device.type)
|
1482 |
deviceType="xPU"
|
1483 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
1484 |
|
1485 |
if Id in Devices: |
1486 |
# Set the Alu as detected Device Type
|
1487 |
Alu[Id]=deviceType |
1488 |
Id=Id+1
|
1489 |
except ImportError: |
1490 |
print("Platform does not seem to support OpenCL")
|
1491 |
|
1492 |
# print(Devices,Alu)
|
1493 |
|
1494 |
# MyImage=numpy.where(numpy.random.zeros(Size,Size)>0,1,-1).astype(numpy.float32)
|
1495 |
TrackPoints=2048
|
1496 |
zImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
1497 |
fImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
1498 |
|
1499 |
InputCL={} |
1500 |
InputCL['Device']=Device
|
1501 |
InputCL['GpuStyle']=GpuStyle
|
1502 |
InputCL['VariableType']=VariableType
|
1503 |
InputCL['Size']=Size
|
1504 |
InputCL['Mass']=Mass
|
1505 |
InputCL['InternalRadius']=InternalRadius
|
1506 |
InputCL['ExternalRadius']=ExternalRadius
|
1507 |
InputCL['Angle']=Angle
|
1508 |
InputCL['BlackBody']=BlackBody
|
1509 |
InputCL['Method']=Method
|
1510 |
InputCL['TrackPoints']=TrackPoints
|
1511 |
InputCL['Physics']=Physics
|
1512 |
|
1513 |
if GpuStyle=='OpenCL': |
1514 |
duration=BlackHoleCL(zImage,fImage,InputCL) |
1515 |
else:
|
1516 |
duration=BlackHoleCUDA(zImage,fImage,InputCL) |
1517 |
|
1518 |
Hostname=gethostname() |
1519 |
Date=time.strftime("%Y%m%d_%H%M%S")
|
1520 |
ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
1521 |
|
1522 |
|
1523 |
if not NoImage: |
1524 |
ImageOutput(zImage,"TrouNoirZ_%s" % ImageInfo,Colors)
|
1525 |
ImageOutput(fImage,"TrouNoirF_%s" % ImageInfo,Colors)
|