root / TrouNoir / TrouNoir.py @ 222
Historique | Voir | Annoter | Télécharger (39,17 ko)
1 | 221 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 199 | equemene | #
|
3 | 199 | equemene | # TrouNoir model using PyOpenCL
|
4 | 199 | equemene | #
|
5 | 204 | equemene | # CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr>
|
6 | 199 | equemene | #
|
7 | 199 | equemene | # Thanks to Andreas Klockner for PyOpenCL:
|
8 | 199 | equemene | # http://mathema.tician.de/software/pyopencl
|
9 | 199 | equemene | #
|
10 | 204 | equemene | # Original code programmed in Fortran 77 in mars 1994
|
11 | 204 | equemene | # for Practical Work of Numerical Simulation
|
12 | 204 | equemene | # DEA (old Master2) in astrophysics and spatial techniques in Meudon
|
13 | 204 | equemene | # by Herve Aussel & Emmanuel Quemener
|
14 | 204 | equemene | #
|
15 | 204 | equemene | # Conversion in C done by Emmanuel Quemener in august 1997
|
16 | 204 | equemene | # GPUfication in OpenCL under Python in july 2019
|
17 | 221 | equemene | # GPUfication in CUDA under Python in august 2019
|
18 | 204 | equemene | #
|
19 | 204 | equemene | # Thanks to :
|
20 | 204 | equemene | #
|
21 | 204 | equemene | # - Herve Aussel for his part of code of black body spectrum
|
22 | 204 | equemene | # - Didier Pelat for his help to perform this work
|
23 | 204 | equemene | # - Jean-Pierre Luminet for his article published in 1979
|
24 | 204 | equemene | # - Numerical Recipies for Runge Kutta recipies
|
25 | 204 | equemene | # - Luc Blanchet for his disponibility about my questions in General Relativity
|
26 | 204 | equemene | # - Pierre Lena for his passion about science and vulgarisation
|
27 | 199 | equemene | |
28 | 199 | equemene | import pyopencl as cl |
29 | 199 | equemene | import numpy |
30 | 199 | equemene | import time,string |
31 | 199 | equemene | from numpy.random import randint as nprnd |
32 | 199 | equemene | import sys |
33 | 199 | equemene | import getopt |
34 | 199 | equemene | import matplotlib.pyplot as plt |
35 | 211 | equemene | from socket import gethostname |
36 | 199 | equemene | |
37 | 211 | equemene | def DictionariesAPI(): |
38 | 211 | equemene | PhysicsList={'Einstein':0,'Newton':1} |
39 | 211 | equemene | return(PhysicsList)
|
40 | 204 | equemene | |
41 | 211 | equemene | BlobOpenCL= """
|
42 | 204 | equemene |
|
43 | 199 | equemene | #define PI (float)3.14159265359
|
44 | 209 | equemene | #define nbr 256
|
45 | 199 | equemene |
|
46 | 211 | equemene | #define EINSTEIN 0
|
47 | 211 | equemene | #define NEWTON 1
|
48 | 211 | equemene |
|
49 | 217 | equemene | #define TRACKPOINTS 2048
|
50 | 217 | equemene |
|
51 | 199 | equemene | float atanp(float x,float y)
|
52 | 199 | equemene | {
|
53 | 199 | equemene | float angle;
|
54 | 199 | equemene |
|
55 | 199 | equemene | angle=atan2(y,x);
|
56 | 199 | equemene |
|
57 | 204 | equemene | if (angle<0.e0f)
|
58 | 199 | equemene | {
|
59 | 199 | equemene | angle+=(float)2.e0f*PI;
|
60 | 199 | equemene | }
|
61 | 199 | equemene |
|
62 | 199 | equemene | return angle;
|
63 | 199 | equemene | }
|
64 | 199 | equemene |
|
65 | 199 | equemene | float f(float v)
|
66 | 199 | equemene | {
|
67 | 199 | equemene | return v;
|
68 | 199 | equemene | }
|
69 | 199 | equemene |
|
70 | 211 | equemene | #if PHYSICS == NEWTON
|
71 | 199 | equemene | float g(float u,float m,float b)
|
72 | 199 | equemene | {
|
73 | 211 | equemene | return (-u);
|
74 | 211 | equemene | }
|
75 | 211 | equemene | #else
|
76 | 211 | equemene | float g(float u,float m,float b)
|
77 | 211 | equemene | {
|
78 | 204 | equemene | return (3.e0f*m/b*pow(u,2)-u);
|
79 | 199 | equemene | }
|
80 | 211 | equemene | #endif
|
81 | 199 | equemene |
|
82 | 199 | equemene | void calcul(float *us,float *vs,float up,float vp,
|
83 | 199 | equemene | float h,float m,float b)
|
84 | 199 | equemene | {
|
85 | 199 | equemene | float c0,c1,c2,c3,d0,d1,d2,d3;
|
86 | 199 | equemene |
|
87 | 199 | equemene | c0=h*f(vp);
|
88 | 199 | equemene | c1=h*f(vp+c0/2.);
|
89 | 199 | equemene | c2=h*f(vp+c1/2.);
|
90 | 199 | equemene | c3=h*f(vp+c2);
|
91 | 199 | equemene | d0=h*g(up,m,b);
|
92 | 199 | equemene | d1=h*g(up+d0/2.,m,b);
|
93 | 199 | equemene | d2=h*g(up+d1/2.,m,b);
|
94 | 199 | equemene | d3=h*g(up+d2,m,b);
|
95 | 199 | equemene |
|
96 | 199 | equemene | *us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
97 | 199 | equemene | *vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
98 | 199 | equemene | }
|
99 | 199 | equemene |
|
100 | 199 | equemene | void rungekutta(float *ps,float *us,float *vs,
|
101 | 199 | equemene | float pp,float up,float vp,
|
102 | 199 | equemene | float h,float m,float b)
|
103 | 199 | equemene | {
|
104 | 199 | equemene | calcul(us,vs,up,vp,h,m,b);
|
105 | 199 | equemene | *ps=pp+h;
|
106 | 199 | equemene | }
|
107 | 199 | equemene |
|
108 | 199 | equemene | float decalage_spectral(float r,float b,float phi,
|
109 | 199 | equemene | float tho,float m)
|
110 | 199 | equemene | {
|
111 | 199 | equemene | return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
112 | 199 | equemene | }
|
113 | 199 | equemene |
|
114 | 199 | equemene | float spectre(float rf,int q,float b,float db,
|
115 | 199 | equemene | float h,float r,float m,float bss)
|
116 | 199 | equemene | {
|
117 | 199 | equemene | float flx;
|
118 | 199 | equemene |
|
119 | 221 | equemene | // flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
120 | 221 | equemene | flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
|
121 | 199 | equemene | return(flx);
|
122 | 199 | equemene | }
|
123 | 199 | equemene |
|
124 | 209 | equemene | float spectre_cn(float rf32,float b32,float db32,
|
125 | 209 | equemene | float h32,float r32,float m32,float bss32)
|
126 | 199 | equemene | {
|
127 | 209 | equemene |
|
128 | 213 | equemene | #define MYFLOAT float
|
129 | 209 | equemene |
|
130 | 209 | equemene | MYFLOAT rf=(MYFLOAT)(rf32);
|
131 | 209 | equemene | MYFLOAT b=(MYFLOAT)(b32);
|
132 | 209 | equemene | MYFLOAT db=(MYFLOAT)(db32);
|
133 | 209 | equemene | MYFLOAT h=(MYFLOAT)(h32);
|
134 | 209 | equemene | MYFLOAT r=(MYFLOAT)(r32);
|
135 | 209 | equemene | MYFLOAT m=(MYFLOAT)(m32);
|
136 | 209 | equemene | MYFLOAT bss=(MYFLOAT)(bss32);
|
137 | 209 | equemene |
|
138 | 209 | equemene | MYFLOAT flx;
|
139 | 209 | equemene | MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
140 | 199 | equemene | int fi,posfreq;
|
141 | 199 | equemene |
|
142 | 209 | equemene | #define planck 6.62e-34
|
143 | 209 | equemene | #define k 1.38e-23
|
144 | 209 | equemene | #define c2 9.e16
|
145 | 209 | equemene | #define temp 3.e7
|
146 | 209 | equemene | #define m_point 1.
|
147 | 199 | equemene |
|
148 | 209 | equemene | #define lplanck (log(6.62)-34.*log(10.))
|
149 | 209 | equemene | #define lk (log(1.38)-23.*log(10.))
|
150 | 209 | equemene | #define lc2 (log(9.)+16.*log(10.))
|
151 | 199 | equemene |
|
152 | 209 | equemene | MYFLOAT v=1.-3./r;
|
153 | 199 | equemene |
|
154 | 209 | equemene | qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
155 | 199 | equemene |
|
156 | 209 | equemene | temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
157 | 209 | equemene |
|
158 | 209 | equemene | flux_int=0.;
|
159 | 209 | equemene | flx=0.;
|
160 | 209 | equemene |
|
161 | 201 | equemene | for (fi=0;fi<nbr;fi++)
|
162 | 199 | equemene | {
|
163 | 209 | equemene | nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
164 | 209 | equemene | nu_rec=nu_em*rf;
|
165 | 209 | equemene | posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
166 | 199 | equemene | if ((posfreq>0)&&(posfreq<nbr))
|
167 | 199 | equemene | {
|
168 | 209 | equemene | // Initial version
|
169 | 211 | equemene | // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
170 | 209 | equemene | // Version with log used
|
171 | 211 | equemene | //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
172 | 211 | equemene | // flux_int*=pow(rf,3)*b*db*h;
|
173 | 211 | equemene | //flux_int*=exp(3.*log(rf))*b*db*h;
|
174 | 211 | equemene | flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
175 | 211 | equemene |
|
176 | 199 | equemene | flx+=flux_int;
|
177 | 199 | equemene | }
|
178 | 199 | equemene | }
|
179 | 209 | equemene |
|
180 | 209 | equemene | return((float)(flx));
|
181 | 199 | equemene | }
|
182 | 199 | equemene |
|
183 | 199 | equemene | void impact(float phi,float r,float b,float tho,float m,
|
184 | 199 | equemene | float *zp,float *fp,
|
185 | 199 | equemene | int q,float db,
|
186 | 204 | equemene | float h,int raie)
|
187 | 199 | equemene | {
|
188 | 204 | equemene | float flx,rf,bss;
|
189 | 199 | equemene |
|
190 | 199 | equemene | rf=decalage_spectral(r,b,phi,tho,m);
|
191 | 199 | equemene |
|
192 | 199 | equemene | if (raie==0)
|
193 | 199 | equemene | {
|
194 | 209 | equemene | bss=1.e19;
|
195 | 209 | equemene | flx=spectre_cn(rf,b,db,h,r,m,bss);
|
196 | 209 | equemene | }
|
197 | 209 | equemene | else
|
198 | 209 | equemene | {
|
199 | 204 | equemene | bss=2.;
|
200 | 199 | equemene | flx=spectre(rf,q,b,db,h,r,m,bss);
|
201 | 199 | equemene | }
|
202 | 199 | equemene |
|
203 | 199 | equemene | *zp=1./rf;
|
204 | 199 | equemene | *fp=flx;
|
205 | 199 | equemene |
|
206 | 199 | equemene | }
|
207 | 199 | equemene |
|
208 | 204 | equemene | __kernel void EachPixel(__global float *zImage,__global float *fImage,
|
209 | 204 | equemene | float Mass,float InternalRadius,
|
210 | 204 | equemene | float ExternalRadius,float Angle,
|
211 | 209 | equemene | int Line)
|
212 | 199 | equemene | {
|
213 | 199 | equemene | uint xi=(uint)get_global_id(0);
|
214 | 199 | equemene | uint yi=(uint)get_global_id(1);
|
215 | 199 | equemene | uint sizex=(uint)get_global_size(0);
|
216 | 199 | equemene | uint sizey=(uint)get_global_size(1);
|
217 | 199 | equemene |
|
218 | 204 | equemene | // Perform trajectory for each pixel, exit on hit
|
219 | 199 | equemene |
|
220 | 217 | equemene | private float m,rs,ri,re,tho;
|
221 | 217 | equemene | private int q,raie;
|
222 | 199 | equemene |
|
223 | 204 | equemene | m=Mass;
|
224 | 204 | equemene | rs=2.*m;
|
225 | 204 | equemene | ri=InternalRadius;
|
226 | 204 | equemene | re=ExternalRadius;
|
227 | 204 | equemene | tho=Angle;
|
228 | 204 | equemene | q=-2;
|
229 | 209 | equemene | raie=Line;
|
230 | 204 | equemene |
|
231 | 217 | equemene | private float d,bmx,db,b,h;
|
232 | 218 | equemene | private float rp0,rpp,rps;
|
233 | 217 | equemene | private float phi,thi,phd,php,nr,r;
|
234 | 217 | equemene | private int nh;
|
235 | 217 | equemene | private float zp,fp;
|
236 | 199 | equemene |
|
237 | 199 | equemene | // Autosize for image
|
238 | 199 | equemene | bmx=1.25*re;
|
239 | 199 | equemene | b=0.;
|
240 | 199 | equemene |
|
241 | 217 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
242 | 201 | equemene |
|
243 | 199 | equemene | // set origin as center of image
|
244 | 199 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
245 | 201 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
246 | 199 | equemene | // angle extracted from cylindric symmetry
|
247 | 199 | equemene | phi=atanp(x,y);
|
248 | 199 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
249 | 199 | equemene |
|
250 | 204 | equemene | float up,vp,pp,us,vs,ps;
|
251 | 204 | equemene |
|
252 | 204 | equemene | // impact parameter
|
253 | 204 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
254 | 204 | equemene | // step of impact parameter;
|
255 | 209 | equemene | db=bmx/(float)(sizex);
|
256 | 204 | equemene |
|
257 | 209 | equemene | up=0.;
|
258 | 209 | equemene | vp=1.;
|
259 | 199 | equemene |
|
260 | 199 | equemene | pp=0.;
|
261 | 199 | equemene | nh=0;
|
262 | 199 | equemene |
|
263 | 199 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
264 | 199 | equemene |
|
265 | 218 | equemene | rps=fabs(b/us);
|
266 | 218 | equemene | rp0=rps;
|
267 | 199 | equemene |
|
268 | 204 | equemene | int ExitOnImpact=0;
|
269 | 199 | equemene |
|
270 | 199 | equemene | do
|
271 | 199 | equemene | {
|
272 | 199 | equemene | nh++;
|
273 | 199 | equemene | pp=ps;
|
274 | 199 | equemene | up=us;
|
275 | 199 | equemene | vp=vs;
|
276 | 218 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
277 | 218 | equemene | rpp=rps;
|
278 | 218 | equemene | rps=fabs(b/us);
|
279 | 218 | equemene | ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;
|
280 | 199 | equemene |
|
281 | 218 | equemene | } while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0));
|
282 | 199 | equemene |
|
283 | 199 | equemene | if (ExitOnImpact==1) {
|
284 | 218 | equemene | impact(phi,rpp,b,tho,m,&zp,&fp,q,db,h,raie);
|
285 | 199 | equemene | }
|
286 | 199 | equemene | else
|
287 | 199 | equemene | {
|
288 | 199 | equemene | zp=0.;
|
289 | 201 | equemene | fp=0.;
|
290 | 199 | equemene | }
|
291 | 199 | equemene |
|
292 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
293 | 204 | equemene |
|
294 | 201 | equemene | zImage[yi+sizex*xi]=(float)zp;
|
295 | 204 | equemene | fImage[yi+sizex*xi]=(float)fp;
|
296 | 204 | equemene | }
|
297 | 199 | equemene |
|
298 | 204 | equemene | __kernel void Pixel(__global float *zImage,__global float *fImage,
|
299 | 204 | equemene | __global float *Trajectories,__global int *IdLast,
|
300 | 204 | equemene | uint ImpactParameter,uint TrackPoints,
|
301 | 204 | equemene | float Mass,float InternalRadius,
|
302 | 204 | equemene | float ExternalRadius,float Angle,
|
303 | 209 | equemene | int Line)
|
304 | 204 | equemene | {
|
305 | 204 | equemene | uint xi=(uint)get_global_id(0);
|
306 | 204 | equemene | uint yi=(uint)get_global_id(1);
|
307 | 204 | equemene | uint sizex=(uint)get_global_size(0);
|
308 | 204 | equemene | uint sizey=(uint)get_global_size(1);
|
309 | 204 | equemene |
|
310 | 204 | equemene | // Perform trajectory for each pixel
|
311 | 204 | equemene |
|
312 | 209 | equemene | float m,rs,ri,re,tho;
|
313 | 209 | equemene | int q,raie;
|
314 | 204 | equemene |
|
315 | 204 | equemene | m=Mass;
|
316 | 204 | equemene | rs=2.*m;
|
317 | 204 | equemene | ri=InternalRadius;
|
318 | 204 | equemene | re=ExternalRadius;
|
319 | 204 | equemene | tho=Angle;
|
320 | 204 | equemene | q=-2;
|
321 | 209 | equemene | raie=Line;
|
322 | 204 | equemene |
|
323 | 204 | equemene | float d,bmx,db,b,h;
|
324 | 204 | equemene | float phi,thi,phd,php,nr,r;
|
325 | 204 | equemene | int nh;
|
326 | 204 | equemene | float zp=0,fp=0;
|
327 | 204 | equemene |
|
328 | 209 | equemene | // Autosize for image, 25% greater than external radius
|
329 | 204 | equemene | bmx=1.25*re;
|
330 | 204 | equemene |
|
331 | 204 | equemene | // Angular step of integration
|
332 | 204 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
333 | 204 | equemene |
|
334 | 204 | equemene | // Step of Impact Parameter
|
335 | 209 | equemene | db=bmx/(2.e0*(float)ImpactParameter);
|
336 | 204 | equemene |
|
337 | 204 | equemene | // set origin as center of image
|
338 | 204 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
339 | 204 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
340 | 204 | equemene |
|
341 | 204 | equemene | // angle extracted from cylindric symmetry
|
342 | 204 | equemene | phi=atanp(x,y);
|
343 | 204 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
344 | 204 | equemene |
|
345 | 204 | equemene | // Real Impact Parameter
|
346 | 204 | equemene | b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
347 | 204 | equemene |
|
348 | 204 | equemene | // Integer Impact Parameter
|
349 | 204 | equemene | uint bi=(uint)sqrt(x*x+y*y);
|
350 | 204 | equemene |
|
351 | 204 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
352 | 204 | equemene |
|
353 | 204 | equemene | if (bi<ImpactParameter)
|
354 | 204 | equemene | {
|
355 | 204 | equemene | do
|
356 | 204 | equemene | {
|
357 | 204 | equemene | php=phd+(float)HalfLap*PI;
|
358 | 204 | equemene | nr=php/h;
|
359 | 204 | equemene | ni=(int)nr;
|
360 | 204 | equemene |
|
361 | 204 | equemene | if (ni<IdLast[bi])
|
362 | 204 | equemene | {
|
363 | 204 | equemene | r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
364 | 204 | equemene | }
|
365 | 204 | equemene | else
|
366 | 204 | equemene | {
|
367 | 204 | equemene | r=Trajectories[bi*TrackPoints+ni];
|
368 | 204 | equemene | }
|
369 | 204 | equemene |
|
370 | 204 | equemene | if ((r<=re)&&(r>=ri))
|
371 | 204 | equemene | {
|
372 | 204 | equemene | ExitOnImpact=1;
|
373 | 204 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
374 | 204 | equemene | }
|
375 | 204 | equemene |
|
376 | 204 | equemene | HalfLap++;
|
377 | 204 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
378 | 204 | equemene |
|
379 | 204 | equemene | }
|
380 | 204 | equemene |
|
381 | 201 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
382 | 204 | equemene |
|
383 | 204 | equemene | zImage[yi+sizex*xi]=zp;
|
384 | 204 | equemene | fImage[yi+sizex*xi]=fp;
|
385 | 204 | equemene | }
|
386 | 204 | equemene |
|
387 | 204 | equemene | __kernel void Circle(__global float *Trajectories,__global int *IdLast,
|
388 | 204 | equemene | __global float *zImage,__global float *fImage,
|
389 | 204 | equemene | int TrackPoints,
|
390 | 204 | equemene | float Mass,float InternalRadius,
|
391 | 204 | equemene | float ExternalRadius,float Angle,
|
392 | 209 | equemene | int Line)
|
393 | 204 | equemene | {
|
394 | 204 | equemene | // Integer Impact Parameter ID
|
395 | 204 | equemene | int bi=get_global_id(0);
|
396 | 204 | equemene | // Integer points on circle
|
397 | 204 | equemene | int i=get_global_id(1);
|
398 | 204 | equemene | // Integer Impact Parameter Size (half of image)
|
399 | 204 | equemene | int bmaxi=get_global_size(0);
|
400 | 204 | equemene | // Integer Points on circle
|
401 | 204 | equemene | int imx=get_global_size(1);
|
402 | 204 | equemene |
|
403 | 204 | equemene | // Perform trajectory for each pixel
|
404 | 204 | equemene |
|
405 | 209 | equemene | float m,rs,ri,re,tho;
|
406 | 209 | equemene | int q,raie;
|
407 | 204 | equemene |
|
408 | 204 | equemene | m=Mass;
|
409 | 204 | equemene | rs=2.*m;
|
410 | 204 | equemene | ri=InternalRadius;
|
411 | 204 | equemene | re=ExternalRadius;
|
412 | 204 | equemene | tho=Angle;
|
413 | 209 | equemene | raie=Line;
|
414 | 204 | equemene |
|
415 | 204 | equemene | float bmx,db,b,h;
|
416 | 204 | equemene | float phi,thi,phd;
|
417 | 204 | equemene | int nh;
|
418 | 204 | equemene | float zp=0,fp=0;
|
419 | 204 | equemene |
|
420 | 204 | equemene | // Autosize for image
|
421 | 204 | equemene | bmx=1.25*re;
|
422 | 204 | equemene |
|
423 | 204 | equemene | // Angular step of integration
|
424 | 204 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
425 | 204 | equemene |
|
426 | 204 | equemene | // impact parameter
|
427 | 204 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
428 | 209 | equemene | db=bmx/(2.e0*(float)bmaxi);
|
429 | 204 | equemene |
|
430 | 204 | equemene | phi=2.*PI/(float)imx*(float)i;
|
431 | 204 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
432 | 204 | equemene | int yi=(int)((float)bi*sin(phi))+bmaxi;
|
433 | 204 | equemene | int xi=(int)((float)bi*cos(phi))+bmaxi;
|
434 | 204 | equemene |
|
435 | 204 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
436 | 204 | equemene | float php,nr,r;
|
437 | 204 | equemene |
|
438 | 204 | equemene | do
|
439 | 204 | equemene | {
|
440 | 204 | equemene | php=phd+(float)HalfLap*PI;
|
441 | 204 | equemene | nr=php/h;
|
442 | 204 | equemene | ni=(int)nr;
|
443 | 204 | equemene |
|
444 | 204 | equemene | if (ni<IdLast[bi])
|
445 | 204 | equemene | {
|
446 | 204 | equemene | r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
447 | 204 | equemene | }
|
448 | 204 | equemene | else
|
449 | 204 | equemene | {
|
450 | 204 | equemene | r=Trajectories[bi*TrackPoints+ni];
|
451 | 204 | equemene | }
|
452 | 204 | equemene |
|
453 | 204 | equemene | if ((r<=re)&&(r>=ri))
|
454 | 204 | equemene | {
|
455 | 204 | equemene | ExitOnImpact=1;
|
456 | 204 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
457 | 204 | equemene | }
|
458 | 204 | equemene |
|
459 | 204 | equemene | HalfLap++;
|
460 | 204 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
461 | 204 | equemene |
|
462 | 204 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
463 | 204 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
464 | 204 | equemene |
|
465 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
466 | 204 | equemene |
|
467 | 204 | equemene | }
|
468 | 204 | equemene |
|
469 | 204 | equemene | __kernel void Trajectory(__global float *Trajectories,
|
470 | 204 | equemene | __global int *IdLast,int TrackPoints,
|
471 | 204 | equemene | float Mass,float InternalRadius,
|
472 | 204 | equemene | float ExternalRadius,float Angle,
|
473 | 209 | equemene | int Line)
|
474 | 204 | equemene | {
|
475 | 204 | equemene | // Integer Impact Parameter ID
|
476 | 204 | equemene | int bi=get_global_id(0);
|
477 | 204 | equemene | // Integer Impact Parameter Size (half of image)
|
478 | 204 | equemene | int bmaxi=get_global_size(0);
|
479 | 204 | equemene |
|
480 | 204 | equemene | // Perform trajectory for each pixel
|
481 | 204 | equemene |
|
482 | 209 | equemene | float m,rs,ri,re,tho;
|
483 | 209 | equemene | int raie,q;
|
484 | 204 | equemene |
|
485 | 204 | equemene | m=Mass;
|
486 | 204 | equemene | rs=2.*m;
|
487 | 204 | equemene | ri=InternalRadius;
|
488 | 204 | equemene | re=ExternalRadius;
|
489 | 204 | equemene | tho=Angle;
|
490 | 204 | equemene | q=-2;
|
491 | 209 | equemene | raie=Line;
|
492 | 204 | equemene |
|
493 | 204 | equemene | float d,bmx,db,b,h;
|
494 | 204 | equemene | float phi,thi,phd,php,nr,r;
|
495 | 204 | equemene | int nh;
|
496 | 204 | equemene | float zp,fp;
|
497 | 204 | equemene |
|
498 | 204 | equemene | // Autosize for image
|
499 | 204 | equemene | bmx=1.25*re;
|
500 | 204 | equemene |
|
501 | 204 | equemene | // Angular step of integration
|
502 | 204 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
503 | 204 | equemene |
|
504 | 204 | equemene | // impact parameter
|
505 | 204 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
506 | 204 | equemene |
|
507 | 204 | equemene | float up,vp,pp,us,vs,ps;
|
508 | 204 | equemene |
|
509 | 209 | equemene | up=0.;
|
510 | 209 | equemene | vp=1.;
|
511 | 204 | equemene |
|
512 | 204 | equemene | pp=0.;
|
513 | 204 | equemene | nh=0;
|
514 | 204 | equemene |
|
515 | 204 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
516 | 204 | equemene |
|
517 | 204 | equemene | // b versus us
|
518 | 204 | equemene | float bvus=fabs(b/us);
|
519 | 204 | equemene | float bvus0=bvus;
|
520 | 204 | equemene | Trajectories[bi*TrackPoints+nh]=bvus;
|
521 | 204 | equemene |
|
522 | 204 | equemene | do
|
523 | 204 | equemene | {
|
524 | 204 | equemene | nh++;
|
525 | 204 | equemene | pp=ps;
|
526 | 204 | equemene | up=us;
|
527 | 204 | equemene | vp=vs;
|
528 | 204 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
529 | 204 | equemene | bvus=fabs(b/us);
|
530 | 204 | equemene | Trajectories[bi*TrackPoints+nh]=bvus;
|
531 | 204 | equemene |
|
532 | 204 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
533 | 204 | equemene |
|
534 | 204 | equemene | IdLast[bi]=nh;
|
535 | 204 | equemene |
|
536 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
537 | 199 | equemene |
|
538 | 199 | equemene | }
|
539 | 211 | equemene | """
|
540 | 199 | equemene | |
541 | 217 | equemene | def KernelCodeCuda(): |
542 | 217 | equemene | BlobCUDA= """
|
543 | 217 | equemene |
|
544 | 217 | equemene | #define PI (float)3.14159265359
|
545 | 217 | equemene | #define nbr 256
|
546 | 217 | equemene |
|
547 | 217 | equemene | #define EINSTEIN 0
|
548 | 217 | equemene | #define NEWTON 1
|
549 | 217 | equemene |
|
550 | 217 | equemene | #define TRACKPOINTS 2048
|
551 | 217 | equemene |
|
552 | 217 | equemene | __device__ float nothing(float x)
|
553 | 217 | equemene | {
|
554 | 217 | equemene | return(x);
|
555 | 217 | equemene | }
|
556 | 217 | equemene |
|
557 | 217 | equemene | __device__ float atanp(float x,float y)
|
558 | 217 | equemene | {
|
559 | 217 | equemene | float angle;
|
560 | 217 | equemene |
|
561 | 217 | equemene | angle=atan2(y,x);
|
562 | 217 | equemene |
|
563 | 217 | equemene | if (angle<0.e0f)
|
564 | 217 | equemene | {
|
565 | 217 | equemene | angle+=(float)2.e0f*PI;
|
566 | 217 | equemene | }
|
567 | 217 | equemene |
|
568 | 217 | equemene | return(angle);
|
569 | 217 | equemene | }
|
570 | 217 | equemene |
|
571 | 217 | equemene | __device__ float f(float v)
|
572 | 217 | equemene | {
|
573 | 217 | equemene | return(v);
|
574 | 217 | equemene | }
|
575 | 217 | equemene |
|
576 | 217 | equemene | #if PHYSICS == NEWTON
|
577 | 217 | equemene | __device__ float g(float u,float m,float b)
|
578 | 217 | equemene | {
|
579 | 217 | equemene | return (-u);
|
580 | 217 | equemene | }
|
581 | 217 | equemene | #else
|
582 | 217 | equemene | __device__ float g(float u,float m,float b)
|
583 | 217 | equemene | {
|
584 | 217 | equemene | return (3.e0f*m/b*pow(u,2)-u);
|
585 | 217 | equemene | }
|
586 | 217 | equemene | #endif
|
587 | 217 | equemene |
|
588 | 217 | equemene | __device__ void calcul(float *us,float *vs,float up,float vp,
|
589 | 217 | equemene | float h,float m,float b)
|
590 | 217 | equemene | {
|
591 | 217 | equemene | float c0,c1,c2,c3,d0,d1,d2,d3;
|
592 | 217 | equemene |
|
593 | 217 | equemene | c0=h*f(vp);
|
594 | 217 | equemene | c1=h*f(vp+c0/2.);
|
595 | 217 | equemene | c2=h*f(vp+c1/2.);
|
596 | 217 | equemene | c3=h*f(vp+c2);
|
597 | 217 | equemene | d0=h*g(up,m,b);
|
598 | 217 | equemene | d1=h*g(up+d0/2.,m,b);
|
599 | 217 | equemene | d2=h*g(up+d1/2.,m,b);
|
600 | 217 | equemene | d3=h*g(up+d2,m,b);
|
601 | 217 | equemene |
|
602 | 217 | equemene | *us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
603 | 217 | equemene | *vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
604 | 217 | equemene | }
|
605 | 217 | equemene |
|
606 | 217 | equemene | __device__ void rungekutta(float *ps,float *us,float *vs,
|
607 | 217 | equemene | float pp,float up,float vp,
|
608 | 217 | equemene | float h,float m,float b)
|
609 | 217 | equemene | {
|
610 | 217 | equemene | calcul(us,vs,up,vp,h,m,b);
|
611 | 217 | equemene | *ps=pp+h;
|
612 | 217 | equemene | }
|
613 | 217 | equemene |
|
614 | 217 | equemene | __device__ float decalage_spectral(float r,float b,float phi,
|
615 | 217 | equemene | float tho,float m)
|
616 | 217 | equemene | {
|
617 | 217 | equemene | return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
618 | 217 | equemene | }
|
619 | 217 | equemene |
|
620 | 217 | equemene | __device__ float spectre(float rf,int q,float b,float db,
|
621 | 217 | equemene | float h,float r,float m,float bss)
|
622 | 217 | equemene | {
|
623 | 217 | equemene | float flx;
|
624 | 217 | equemene |
|
625 | 221 | equemene | // flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
626 | 221 | equemene | flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
|
627 | 217 | equemene | return(flx);
|
628 | 217 | equemene | }
|
629 | 217 | equemene |
|
630 | 217 | equemene | __device__ float spectre_cn(float rf32,float b32,float db32,
|
631 | 217 | equemene | float h32,float r32,float m32,float bss32)
|
632 | 217 | equemene | {
|
633 | 217 | equemene |
|
634 | 217 | equemene | #define MYFLOAT float
|
635 | 217 | equemene |
|
636 | 217 | equemene | MYFLOAT rf=(MYFLOAT)(rf32);
|
637 | 217 | equemene | MYFLOAT b=(MYFLOAT)(b32);
|
638 | 217 | equemene | MYFLOAT db=(MYFLOAT)(db32);
|
639 | 217 | equemene | MYFLOAT h=(MYFLOAT)(h32);
|
640 | 217 | equemene | MYFLOAT r=(MYFLOAT)(r32);
|
641 | 217 | equemene | MYFLOAT m=(MYFLOAT)(m32);
|
642 | 217 | equemene | MYFLOAT bss=(MYFLOAT)(bss32);
|
643 | 217 | equemene |
|
644 | 217 | equemene | MYFLOAT flx;
|
645 | 217 | equemene | MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
646 | 217 | equemene | int fi,posfreq;
|
647 | 217 | equemene |
|
648 | 217 | equemene | #define planck 6.62e-34
|
649 | 217 | equemene | #define k 1.38e-23
|
650 | 217 | equemene | #define c2 9.e16
|
651 | 217 | equemene | #define temp 3.e7
|
652 | 217 | equemene | #define m_point 1.
|
653 | 217 | equemene |
|
654 | 217 | equemene | #define lplanck (log(6.62)-34.*log(10.))
|
655 | 217 | equemene | #define lk (log(1.38)-23.*log(10.))
|
656 | 217 | equemene | #define lc2 (log(9.)+16.*log(10.))
|
657 | 217 | equemene |
|
658 | 217 | equemene | MYFLOAT v=1.-3./r;
|
659 | 217 | equemene |
|
660 | 217 | equemene | qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
661 | 217 | equemene |
|
662 | 217 | equemene | temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
663 | 217 | equemene |
|
664 | 217 | equemene | flux_int=0.;
|
665 | 217 | equemene | flx=0.;
|
666 | 217 | equemene |
|
667 | 217 | equemene | for (fi=0;fi<nbr;fi++)
|
668 | 217 | equemene | {
|
669 | 217 | equemene | nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
670 | 217 | equemene | nu_rec=nu_em*rf;
|
671 | 217 | equemene | posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
672 | 217 | equemene | if ((posfreq>0)&&(posfreq<nbr))
|
673 | 217 | equemene | {
|
674 | 217 | equemene | // Initial version
|
675 | 217 | equemene | // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
676 | 217 | equemene | // Version with log used
|
677 | 217 | equemene | //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
678 | 217 | equemene | // flux_int*=pow(rf,3)*b*db*h;
|
679 | 217 | equemene | //flux_int*=exp(3.*log(rf))*b*db*h;
|
680 | 217 | equemene | flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
681 | 217 | equemene |
|
682 | 217 | equemene | flx+=flux_int;
|
683 | 217 | equemene | }
|
684 | 217 | equemene | }
|
685 | 217 | equemene |
|
686 | 217 | equemene | return((float)(flx));
|
687 | 217 | equemene | }
|
688 | 217 | equemene |
|
689 | 217 | equemene | __device__ void impact(float phi,float r,float b,float tho,float m,
|
690 | 217 | equemene | float *zp,float *fp,
|
691 | 217 | equemene | int q,float db,
|
692 | 217 | equemene | float h,int raie)
|
693 | 217 | equemene | {
|
694 | 217 | equemene | float flx,rf,bss;
|
695 | 217 | equemene |
|
696 | 217 | equemene | rf=decalage_spectral(r,b,phi,tho,m);
|
697 | 217 | equemene |
|
698 | 217 | equemene | if (raie==0)
|
699 | 217 | equemene | {
|
700 | 217 | equemene | bss=1.e19;
|
701 | 217 | equemene | flx=spectre_cn(rf,b,db,h,r,m,bss);
|
702 | 217 | equemene | }
|
703 | 217 | equemene | else
|
704 | 217 | equemene | {
|
705 | 217 | equemene | bss=2.;
|
706 | 217 | equemene | flx=spectre(rf,q,b,db,h,r,m,bss);
|
707 | 217 | equemene | }
|
708 | 217 | equemene |
|
709 | 217 | equemene | *zp=1./rf;
|
710 | 217 | equemene | *fp=flx;
|
711 | 217 | equemene |
|
712 | 217 | equemene | }
|
713 | 217 | equemene |
|
714 | 217 | equemene | __global__ void EachPixel(float *zImage,float *fImage,
|
715 | 217 | equemene | float Mass,float InternalRadius,
|
716 | 217 | equemene | float ExternalRadius,float Angle,
|
717 | 217 | equemene | int Line)
|
718 | 217 | equemene | {
|
719 | 218 | equemene | uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
720 | 218 | equemene | uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
721 | 217 | equemene | uint sizex=(uint)gridDim.x*blockDim.x;
|
722 | 217 | equemene | uint sizey=(uint)gridDim.y*blockDim.y;
|
723 | 217 | equemene |
|
724 | 217 | equemene | // Perform trajectory for each pixel, exit on hit
|
725 | 217 | equemene |
|
726 | 217 | equemene | float m,rs,ri,re,tho;
|
727 | 217 | equemene | int q,raie;
|
728 | 217 | equemene |
|
729 | 217 | equemene | m=Mass;
|
730 | 217 | equemene | rs=2.*m;
|
731 | 217 | equemene | ri=InternalRadius;
|
732 | 217 | equemene | re=ExternalRadius;
|
733 | 217 | equemene | tho=Angle;
|
734 | 217 | equemene | q=-2;
|
735 | 217 | equemene | raie=Line;
|
736 | 217 | equemene |
|
737 | 217 | equemene | float d,bmx,db,b,h;
|
738 | 218 | equemene | float rp0,rpp,rps;
|
739 | 217 | equemene | float phi,thi,phd,php,nr,r;
|
740 | 217 | equemene | int nh;
|
741 | 217 | equemene | float zp,fp;
|
742 | 217 | equemene |
|
743 | 217 | equemene | // Autosize for image
|
744 | 217 | equemene | bmx=1.25*re;
|
745 | 217 | equemene | b=0.;
|
746 | 217 | equemene |
|
747 | 217 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
748 | 217 | equemene |
|
749 | 217 | equemene | // set origin as center of image
|
750 | 217 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
751 | 217 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
752 | 217 | equemene | // angle extracted from cylindric symmetry
|
753 | 217 | equemene | phi=atanp(x,y);
|
754 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
755 | 217 | equemene |
|
756 | 217 | equemene | float up,vp,pp,us,vs,ps;
|
757 | 217 | equemene |
|
758 | 217 | equemene | // impact parameter
|
759 | 217 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
760 | 217 | equemene | // step of impact parameter;
|
761 | 217 | equemene | // db=bmx/(float)(sizex/2);
|
762 | 217 | equemene | db=bmx/(float)(sizex);
|
763 | 217 | equemene |
|
764 | 217 | equemene | up=0.;
|
765 | 217 | equemene | vp=1.;
|
766 | 217 | equemene |
|
767 | 217 | equemene | pp=0.;
|
768 | 217 | equemene | nh=0;
|
769 | 217 | equemene |
|
770 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
771 | 217 | equemene |
|
772 | 218 | equemene | rps=fabs(b/us);
|
773 | 218 | equemene | rp0=rps;
|
774 | 217 | equemene |
|
775 | 217 | equemene | int ExitOnImpact=0;
|
776 | 217 | equemene |
|
777 | 217 | equemene | do
|
778 | 217 | equemene | {
|
779 | 217 | equemene | nh++;
|
780 | 217 | equemene | pp=ps;
|
781 | 217 | equemene | up=us;
|
782 | 217 | equemene | vp=vs;
|
783 | 218 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
784 | 218 | equemene | rpp=rps;
|
785 | 218 | equemene | rps=fabs(b/us);
|
786 | 218 | equemene | ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;
|
787 | 217 | equemene |
|
788 | 218 | equemene | } while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0));
|
789 | 217 | equemene |
|
790 | 217 | equemene | if (ExitOnImpact==1) {
|
791 | 218 | equemene | impact(phi,rpp,b,tho,m,&zp,&fp,q,db,h,raie);
|
792 | 217 | equemene | }
|
793 | 217 | equemene | else
|
794 | 217 | equemene | {
|
795 | 217 | equemene | zp=0.;
|
796 | 217 | equemene | fp=0.;
|
797 | 217 | equemene | }
|
798 | 217 | equemene |
|
799 | 218 | equemene | __syncthreads();
|
800 | 218 | equemene |
|
801 | 217 | equemene | zImage[yi+sizex*xi]=(float)zp;
|
802 | 217 | equemene | fImage[yi+sizex*xi]=(float)fp;
|
803 | 217 | equemene | }
|
804 | 217 | equemene |
|
805 | 217 | equemene | __global__ void Pixel(float *zImage,float *fImage,
|
806 | 217 | equemene | float *Trajectories,int *IdLast,
|
807 | 217 | equemene | uint ImpactParameter,uint TrackPoints,
|
808 | 217 | equemene | float Mass,float InternalRadius,
|
809 | 217 | equemene | float ExternalRadius,float Angle,
|
810 | 217 | equemene | int Line)
|
811 | 217 | equemene | {
|
812 | 219 | equemene | uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
813 | 219 | equemene | uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
814 | 219 | equemene | uint sizex=(uint)gridDim.x*blockDim.x;
|
815 | 219 | equemene | uint sizey=(uint)gridDim.y*blockDim.y;
|
816 | 217 | equemene |
|
817 | 217 | equemene | // Perform trajectory for each pixel
|
818 | 217 | equemene |
|
819 | 217 | equemene | float m,rs,ri,re,tho;
|
820 | 217 | equemene | int q,raie;
|
821 | 217 | equemene |
|
822 | 217 | equemene | m=Mass;
|
823 | 217 | equemene | rs=2.*m;
|
824 | 217 | equemene | ri=InternalRadius;
|
825 | 217 | equemene | re=ExternalRadius;
|
826 | 217 | equemene | tho=Angle;
|
827 | 217 | equemene | q=-2;
|
828 | 217 | equemene | raie=Line;
|
829 | 217 | equemene |
|
830 | 217 | equemene | float d,bmx,db,b,h;
|
831 | 217 | equemene | float phi,thi,phd,php,nr,r;
|
832 | 217 | equemene | int nh;
|
833 | 217 | equemene | float zp=0,fp=0;
|
834 | 217 | equemene | // Autosize for image, 25% greater than external radius
|
835 | 217 | equemene | bmx=1.25*re;
|
836 | 217 | equemene |
|
837 | 217 | equemene | // Angular step of integration
|
838 | 217 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
839 | 217 | equemene |
|
840 | 217 | equemene | // Step of Impact Parameter
|
841 | 217 | equemene | db=bmx/(2.e0*(float)ImpactParameter);
|
842 | 217 | equemene |
|
843 | 217 | equemene | // set origin as center of image
|
844 | 217 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
845 | 217 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
846 | 217 | equemene | // angle extracted from cylindric symmetry
|
847 | 217 | equemene | phi=atanp(x,y);
|
848 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
849 | 217 | equemene |
|
850 | 217 | equemene | // Real Impact Parameter
|
851 | 217 | equemene | b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
852 | 217 | equemene |
|
853 | 217 | equemene | // Integer Impact Parameter
|
854 | 217 | equemene | uint bi=(uint)sqrt(x*x+y*y);
|
855 | 217 | equemene |
|
856 | 217 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
857 | 217 | equemene |
|
858 | 217 | equemene | if (bi<ImpactParameter)
|
859 | 217 | equemene | {
|
860 | 217 | equemene | do
|
861 | 217 | equemene | {
|
862 | 217 | equemene | php=phd+(float)HalfLap*PI;
|
863 | 217 | equemene | nr=php/h;
|
864 | 217 | equemene | ni=(int)nr;
|
865 | 217 | equemene |
|
866 | 217 | equemene | if (ni<IdLast[bi])
|
867 | 217 | equemene | {
|
868 | 217 | equemene | r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
869 | 217 | equemene | }
|
870 | 217 | equemene | else
|
871 | 217 | equemene | {
|
872 | 217 | equemene | r=Trajectories[bi*TrackPoints+ni];
|
873 | 217 | equemene | }
|
874 | 217 | equemene |
|
875 | 217 | equemene | if ((r<=re)&&(r>=ri))
|
876 | 217 | equemene | {
|
877 | 217 | equemene | ExitOnImpact=1;
|
878 | 217 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
879 | 217 | equemene | }
|
880 | 217 | equemene |
|
881 | 217 | equemene | HalfLap++;
|
882 | 217 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
883 | 217 | equemene |
|
884 | 217 | equemene | }
|
885 | 217 | equemene |
|
886 | 217 | equemene | zImage[yi+sizex*xi]=zp;
|
887 | 217 | equemene | fImage[yi+sizex*xi]=fp;
|
888 | 217 | equemene | }
|
889 | 217 | equemene |
|
890 | 217 | equemene | __global__ void Circle(float *Trajectories,int *IdLast,
|
891 | 217 | equemene | float *zImage,float *fImage,
|
892 | 217 | equemene | int TrackPoints,
|
893 | 217 | equemene | float Mass,float InternalRadius,
|
894 | 217 | equemene | float ExternalRadius,float Angle,
|
895 | 217 | equemene | int Line)
|
896 | 217 | equemene | {
|
897 | 217 | equemene | // Integer Impact Parameter ID
|
898 | 219 | equemene | int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
899 | 217 | equemene | // Integer points on circle
|
900 | 219 | equemene | int i=blockIdx.y*blockDim.y+threadIdx.y;
|
901 | 217 | equemene | // Integer Impact Parameter Size (half of image)
|
902 | 217 | equemene | int bmaxi=gridDim.x*blockDim.x;
|
903 | 217 | equemene | // Integer Points on circle
|
904 | 217 | equemene | int imx=gridDim.y*blockDim.y;
|
905 | 217 | equemene |
|
906 | 217 | equemene | // Perform trajectory for each pixel
|
907 | 217 | equemene |
|
908 | 217 | equemene | float m,rs,ri,re,tho;
|
909 | 217 | equemene | int q,raie;
|
910 | 217 | equemene |
|
911 | 217 | equemene | m=Mass;
|
912 | 217 | equemene | rs=2.*m;
|
913 | 217 | equemene | ri=InternalRadius;
|
914 | 217 | equemene | re=ExternalRadius;
|
915 | 217 | equemene | tho=Angle;
|
916 | 217 | equemene | raie=Line;
|
917 | 217 | equemene |
|
918 | 217 | equemene | float bmx,db,b,h;
|
919 | 217 | equemene | float phi,thi,phd;
|
920 | 217 | equemene | int nh;
|
921 | 217 | equemene | float zp=0,fp=0;
|
922 | 217 | equemene |
|
923 | 217 | equemene | // Autosize for image
|
924 | 217 | equemene | bmx=1.25*re;
|
925 | 217 | equemene |
|
926 | 217 | equemene | // Angular step of integration
|
927 | 217 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
928 | 217 | equemene |
|
929 | 217 | equemene | // impact parameter
|
930 | 217 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
931 | 217 | equemene | db=bmx/(2.e0*(float)bmaxi);
|
932 | 217 | equemene |
|
933 | 217 | equemene | phi=2.*PI/(float)imx*(float)i;
|
934 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
935 | 217 | equemene | int yi=(int)((float)bi*sin(phi))+bmaxi;
|
936 | 217 | equemene | int xi=(int)((float)bi*cos(phi))+bmaxi;
|
937 | 217 | equemene |
|
938 | 217 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
939 | 217 | equemene | float php,nr,r;
|
940 | 217 | equemene |
|
941 | 217 | equemene | do
|
942 | 217 | equemene | {
|
943 | 217 | equemene | php=phd+(float)HalfLap*PI;
|
944 | 217 | equemene | nr=php/h;
|
945 | 217 | equemene | ni=(int)nr;
|
946 | 217 | equemene |
|
947 | 217 | equemene | if (ni<IdLast[bi])
|
948 | 217 | equemene | {
|
949 | 217 | equemene | r=(Trajectories[bi*TrackPoints+ni+1]-Trajectories[bi*TrackPoints+ni])*(nr-ni*1.)+Trajectories[bi*TrackPoints+ni];
|
950 | 217 | equemene | }
|
951 | 217 | equemene | else
|
952 | 217 | equemene | {
|
953 | 217 | equemene | r=Trajectories[bi*TrackPoints+ni];
|
954 | 217 | equemene | }
|
955 | 217 | equemene |
|
956 | 217 | equemene | if ((r<=re)&&(r>=ri))
|
957 | 217 | equemene | {
|
958 | 217 | equemene | ExitOnImpact=1;
|
959 | 217 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
960 | 217 | equemene | }
|
961 | 217 | equemene |
|
962 | 217 | equemene | HalfLap++;
|
963 | 217 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
964 | 217 | equemene |
|
965 | 217 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
966 | 217 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
967 | 217 | equemene |
|
968 | 217 | equemene | }
|
969 | 217 | equemene |
|
970 | 217 | equemene | __global__ void Trajectory(float *Trajectories,
|
971 | 217 | equemene | int *IdLast,int TrackPoints,
|
972 | 217 | equemene | float Mass,float InternalRadius,
|
973 | 217 | equemene | float ExternalRadius,float Angle,
|
974 | 217 | equemene | int Line)
|
975 | 217 | equemene | {
|
976 | 217 | equemene | // Integer Impact Parameter ID
|
977 | 219 | equemene | int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
978 | 217 | equemene | // Integer Impact Parameter Size (half of image)
|
979 | 217 | equemene | int bmaxi=gridDim.x*blockDim.x;
|
980 | 217 | equemene |
|
981 | 217 | equemene | // Perform trajectory for each pixel
|
982 | 217 | equemene |
|
983 | 217 | equemene | float m,rs,ri,re,tho;
|
984 | 217 | equemene | int raie,q;
|
985 | 217 | equemene |
|
986 | 217 | equemene | m=Mass;
|
987 | 217 | equemene | rs=2.*m;
|
988 | 217 | equemene | ri=InternalRadius;
|
989 | 217 | equemene | re=ExternalRadius;
|
990 | 217 | equemene | tho=Angle;
|
991 | 217 | equemene | q=-2;
|
992 | 217 | equemene | raie=Line;
|
993 | 217 | equemene |
|
994 | 217 | equemene | float d,bmx,db,b,h;
|
995 | 217 | equemene | float phi,thi,phd,php,nr,r;
|
996 | 217 | equemene | int nh;
|
997 | 217 | equemene | float zp,fp;
|
998 | 217 | equemene |
|
999 | 217 | equemene | // Autosize for image
|
1000 | 217 | equemene | bmx=1.25*re;
|
1001 | 217 | equemene |
|
1002 | 217 | equemene | // Angular step of integration
|
1003 | 217 | equemene | h=4.e0f*PI/(float)TrackPoints;
|
1004 | 217 | equemene |
|
1005 | 217 | equemene | // impact parameter
|
1006 | 217 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
1007 | 217 | equemene |
|
1008 | 217 | equemene | float up,vp,pp,us,vs,ps;
|
1009 | 217 | equemene |
|
1010 | 217 | equemene | up=0.;
|
1011 | 217 | equemene | vp=1.;
|
1012 | 217 | equemene |
|
1013 | 217 | equemene | pp=0.;
|
1014 | 217 | equemene | nh=0;
|
1015 | 217 | equemene |
|
1016 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1017 | 217 | equemene |
|
1018 | 217 | equemene | // b versus us
|
1019 | 217 | equemene | float bvus=fabs(b/us);
|
1020 | 217 | equemene | float bvus0=bvus;
|
1021 | 217 | equemene | Trajectories[bi*TrackPoints+nh]=bvus;
|
1022 | 217 | equemene |
|
1023 | 217 | equemene | do
|
1024 | 217 | equemene | {
|
1025 | 217 | equemene | nh++;
|
1026 | 217 | equemene | pp=ps;
|
1027 | 217 | equemene | up=us;
|
1028 | 217 | equemene | vp=vs;
|
1029 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1030 | 217 | equemene | bvus=fabs(b/us);
|
1031 | 217 | equemene | Trajectories[bi*TrackPoints+nh]=bvus;
|
1032 | 217 | equemene |
|
1033 | 217 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
1034 | 217 | equemene |
|
1035 | 217 | equemene | IdLast[bi]=nh;
|
1036 | 217 | equemene |
|
1037 | 217 | equemene | }
|
1038 | 217 | equemene | """
|
1039 | 217 | equemene | return(BlobCUDA)
|
1040 | 217 | equemene | |
1041 | 211 | equemene | # def ImageOutput(sigma,prefix):
|
1042 | 211 | equemene | # from PIL import Image
|
1043 | 211 | equemene | # Max=sigma.max()
|
1044 | 211 | equemene | # Min=sigma.min()
|
1045 | 199 | equemene | |
1046 | 211 | equemene | # # Normalize value as 8bits Integer
|
1047 | 211 | equemene | # SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8')
|
1048 | 211 | equemene | # image = Image.fromarray(SigmaInt)
|
1049 | 211 | equemene | # image.save("%s.jpg" % prefix)
|
1050 | 211 | equemene | |
1051 | 211 | equemene | def ImageOutput(sigma,prefix,Colors): |
1052 | 211 | equemene | import matplotlib.pyplot as plt |
1053 | 222 | equemene | start_time=time.time() |
1054 | 211 | equemene | if Colors == 'Red2Yellow': |
1055 | 211 | equemene | plt.imsave("%s.png" % prefix, sigma, cmap='afmhot') |
1056 | 211 | equemene | else:
|
1057 | 211 | equemene | plt.imsave("%s.png" % prefix, sigma, cmap='Greys_r') |
1058 | 222 | equemene | save_time = time.time()-start_time |
1059 | 222 | equemene | print("Save Time : %f" % save_time)
|
1060 | 211 | equemene | |
1061 | 204 | equemene | def BlackHoleCL(zImage,fImage,InputCL): |
1062 | 199 | equemene | |
1063 | 199 | equemene | kernel_params = {} |
1064 | 199 | equemene | |
1065 | 204 | equemene | print(InputCL) |
1066 | 204 | equemene | |
1067 | 204 | equemene | Device=InputCL['Device']
|
1068 | 204 | equemene | GpuStyle=InputCL['GpuStyle']
|
1069 | 204 | equemene | VariableType=InputCL['VariableType']
|
1070 | 204 | equemene | Size=InputCL['Size']
|
1071 | 204 | equemene | Mass=InputCL['Mass']
|
1072 | 204 | equemene | InternalRadius=InputCL['InternalRadius']
|
1073 | 204 | equemene | ExternalRadius=InputCL['ExternalRadius']
|
1074 | 204 | equemene | Angle=InputCL['Angle']
|
1075 | 204 | equemene | Method=InputCL['Method']
|
1076 | 204 | equemene | TrackPoints=InputCL['TrackPoints']
|
1077 | 211 | equemene | Physics=InputCL['Physics']
|
1078 | 204 | equemene | |
1079 | 211 | equemene | PhysicsList=DictionariesAPI() |
1080 | 211 | equemene | |
1081 | 204 | equemene | if InputCL['BlackBody']: |
1082 | 209 | equemene | # Spectrum is Black Body one
|
1083 | 209 | equemene | Line=0
|
1084 | 204 | equemene | else:
|
1085 | 209 | equemene | # Spectrum is Monochromatic Line one
|
1086 | 209 | equemene | Line=1
|
1087 | 204 | equemene | |
1088 | 217 | equemene | Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1089 | 217 | equemene | IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1090 | 204 | equemene | |
1091 | 199 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
1092 | 199 | equemene | Id=0
|
1093 | 199 | equemene | HasXPU=False
|
1094 | 199 | equemene | for platform in cl.get_platforms(): |
1095 | 199 | equemene | for device in platform.get_devices(): |
1096 | 199 | equemene | if Id==Device:
|
1097 | 199 | equemene | XPU=device |
1098 | 217 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
1099 | 199 | equemene | HasXPU=True
|
1100 | 199 | equemene | Id+=1
|
1101 | 199 | equemene | |
1102 | 199 | equemene | if HasXPU==False: |
1103 | 217 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
1104 | 199 | equemene | sys.exit() |
1105 | 199 | equemene | |
1106 | 199 | equemene | ctx = cl.Context([XPU]) |
1107 | 199 | equemene | queue = cl.CommandQueue(ctx, |
1108 | 199 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
1109 | 199 | equemene | |
1110 | 199 | equemene | |
1111 | 211 | equemene | # BlackHoleCL = cl.Program(ctx,KERNEL_CODE.substitute(kernel_params)).build()
|
1112 | 211 | equemene | |
1113 | 211 | equemene | BuildOptions="-cl-mad-enable -DPHYSICS=%i " % (PhysicsList[Physics])
|
1114 | 211 | equemene | |
1115 | 211 | equemene | BlackHoleCL = cl.Program(ctx,BlobOpenCL).build(options = BuildOptions) |
1116 | 211 | equemene | |
1117 | 199 | equemene | # Je recupere les flag possibles pour les buffers
|
1118 | 199 | equemene | mf = cl.mem_flags |
1119 | 199 | equemene | |
1120 | 204 | equemene | TrajectoriesCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=Trajectories) |
1121 | 201 | equemene | zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=zImage) |
1122 | 201 | equemene | fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=fImage) |
1123 | 204 | equemene | IdLastCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=IdLast) |
1124 | 199 | equemene | |
1125 | 199 | equemene | start_time=time.time() |
1126 | 199 | equemene | |
1127 | 204 | equemene | if Method=='EachPixel': |
1128 | 204 | equemene | CLLaunch=BlackHoleCL.EachPixel(queue,(zImage.shape[0],zImage.shape[1]), |
1129 | 204 | equemene | None,zImageCL,fImageCL,
|
1130 | 204 | equemene | numpy.float32(Mass), |
1131 | 204 | equemene | numpy.float32(InternalRadius), |
1132 | 204 | equemene | numpy.float32(ExternalRadius), |
1133 | 204 | equemene | numpy.float32(Angle), |
1134 | 209 | equemene | numpy.int32(Line)) |
1135 | 204 | equemene | CLLaunch.wait() |
1136 | 204 | equemene | elif Method=='TrajectoCircle': |
1137 | 204 | equemene | CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1138 | 204 | equemene | None,TrajectoriesCL,IdLastCL,
|
1139 | 204 | equemene | numpy.uint32(Trajectories.shape[1]),
|
1140 | 204 | equemene | numpy.float32(Mass), |
1141 | 204 | equemene | numpy.float32(InternalRadius), |
1142 | 204 | equemene | numpy.float32(ExternalRadius), |
1143 | 204 | equemene | numpy.float32(Angle), |
1144 | 209 | equemene | numpy.int32(Line)) |
1145 | 204 | equemene | |
1146 | 204 | equemene | CLLaunch=BlackHoleCL.Circle(queue,(Trajectories.shape[0],
|
1147 | 204 | equemene | zImage.shape[0]*4),None, |
1148 | 204 | equemene | TrajectoriesCL,IdLastCL, |
1149 | 204 | equemene | zImageCL,fImageCL, |
1150 | 204 | equemene | numpy.uint32(Trajectories.shape[1]),
|
1151 | 204 | equemene | numpy.float32(Mass), |
1152 | 204 | equemene | numpy.float32(InternalRadius), |
1153 | 204 | equemene | numpy.float32(ExternalRadius), |
1154 | 204 | equemene | numpy.float32(Angle), |
1155 | 209 | equemene | numpy.int32(Line)) |
1156 | 204 | equemene | CLLaunch.wait() |
1157 | 204 | equemene | else:
|
1158 | 204 | equemene | CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1159 | 204 | equemene | None,TrajectoriesCL,IdLastCL,
|
1160 | 204 | equemene | numpy.uint32(Trajectories.shape[1]),
|
1161 | 204 | equemene | numpy.float32(Mass), |
1162 | 204 | equemene | numpy.float32(InternalRadius), |
1163 | 204 | equemene | numpy.float32(ExternalRadius), |
1164 | 204 | equemene | numpy.float32(Angle), |
1165 | 209 | equemene | numpy.int32(Line)) |
1166 | 204 | equemene | |
1167 | 204 | equemene | CLLaunch=BlackHoleCL.Pixel(queue,(zImage.shape[0],
|
1168 | 217 | equemene | zImage.shape[1]),None, |
1169 | 204 | equemene | zImageCL,fImageCL,TrajectoriesCL,IdLastCL, |
1170 | 204 | equemene | numpy.uint32(Trajectories.shape[0]),
|
1171 | 204 | equemene | numpy.uint32(Trajectories.shape[1]),
|
1172 | 204 | equemene | numpy.float32(Mass), |
1173 | 204 | equemene | numpy.float32(InternalRadius), |
1174 | 204 | equemene | numpy.float32(ExternalRadius), |
1175 | 204 | equemene | numpy.float32(Angle), |
1176 | 209 | equemene | numpy.int32(Line)) |
1177 | 204 | equemene | CLLaunch.wait() |
1178 | 204 | equemene | |
1179 | 218 | equemene | compute = time.time()-start_time |
1180 | 199 | equemene | |
1181 | 201 | equemene | cl.enqueue_copy(queue,zImage,zImageCL).wait() |
1182 | 201 | equemene | cl.enqueue_copy(queue,fImage,fImageCL).wait() |
1183 | 204 | equemene | cl.enqueue_copy(queue,Trajectories,TrajectoriesCL).wait() |
1184 | 204 | equemene | cl.enqueue_copy(queue,IdLast,IdLastCL).wait() |
1185 | 218 | equemene | elapsed = time.time()-start_time |
1186 | 218 | equemene | print("\nCompute Time : %f" % compute)
|
1187 | 218 | equemene | print("Elapsed Time : %f\n" % elapsed)
|
1188 | 211 | equemene | |
1189 | 211 | equemene | zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1190 | 211 | equemene | fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1191 | 219 | equemene | print("Z max @(%i,%i) : %f" % (zMaxPosition[1][0],zMaxPosition[0][0],zImage.max())) |
1192 | 219 | equemene | print("Flux max @(%i,%i) : %f\n" % (fMaxPosition[1][0],fMaxPosition[0][0],fImage.max())) |
1193 | 201 | equemene | zImageCL.release() |
1194 | 201 | equemene | fImageCL.release() |
1195 | 204 | equemene | |
1196 | 204 | equemene | TrajectoriesCL.release() |
1197 | 204 | equemene | IdLastCL.release() |
1198 | 204 | equemene | |
1199 | 199 | equemene | return(elapsed)
|
1200 | 199 | equemene | |
1201 | 217 | equemene | def BlackHoleCUDA(zImage,fImage,InputCL): |
1202 | 217 | equemene | |
1203 | 217 | equemene | kernel_params = {} |
1204 | 217 | equemene | |
1205 | 217 | equemene | print(InputCL) |
1206 | 217 | equemene | |
1207 | 217 | equemene | Device=InputCL['Device']
|
1208 | 217 | equemene | GpuStyle=InputCL['GpuStyle']
|
1209 | 217 | equemene | VariableType=InputCL['VariableType']
|
1210 | 217 | equemene | Size=InputCL['Size']
|
1211 | 217 | equemene | Mass=InputCL['Mass']
|
1212 | 217 | equemene | InternalRadius=InputCL['InternalRadius']
|
1213 | 217 | equemene | ExternalRadius=InputCL['ExternalRadius']
|
1214 | 217 | equemene | Angle=InputCL['Angle']
|
1215 | 217 | equemene | Method=InputCL['Method']
|
1216 | 217 | equemene | TrackPoints=InputCL['TrackPoints']
|
1217 | 217 | equemene | Physics=InputCL['Physics']
|
1218 | 217 | equemene | |
1219 | 217 | equemene | PhysicsList=DictionariesAPI() |
1220 | 217 | equemene | |
1221 | 217 | equemene | if InputCL['BlackBody']: |
1222 | 217 | equemene | # Spectrum is Black Body one
|
1223 | 217 | equemene | Line=0
|
1224 | 217 | equemene | else:
|
1225 | 217 | equemene | # Spectrum is Monochromatic Line one
|
1226 | 217 | equemene | Line=1
|
1227 | 217 | equemene | |
1228 | 217 | equemene | Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1229 | 217 | equemene | IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1230 | 217 | equemene | |
1231 | 217 | equemene | try:
|
1232 | 217 | equemene | # For PyCUDA import
|
1233 | 217 | equemene | import pycuda.driver as cuda |
1234 | 217 | equemene | from pycuda.compiler import SourceModule |
1235 | 217 | equemene | |
1236 | 217 | equemene | cuda.init() |
1237 | 217 | equemene | for Id in range(cuda.Device.count()): |
1238 | 217 | equemene | if Id==Device:
|
1239 | 217 | equemene | XPU=cuda.Device(Id) |
1240 | 217 | equemene | print("GPU selected %s" % XPU.name())
|
1241 | 217 | equemene | print
|
1242 | 217 | equemene | |
1243 | 217 | equemene | except ImportError: |
1244 | 217 | equemene | print("Platform does not seem to support CUDA")
|
1245 | 217 | equemene | |
1246 | 217 | equemene | Context=XPU.make_context() |
1247 | 217 | equemene | |
1248 | 217 | equemene | try:
|
1249 | 217 | equemene | mod = SourceModule(KernelCodeCuda(),options=['--compiler-options','-DPHYSICS=%i' % (PhysicsList[Physics])]) |
1250 | 217 | equemene | print("Compilation seems to be OK")
|
1251 | 217 | equemene | except:
|
1252 | 217 | equemene | print("Compilation seems to break")
|
1253 | 217 | equemene | |
1254 | 217 | equemene | EachPixelCU=mod.get_function("EachPixel")
|
1255 | 217 | equemene | TrajectoryCU=mod.get_function("Trajectory")
|
1256 | 217 | equemene | PixelCU=mod.get_function("Pixel")
|
1257 | 217 | equemene | CircleCU=mod.get_function("Circle")
|
1258 | 217 | equemene | |
1259 | 217 | equemene | TrajectoriesCU = cuda.mem_alloc(Trajectories.size*Trajectories.dtype.itemsize) |
1260 | 217 | equemene | cuda.memcpy_htod(TrajectoriesCU, Trajectories) |
1261 | 217 | equemene | zImageCU = cuda.mem_alloc(zImage.size*zImage.dtype.itemsize) |
1262 | 217 | equemene | cuda.memcpy_htod(zImageCU, zImage) |
1263 | 217 | equemene | fImageCU = cuda.mem_alloc(fImage.size*fImage.dtype.itemsize) |
1264 | 217 | equemene | cuda.memcpy_htod(zImageCU, fImage) |
1265 | 217 | equemene | IdLastCU = cuda.mem_alloc(IdLast.size*IdLast.dtype.itemsize) |
1266 | 217 | equemene | cuda.memcpy_htod(IdLastCU, IdLast) |
1267 | 217 | equemene | |
1268 | 217 | equemene | start_time=time.time() |
1269 | 217 | equemene | |
1270 | 217 | equemene | if Method=='EachPixel': |
1271 | 217 | equemene | EachPixelCU(zImageCU,fImageCU, |
1272 | 217 | equemene | numpy.float32(Mass), |
1273 | 217 | equemene | numpy.float32(InternalRadius), |
1274 | 217 | equemene | numpy.float32(ExternalRadius), |
1275 | 217 | equemene | numpy.float32(Angle), |
1276 | 217 | equemene | numpy.int32(Line), |
1277 | 219 | equemene | grid=(zImage.shape[0]/32,zImage.shape[1]/32), |
1278 | 219 | equemene | block=(32,32,1)) |
1279 | 217 | equemene | elif Method=='TrajectoCircle': |
1280 | 217 | equemene | TrajectoryCU(TrajectoriesCU,IdLastCU, |
1281 | 217 | equemene | numpy.uint32(Trajectories.shape[1]),
|
1282 | 217 | equemene | numpy.float32(Mass), |
1283 | 217 | equemene | numpy.float32(InternalRadius), |
1284 | 217 | equemene | numpy.float32(ExternalRadius), |
1285 | 217 | equemene | numpy.float32(Angle), |
1286 | 217 | equemene | numpy.int32(Line), |
1287 | 219 | equemene | grid=(Trajectories.shape[0]/32,1), |
1288 | 219 | equemene | block=(32,1,1)) |
1289 | 217 | equemene | |
1290 | 217 | equemene | CircleCU(TrajectoriesCU,IdLastCU,zImageCU,fImageCU, |
1291 | 217 | equemene | numpy.uint32(Trajectories.shape[1]),
|
1292 | 217 | equemene | numpy.float32(Mass), |
1293 | 217 | equemene | numpy.float32(InternalRadius), |
1294 | 217 | equemene | numpy.float32(ExternalRadius), |
1295 | 217 | equemene | numpy.float32(Angle), |
1296 | 217 | equemene | numpy.int32(Line), |
1297 | 219 | equemene | grid=(Trajectories.shape[0]/32,zImage.shape[0]*4/32), |
1298 | 219 | equemene | block=(32,32,1)) |
1299 | 217 | equemene | else:
|
1300 | 217 | equemene | TrajectoryCU(TrajectoriesCU,IdLastCU, |
1301 | 217 | equemene | numpy.uint32(Trajectories.shape[1]),
|
1302 | 217 | equemene | numpy.float32(Mass), |
1303 | 217 | equemene | numpy.float32(InternalRadius), |
1304 | 217 | equemene | numpy.float32(ExternalRadius), |
1305 | 217 | equemene | numpy.float32(Angle), |
1306 | 217 | equemene | numpy.int32(Line), |
1307 | 219 | equemene | grid=(Trajectories.shape[0]/32,1), |
1308 | 219 | equemene | block=(32,1,1)) |
1309 | 217 | equemene | |
1310 | 217 | equemene | PixelCU(zImageCU,fImageCU,TrajectoriesCU,IdLastCU, |
1311 | 217 | equemene | numpy.uint32(Trajectories.shape[0]),
|
1312 | 217 | equemene | numpy.uint32(Trajectories.shape[1]),
|
1313 | 217 | equemene | numpy.float32(Mass), |
1314 | 217 | equemene | numpy.float32(InternalRadius), |
1315 | 217 | equemene | numpy.float32(ExternalRadius), |
1316 | 217 | equemene | numpy.float32(Angle), |
1317 | 217 | equemene | numpy.int32(Line), |
1318 | 219 | equemene | grid=(zImage.shape[0]/32,zImage.shape[1]/32,1), |
1319 | 219 | equemene | block=(32,32,1)) |
1320 | 217 | equemene | |
1321 | 220 | equemene | Context.synchronize() |
1322 | 220 | equemene | |
1323 | 218 | equemene | compute = time.time()-start_time |
1324 | 217 | equemene | |
1325 | 217 | equemene | cuda.memcpy_dtoh(zImage,zImageCU) |
1326 | 217 | equemene | cuda.memcpy_dtoh(fImage,fImageCU) |
1327 | 218 | equemene | elapsed = time.time()-start_time |
1328 | 218 | equemene | print("\nCompute Time : %f" % compute)
|
1329 | 218 | equemene | print("Elapsed Time : %f\n" % elapsed)
|
1330 | 217 | equemene | |
1331 | 217 | equemene | zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1332 | 217 | equemene | fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1333 | 219 | equemene | print("Z max @(%i,%i) : %f" % (zMaxPosition[1][0],zMaxPosition[0][0],zImage.max())) |
1334 | 219 | equemene | print("Flux max @(%i,%i) : %f\n" % (fMaxPosition[1][0],fMaxPosition[0][0],fImage.max())) |
1335 | 217 | equemene | |
1336 | 220 | equemene | |
1337 | 218 | equemene | Context.pop() |
1338 | 220 | equemene | |
1339 | 217 | equemene | Context.detach() |
1340 | 217 | equemene | |
1341 | 217 | equemene | return(elapsed)
|
1342 | 217 | equemene | |
1343 | 199 | equemene | if __name__=='__main__': |
1344 | 199 | equemene | |
1345 | 199 | equemene | GpuStyle = 'OpenCL'
|
1346 | 199 | equemene | Mass = 1.
|
1347 | 199 | equemene | # Internal Radius 3 times de Schwarzschild Radius
|
1348 | 199 | equemene | InternalRadius=6.*Mass
|
1349 | 199 | equemene | #
|
1350 | 199 | equemene | ExternalRadius=12.
|
1351 | 199 | equemene | #
|
1352 | 199 | equemene | # Angle with normal to disc 10 degrees
|
1353 | 199 | equemene | Angle = numpy.pi/180.*(90.-10.) |
1354 | 199 | equemene | # Radiation of disc : BlackBody or Monochromatic
|
1355 | 209 | equemene | BlackBody = False
|
1356 | 199 | equemene | # Size of image
|
1357 | 199 | equemene | Size=256
|
1358 | 199 | equemene | # Variable Type
|
1359 | 199 | equemene | VariableType='FP32'
|
1360 | 199 | equemene | # ?
|
1361 | 199 | equemene | q=-2
|
1362 | 204 | equemene | # Method of resolution
|
1363 | 209 | equemene | Method='TrajectoPixel'
|
1364 | 211 | equemene | # Colors for output image
|
1365 | 211 | equemene | Colors='Greyscale'
|
1366 | 211 | equemene | # Physics
|
1367 | 211 | equemene | Physics='Einstein'
|
1368 | 211 | equemene | # No output as image
|
1369 | 211 | equemene | NoImage = False
|
1370 | 211 | equemene | |
1371 | 211 | equemene | HowToUse='%s -h [Help] -b [BlackBodyEmission] -n [NoImage] -p <Einstein/Newton> -s <SizeInPixels> -m <Mass> -i <DiscInternalRadius> -x <DiscExternalRadius> -a <AngleAboveDisc> -d <DeviceId> -c <Greyscale/Red2Yellow> -g <CUDA/OpenCL> -t <EachPixel/TrajectoCircle/TrajectoPixel> -v <FP32/FP64>'
|
1372 | 199 | equemene | |
1373 | 199 | equemene | try:
|
1374 | 211 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hbns:m:i:x:a:d:g:v:t:c:p:",["blackbody","noimage","camera","size=","mass=","internal=","external=","angle=","device=","gpustyle=","variabletype=","method=","colors=","physics="]) |
1375 | 199 | equemene | except getopt.GetoptError:
|
1376 | 199 | equemene | print(HowToUse % sys.argv[0])
|
1377 | 199 | equemene | sys.exit(2)
|
1378 | 199 | equemene | |
1379 | 199 | equemene | # List of Devices
|
1380 | 199 | equemene | Devices=[] |
1381 | 199 | equemene | Alu={} |
1382 | 199 | equemene | |
1383 | 199 | equemene | for opt, arg in opts: |
1384 | 199 | equemene | if opt == '-h': |
1385 | 199 | equemene | print(HowToUse % sys.argv[0])
|
1386 | 199 | equemene | |
1387 | 199 | equemene | print("\nInformations about devices detected under OpenCL API:")
|
1388 | 199 | equemene | # For PyOpenCL import
|
1389 | 199 | equemene | try:
|
1390 | 199 | equemene | import pyopencl as cl |
1391 | 199 | equemene | Id=0
|
1392 | 199 | equemene | for platform in cl.get_platforms(): |
1393 | 199 | equemene | for device in platform.get_devices(): |
1394 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
1395 | 199 | equemene | deviceType="xPU"
|
1396 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
1397 | 199 | equemene | Id=Id+1
|
1398 | 199 | equemene | |
1399 | 199 | equemene | except:
|
1400 | 199 | equemene | print("Your platform does not seem to support OpenCL")
|
1401 | 199 | equemene | |
1402 | 199 | equemene | print("\nInformations about devices detected under CUDA API:")
|
1403 | 199 | equemene | # For PyCUDA import
|
1404 | 199 | equemene | try:
|
1405 | 199 | equemene | import pycuda.driver as cuda |
1406 | 199 | equemene | cuda.init() |
1407 | 199 | equemene | for Id in range(cuda.Device.count()): |
1408 | 199 | equemene | device=cuda.Device(Id) |
1409 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
1410 | 199 | equemene | print
|
1411 | 199 | equemene | except:
|
1412 | 199 | equemene | print("Your platform does not seem to support CUDA")
|
1413 | 199 | equemene | |
1414 | 199 | equemene | sys.exit() |
1415 | 199 | equemene | |
1416 | 199 | equemene | elif opt in ("-d", "--device"): |
1417 | 199 | equemene | # Devices.append(int(arg))
|
1418 | 199 | equemene | Device=int(arg)
|
1419 | 199 | equemene | elif opt in ("-g", "--gpustyle"): |
1420 | 199 | equemene | GpuStyle = arg |
1421 | 204 | equemene | elif opt in ("-v", "--variabletype"): |
1422 | 199 | equemene | VariableType = arg |
1423 | 199 | equemene | elif opt in ("-s", "--size"): |
1424 | 199 | equemene | Size = int(arg)
|
1425 | 199 | equemene | elif opt in ("-m", "--mass"): |
1426 | 199 | equemene | Mass = float(arg)
|
1427 | 199 | equemene | elif opt in ("-i", "--internal"): |
1428 | 199 | equemene | InternalRadius = float(arg)
|
1429 | 199 | equemene | elif opt in ("-e", "--external"): |
1430 | 199 | equemene | ExternalRadius = float(arg)
|
1431 | 199 | equemene | elif opt in ("-a", "--angle"): |
1432 | 199 | equemene | Angle = numpy.pi/180.*(90.-float(arg)) |
1433 | 199 | equemene | elif opt in ("-b", "--blackbody"): |
1434 | 199 | equemene | BlackBody = True
|
1435 | 211 | equemene | elif opt in ("-n", "--noimage"): |
1436 | 211 | equemene | NoImage = True
|
1437 | 204 | equemene | elif opt in ("-t", "--method"): |
1438 | 204 | equemene | Method = arg |
1439 | 211 | equemene | elif opt in ("-c", "--colors"): |
1440 | 211 | equemene | Colors = arg |
1441 | 211 | equemene | elif opt in ("-p", "--physics"): |
1442 | 211 | equemene | Physics = arg |
1443 | 199 | equemene | |
1444 | 199 | equemene | print("Device Identification selected : %s" % Device)
|
1445 | 199 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
1446 | 199 | equemene | print("VariableType : %s" % VariableType)
|
1447 | 199 | equemene | print("Size : %i" % Size)
|
1448 | 199 | equemene | print("Mass : %f" % Mass)
|
1449 | 199 | equemene | print("Internal Radius : %f" % InternalRadius)
|
1450 | 199 | equemene | print("External Radius : %f" % ExternalRadius)
|
1451 | 199 | equemene | print("Angle with normal of (in radians) : %f" % Angle)
|
1452 | 199 | equemene | print("Black Body Disc Emission (monochromatic instead) : %s" % BlackBody)
|
1453 | 204 | equemene | print("Method of resolution : %s" % Method)
|
1454 | 211 | equemene | print("Colors for output images : %s" % Colors)
|
1455 | 211 | equemene | print("Physics used for Trajectories : %s" % Physics)
|
1456 | 199 | equemene | |
1457 | 199 | equemene | if GpuStyle=='CUDA': |
1458 | 199 | equemene | print("\nSelection of CUDA device")
|
1459 | 199 | equemene | try:
|
1460 | 199 | equemene | # For PyCUDA import
|
1461 | 199 | equemene | import pycuda.driver as cuda |
1462 | 199 | equemene | |
1463 | 199 | equemene | cuda.init() |
1464 | 199 | equemene | for Id in range(cuda.Device.count()): |
1465 | 199 | equemene | device=cuda.Device(Id) |
1466 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
1467 | 199 | equemene | if Id in Devices: |
1468 | 199 | equemene | Alu[Id]='GPU'
|
1469 | 199 | equemene | |
1470 | 199 | equemene | except ImportError: |
1471 | 199 | equemene | print("Platform does not seem to support CUDA")
|
1472 | 199 | equemene | |
1473 | 199 | equemene | if GpuStyle=='OpenCL': |
1474 | 199 | equemene | print("\nSelection of OpenCL device")
|
1475 | 199 | equemene | try:
|
1476 | 199 | equemene | # For PyOpenCL import
|
1477 | 199 | equemene | import pyopencl as cl |
1478 | 199 | equemene | Id=0
|
1479 | 199 | equemene | for platform in cl.get_platforms(): |
1480 | 199 | equemene | for device in platform.get_devices(): |
1481 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
1482 | 199 | equemene | deviceType="xPU"
|
1483 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
1484 | 199 | equemene | |
1485 | 199 | equemene | if Id in Devices: |
1486 | 199 | equemene | # Set the Alu as detected Device Type
|
1487 | 199 | equemene | Alu[Id]=deviceType |
1488 | 199 | equemene | Id=Id+1
|
1489 | 199 | equemene | except ImportError: |
1490 | 199 | equemene | print("Platform does not seem to support OpenCL")
|
1491 | 199 | equemene | |
1492 | 199 | equemene | # print(Devices,Alu)
|
1493 | 199 | equemene | |
1494 | 199 | equemene | # MyImage=numpy.where(numpy.random.zeros(Size,Size)>0,1,-1).astype(numpy.float32)
|
1495 | 204 | equemene | TrackPoints=2048
|
1496 | 201 | equemene | zImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
1497 | 201 | equemene | fImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
1498 | 199 | equemene | |
1499 | 204 | equemene | InputCL={} |
1500 | 204 | equemene | InputCL['Device']=Device
|
1501 | 204 | equemene | InputCL['GpuStyle']=GpuStyle
|
1502 | 204 | equemene | InputCL['VariableType']=VariableType
|
1503 | 204 | equemene | InputCL['Size']=Size
|
1504 | 204 | equemene | InputCL['Mass']=Mass
|
1505 | 204 | equemene | InputCL['InternalRadius']=InternalRadius
|
1506 | 204 | equemene | InputCL['ExternalRadius']=ExternalRadius
|
1507 | 204 | equemene | InputCL['Angle']=Angle
|
1508 | 204 | equemene | InputCL['BlackBody']=BlackBody
|
1509 | 204 | equemene | InputCL['Method']=Method
|
1510 | 204 | equemene | InputCL['TrackPoints']=TrackPoints
|
1511 | 211 | equemene | InputCL['Physics']=Physics
|
1512 | 199 | equemene | |
1513 | 217 | equemene | if GpuStyle=='OpenCL': |
1514 | 217 | equemene | duration=BlackHoleCL(zImage,fImage,InputCL) |
1515 | 217 | equemene | else:
|
1516 | 217 | equemene | duration=BlackHoleCUDA(zImage,fImage,InputCL) |
1517 | 217 | equemene | |
1518 | 211 | equemene | Hostname=gethostname() |
1519 | 211 | equemene | Date=time.strftime("%Y%m%d_%H%M%S")
|
1520 | 211 | equemene | ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
1521 | 211 | equemene | |
1522 | 211 | equemene | |
1523 | 211 | equemene | if not NoImage: |
1524 | 211 | equemene | ImageOutput(zImage,"TrouNoirZ_%s" % ImageInfo,Colors)
|
1525 | 211 | equemene | ImageOutput(fImage,"TrouNoirF_%s" % ImageInfo,Colors) |