root / NBody / NBody.py @ 162
Historique | Voir | Annoter | Télécharger (20,29 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
Demonstrateur OpenCL d'interaction NCorps
|
5 |
|
6 |
Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr> CeCILLv2
|
7 |
"""
|
8 |
import getopt |
9 |
import sys |
10 |
import time |
11 |
import numpy as np |
12 |
import pyopencl as cl |
13 |
import pyopencl.array as cl_array |
14 |
from numpy.random import randint as nprnd |
15 |
|
16 |
def DictionariesAPI(): |
17 |
Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
18 |
Computing={'FP32':0,'FP64':1} |
19 |
return(Marsaglia,Computing)
|
20 |
|
21 |
BlobOpenCL= """
|
22 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
23 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
24 |
#define MWC (znew+wnew)
|
25 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
26 |
#define CONG (jcong=69069*jcong+1234567)
|
27 |
#define KISS ((MWC^CONG)+SHR3)
|
28 |
|
29 |
#define TFP32 0
|
30 |
#define TFP64 1
|
31 |
|
32 |
#define LENGTH 1.e0f
|
33 |
|
34 |
#if TYPE == TFP32
|
35 |
#define MYFLOAT4 float4
|
36 |
#define MYFLOAT8 float8
|
37 |
#define MYFLOAT float
|
38 |
#define DISTANCE fast_distance
|
39 |
#else
|
40 |
#if defined(cl_khr_fp64) // Khronos extension available?
|
41 |
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
42 |
#define DOUBLE_SUPPORT_AVAILABLE
|
43 |
#elif defined(cl_amd_fp64) // AMD extension available?
|
44 |
#pragma OPENCL EXTENSION cl_amd_fp64 : enable
|
45 |
#define DOUBLE_SUPPORT_AVAILABLE
|
46 |
#endif
|
47 |
#define MYFLOAT4 double4
|
48 |
#define MYFLOAT8 double8
|
49 |
#define MYFLOAT double
|
50 |
#define DISTANCE distance
|
51 |
#endif
|
52 |
|
53 |
#define MWCfp (MYFLOAT)(MWC * 2.3283064365386963e-10f)
|
54 |
#define KISSfp (MYFLOAT)(KISS * 2.3283064365386963e-10f)
|
55 |
#define SHR3fp (MYFLOAT)(SHR3 * 2.3283064365386963e-10f)
|
56 |
#define CONGfp (MYFLOAT)(CONG * 2.3283064365386963e-10f)
|
57 |
|
58 |
#define PI (MYFLOAT)3.141592653589793238462643197169399375105820974944592307816406286e0f
|
59 |
|
60 |
#define SMALL_NUM 1.e-9f
|
61 |
|
62 |
MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
63 |
{
|
64 |
private MYFLOAT r=DISTANCE(n,m);
|
65 |
|
66 |
return((n-m)/(MYFLOAT)(r*r*r));
|
67 |
}
|
68 |
|
69 |
MYFLOAT4 InteractionCore(MYFLOAT4 m,MYFLOAT4 n)
|
70 |
{
|
71 |
private MYFLOAT core=(MYFLOAT)1.e5f;
|
72 |
private MYFLOAT r=DISTANCE(n,m);
|
73 |
private MYFLOAT d=r*r+core*core;
|
74 |
|
75 |
return(core*(n-m)/(MYFLOAT)(d*d));
|
76 |
}
|
77 |
|
78 |
MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
79 |
{
|
80 |
return((MYFLOAT)(-1.e0f)/(DISTANCE(n,m)));
|
81 |
}
|
82 |
|
83 |
MYFLOAT AtomicPotential(__global MYFLOAT4* clDataX,int gid)
|
84 |
{
|
85 |
private MYFLOAT potential=(MYFLOAT)0.e0f;
|
86 |
private MYFLOAT4 x=clDataX[gid];
|
87 |
|
88 |
for (int i=0;i<get_global_size(0);i++)
|
89 |
{
|
90 |
if (gid != i)
|
91 |
potential+=PairPotential(x,clDataX[i]);
|
92 |
}
|
93 |
|
94 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
95 |
return(potential);
|
96 |
}
|
97 |
|
98 |
MYFLOAT AtomicPotentialCoM(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int gid)
|
99 |
{
|
100 |
return(PairPotential(clDataX[gid],clCoM[0]));
|
101 |
}
|
102 |
|
103 |
MYFLOAT8 AtomicRungeKutta(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
104 |
{
|
105 |
private MYFLOAT4 a0,v0,x0,a1,v1,x1,a2,v2,x2,a3,v3,x3,a4,v4,x4,xf,vf;
|
106 |
|
107 |
a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
108 |
v0=(MYFLOAT4)clDataInV[gid];
|
109 |
x0=(MYFLOAT4)clDataInX[gid];
|
110 |
int N = get_global_size(0);
|
111 |
|
112 |
for (int i=0;i<N;i++)
|
113 |
{
|
114 |
if (gid != i)
|
115 |
a0+=Interaction(x0,clDataInX[i]);
|
116 |
}
|
117 |
|
118 |
a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
119 |
v1=v0+a0*dt;
|
120 |
x1=x0+v0*dt;
|
121 |
for (int i=0;i<N;i++)
|
122 |
{
|
123 |
if (gid != i)
|
124 |
a1+=Interaction(x1,clDataInX[i]);
|
125 |
}
|
126 |
|
127 |
a2=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
128 |
v2=v0+a1*dt*(MYFLOAT)5.e-1f;
|
129 |
x2=x0+v1*dt*(MYFLOAT)5.e-1f;
|
130 |
for (int i=0;i<N;i++)
|
131 |
{
|
132 |
if (gid != i)
|
133 |
a2+=Interaction(x2,clDataInX[i]);
|
134 |
}
|
135 |
|
136 |
a3=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
137 |
v3=v0+a2*dt*(MYFLOAT)5.e-1f;
|
138 |
x3=x0+v2*dt*(MYFLOAT)5.e-1f;
|
139 |
for (int i=0;i<N;i++)
|
140 |
{
|
141 |
if (gid != i)
|
142 |
a3+=Interaction(x3,clDataInX[i]);
|
143 |
}
|
144 |
|
145 |
a4=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
146 |
v4=v0+a3*dt;
|
147 |
x4=x0+v3*dt;
|
148 |
for (int i=0;i<N;i++)
|
149 |
{
|
150 |
if (gid != i)
|
151 |
a4+=Interaction(x4,clDataInX[i]);
|
152 |
}
|
153 |
|
154 |
xf=x0+dt*(v1+(MYFLOAT)2.e0f*(v2+v3)+v4)/(MYFLOAT)6.e0f;
|
155 |
vf=v0+dt*(a1+(MYFLOAT)2.e0f*(a2+a3)+a4)/(MYFLOAT)6.e0f;
|
156 |
|
157 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,1.e0f,vf.s0,vf.s1,vf.s2,1.e0f));
|
158 |
}
|
159 |
|
160 |
// Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
161 |
|
162 |
MYFLOAT8 AtomicHeun(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
163 |
{
|
164 |
private MYFLOAT4 x,v,a,xi,vi,ai,xf,vf;
|
165 |
|
166 |
x=(MYFLOAT4)clDataInX[gid];
|
167 |
v=(MYFLOAT4)clDataInV[gid];
|
168 |
a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
169 |
|
170 |
for (int i=0;i<get_global_size(0);i++)
|
171 |
{
|
172 |
if (gid != i)
|
173 |
a+=Interaction(x,clDataInX[i]);
|
174 |
}
|
175 |
|
176 |
vi=v+dt*a;
|
177 |
xi=x+dt*vi;
|
178 |
ai=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
179 |
|
180 |
for (int i=0;i<get_global_size(0);i++)
|
181 |
{
|
182 |
if (gid != i)
|
183 |
ai+=Interaction(xi,clDataInX[i]);
|
184 |
}
|
185 |
|
186 |
vf=v+dt*(a+ai)/(MYFLOAT)2.e0f;
|
187 |
xf=x+dt*(v+vi)/(MYFLOAT)2.e0f;
|
188 |
|
189 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,1.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
190 |
}
|
191 |
|
192 |
MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
193 |
{
|
194 |
private MYFLOAT4 x,v,a,xf,vf;
|
195 |
|
196 |
x=(MYFLOAT4)clDataInX[gid];
|
197 |
v=(MYFLOAT4)clDataInV[gid];
|
198 |
a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
199 |
|
200 |
for (int i=0;i<get_global_size(0);i++)
|
201 |
{
|
202 |
if (gid != i)
|
203 |
a+=Interaction(x,clDataInX[i]);
|
204 |
}
|
205 |
|
206 |
vf=v+dt*a;
|
207 |
xf=x+dt*vf;
|
208 |
|
209 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,1.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
210 |
}
|
211 |
|
212 |
MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
213 |
{
|
214 |
MYFLOAT4 x,v,a,xf,vf;
|
215 |
|
216 |
x=(MYFLOAT4)clDataInX[gid];
|
217 |
v=(MYFLOAT4)clDataInV[gid];
|
218 |
a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
219 |
|
220 |
for (int i=0;i<get_global_size(0);i++)
|
221 |
{
|
222 |
if (gid != i)
|
223 |
a+=Interaction(x,clDataInX[i]);
|
224 |
}
|
225 |
|
226 |
vf=v+dt*a;
|
227 |
xf=x+dt*v;
|
228 |
|
229 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,1.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
230 |
}
|
231 |
|
232 |
__kernel void SplutterPoints(__global MYFLOAT4* clDataX, MYFLOAT box,
|
233 |
uint seed_z,uint seed_w)
|
234 |
{
|
235 |
int gid = get_global_id(0);
|
236 |
uint z=seed_z+(uint)gid;
|
237 |
uint w=seed_w-(uint)gid;
|
238 |
|
239 |
MYFLOAT x0=box*(MYFLOAT)(MWCfp-(MYFLOAT)5.e-1f);
|
240 |
MYFLOAT y0=box*(MYFLOAT)(MWCfp-(MYFLOAT)5.e-1f);
|
241 |
MYFLOAT z0=box*(MYFLOAT)(MWCfp-(MYFLOAT)5.e-1f);
|
242 |
|
243 |
clDataX[gid].s0123 = (MYFLOAT4) (x0,y0,z0,1.e0f);
|
244 |
}
|
245 |
|
246 |
__kernel void SplutterStress(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
|
247 |
{
|
248 |
int gid = get_global_id(0);
|
249 |
MYFLOAT N = (MYFLOAT)get_global_size(0);
|
250 |
uint z=seed_z+(uint)gid;
|
251 |
uint w=seed_w-(uint)gid;
|
252 |
|
253 |
if (velocity<SMALL_NUM) {
|
254 |
MYFLOAT4 SpeedVector=(MYFLOAT4)normalize(cross(clDataX[gid],clCoM[0]))*sqrt(-AtomicPotential(clDataX,gid)/(MYFLOAT)2.e0f);
|
255 |
clDataV[gid]=SpeedVector;
|
256 |
}
|
257 |
else
|
258 |
{
|
259 |
// cast to float for sin,cos are NEEDED by Mesa FP64 implementation!
|
260 |
MYFLOAT theta=MWCfp*PI;
|
261 |
MYFLOAT phi=MWCfp*PI*(MYFLOAT)2.e0f;
|
262 |
MYFLOAT sinTheta=sin((float)theta);
|
263 |
|
264 |
clDataV[gid].s0=velocity*sinTheta*cos((float)phi);
|
265 |
clDataV[gid].s1=velocity*sinTheta*sin((float)phi);
|
266 |
clDataV[gid].s2=velocity*cos((float)theta);
|
267 |
clDataV[gid].s3=(MYFLOAT)1.e0f;
|
268 |
}
|
269 |
}
|
270 |
|
271 |
__kernel void RungeKutta(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
272 |
{
|
273 |
int gid = get_global_id(0);
|
274 |
|
275 |
MYFLOAT8 clDataGid=AtomicRungeKutta(clDataX,clDataV,gid,h);
|
276 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
277 |
clDataX[gid]=clDataGid.lo;
|
278 |
clDataV[gid]=clDataGid.hi;
|
279 |
}
|
280 |
|
281 |
__kernel void ImplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
282 |
{
|
283 |
int gid = get_global_id(0);
|
284 |
|
285 |
MYFLOAT8 clDataGid=AtomicImplicitEuler(clDataX,clDataV,gid,h);
|
286 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
287 |
clDataX[gid]=clDataGid.lo;
|
288 |
clDataV[gid]=clDataGid.hi;
|
289 |
}
|
290 |
|
291 |
__kernel void Heun(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
292 |
{
|
293 |
int gid = get_global_id(0);
|
294 |
|
295 |
MYFLOAT8 clDataGid=AtomicHeun(clDataX,clDataV,gid,h);
|
296 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
297 |
clDataX[gid]=clDataGid.lo;
|
298 |
clDataV[gid]=clDataGid.hi;
|
299 |
}
|
300 |
|
301 |
__kernel void ExplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
302 |
{
|
303 |
int gid = get_global_id(0);
|
304 |
|
305 |
MYFLOAT8 clDataGid=AtomicExplicitEuler(clDataX,clDataV,gid,h);
|
306 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
307 |
clDataX[gid]=clDataGid.lo;
|
308 |
clDataV[gid]=clDataGid.hi;
|
309 |
}
|
310 |
|
311 |
__kernel void CoMPotential(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
|
312 |
{
|
313 |
int gid = get_global_id(0);
|
314 |
|
315 |
clPotential[gid]=PairPotential(clDataX[gid],clCoM[0]);
|
316 |
}
|
317 |
|
318 |
__kernel void Potential(__global MYFLOAT4* clDataX,__global MYFLOAT* clPotential)
|
319 |
{
|
320 |
int gid = get_global_id(0);
|
321 |
|
322 |
MYFLOAT potential=(MYFLOAT)0.e0f;
|
323 |
MYFLOAT4 x=clDataX[gid];
|
324 |
|
325 |
for (int i=0;i<get_global_size(0);i++)
|
326 |
{
|
327 |
if (gid != i)
|
328 |
potential+=PairPotential(x,clDataX[i]);
|
329 |
}
|
330 |
|
331 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
332 |
clPotential[gid]=potential*(MYFLOAT)5.e-1f;
|
333 |
}
|
334 |
|
335 |
__kernel void CenterOfMass(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int Size)
|
336 |
{
|
337 |
MYFLOAT4 CoM=clDataX[0];
|
338 |
|
339 |
for (int i=1;i<Size;i++)
|
340 |
{
|
341 |
CoM+=clDataX[i];
|
342 |
}
|
343 |
|
344 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
345 |
clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,1.e0f)/(MYFLOAT)Size;
|
346 |
}
|
347 |
|
348 |
__kernel void Kinetic(__global MYFLOAT4* clDataV,__global MYFLOAT* clKinetic)
|
349 |
{
|
350 |
int gid = get_global_id(0);
|
351 |
|
352 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
353 |
MYFLOAT d=(MYFLOAT)length(clDataV[gid]);
|
354 |
clKinetic[gid]=(MYFLOAT)5.e-1f*(MYFLOAT)(d*d);
|
355 |
}
|
356 |
"""
|
357 |
|
358 |
def Energy(MyData): |
359 |
return(sum(MyData*MyData)) |
360 |
|
361 |
if __name__=='__main__': |
362 |
|
363 |
# ValueType
|
364 |
ValueType='FP32'
|
365 |
class MyFloat(np.float32):pass |
366 |
# clType8=cl_array.vec.float8
|
367 |
clType4=cl_array.vec.float4 |
368 |
# Set defaults values
|
369 |
np.set_printoptions(precision=2)
|
370 |
# Id of Device : 1 is for first find !
|
371 |
Device=0
|
372 |
# Iterations is integer
|
373 |
Number=2
|
374 |
# Size of box
|
375 |
SizeOfBox=MyFloat(1.)
|
376 |
# Initial velocity of particules
|
377 |
Velocity=MyFloat(1.)
|
378 |
# Redo the last process
|
379 |
Iterations=int(np.pi*1024) |
380 |
# Step
|
381 |
Step=MyFloat(1./1024) |
382 |
# Method of integration
|
383 |
Method='ImplicitEuler'
|
384 |
# InitialRandom
|
385 |
InitialRandom=False
|
386 |
# RNG Marsaglia Method
|
387 |
RNG='MWC'
|
388 |
# CheckEnergies
|
389 |
CheckEnergies=False
|
390 |
# Display samples in 3D
|
391 |
GraphSamples=False
|
392 |
# Viriel Distribution of stress
|
393 |
VirielStress=True
|
394 |
|
395 |
HowToUse='%s -h [Help] -r [InitialRandom] -e [VirielStress] -g [GraphSamples] -c [CheckEnergies] -d <DeviceId> -n <NumberOfParticules> -z <SizeOfBox> -v <Velocity> -s <Step> -i <Iterations> -m <ImplicitEuler|RungeKutta|ExplicitEuler|Heun> -t <FP32|FP64>'
|
396 |
|
397 |
try:
|
398 |
opts, args = getopt.getopt(sys.argv[1:],"rehgcd:n:z:v:i:s:m:t:",["random","viriel","graph","check","device=","number=","size=","velocity=","iterations=","step=","method=","valuetype="]) |
399 |
except getopt.GetoptError:
|
400 |
print(HowToUse % sys.argv[0])
|
401 |
sys.exit(2)
|
402 |
|
403 |
for opt, arg in opts: |
404 |
if opt == '-h': |
405 |
print(HowToUse % sys.argv[0])
|
406 |
|
407 |
print("\nInformations about devices detected under OpenCL:")
|
408 |
try:
|
409 |
Id=0
|
410 |
for platform in cl.get_platforms(): |
411 |
for device in platform.get_devices(): |
412 |
#deviceType=cl.device_type.to_string(device.type)
|
413 |
deviceType="xPU"
|
414 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
415 |
Id=Id+1
|
416 |
sys.exit() |
417 |
except ImportError: |
418 |
print("Your platform does not seem to support OpenCL")
|
419 |
sys.exit() |
420 |
|
421 |
elif opt in ("-t", "--valuetype"): |
422 |
if arg=='FP64': |
423 |
class MyFloat(np.float64): pass |
424 |
clType4=cl_array.vec.double4 |
425 |
else:
|
426 |
class MyFloat(np.float32):pass |
427 |
clType4=cl_array.vec.float4 |
428 |
ValueType = arg |
429 |
elif opt in ("-d", "--device"): |
430 |
Device=int(arg)
|
431 |
elif opt in ("-m", "--method"): |
432 |
Method=arg |
433 |
elif opt in ("-n", "--number"): |
434 |
Number=int(arg)
|
435 |
elif opt in ("-z", "--size"): |
436 |
SizeOfBox=MyFloat(arg) |
437 |
elif opt in ("-v", "--velocity"): |
438 |
Velocity=MyFloat(arg) |
439 |
VirielStress=False
|
440 |
elif opt in ("-s", "--step"): |
441 |
Step=MyFloat(arg) |
442 |
elif opt in ("-i", "--iterations"): |
443 |
Iterations=int(arg)
|
444 |
elif opt in ("-r", "--random"): |
445 |
InitialRandom=True
|
446 |
elif opt in ("-c", "--check"): |
447 |
CheckEnergies=True
|
448 |
elif opt in ("-g", "--graph"): |
449 |
GraphSamples=True
|
450 |
elif opt in ("-e", "--viriel"): |
451 |
VirielStress=True
|
452 |
|
453 |
SizeOfBox=MyFloat(Number*SizeOfBox) |
454 |
Velocity=MyFloat(Velocity) |
455 |
Step=MyFloat(Step) |
456 |
|
457 |
print("Device choosed : %s" % Device)
|
458 |
print("Number of particules : %s" % Number)
|
459 |
print("Size of Box : %s" % SizeOfBox)
|
460 |
print("Initial velocity : %s" % Velocity)
|
461 |
print("Number of iterations : %s" % Iterations)
|
462 |
print("Step of iteration : %s" % Step)
|
463 |
print("Method of resolution : %s" % Method)
|
464 |
print("Initial Random for RNG Seed : %s" % InitialRandom)
|
465 |
print("Check for Energies : %s" % CheckEnergies)
|
466 |
print("Graph for Samples : %s" % GraphSamples)
|
467 |
print("ValueType is : %s" % ValueType)
|
468 |
print("Viriel distribution of stress %s" % VirielStress)
|
469 |
|
470 |
# Create Numpy array of CL vector with 8 FP32
|
471 |
MyCoM = np.zeros(1,dtype=clType4)
|
472 |
MyDataX = np.zeros(Number, dtype=clType4) |
473 |
MyDataV = np.zeros(Number, dtype=clType4) |
474 |
MyPotential = np.zeros(Number, dtype=MyFloat) |
475 |
MyKinetic = np.zeros(Number, dtype=MyFloat) |
476 |
|
477 |
Marsaglia,Computing=DictionariesAPI() |
478 |
|
479 |
# Scan the OpenCL arrays
|
480 |
Id=0
|
481 |
HasXPU=False
|
482 |
for platform in cl.get_platforms(): |
483 |
for device in platform.get_devices(): |
484 |
if Id==Device:
|
485 |
PlatForm=platform |
486 |
XPU=device |
487 |
print("CPU/GPU selected: ",device.name.lstrip())
|
488 |
print("Platform selected: ",platform.name)
|
489 |
HasXPU=True
|
490 |
Id+=1
|
491 |
|
492 |
if HasXPU==False: |
493 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
494 |
sys.exit() |
495 |
|
496 |
# Create Context
|
497 |
try:
|
498 |
ctx = cl.Context([XPU]) |
499 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
500 |
except:
|
501 |
print("Crash during context creation")
|
502 |
|
503 |
print(Marsaglia[RNG],Computing[ValueType]) |
504 |
# Build all routines used for the computing
|
505 |
#BuildOptions="-DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
506 |
#BuildOptions="-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
507 |
BuildOptions="-cl-mad-enable -cl-kernel-arg-info -cl-fast-relaxed-math -cl-std=CL1.2 -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
508 |
|
509 |
if 'Intel' in PlatForm.name or 'Clover' in PlatForm.name or 'Portable' in PlatForm.name : |
510 |
MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions) |
511 |
else:
|
512 |
MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions+" -cl-strict-aliasing")
|
513 |
|
514 |
mf = cl.mem_flags |
515 |
# clDataX = cl.Buffer(ctx, mf.READ_WRITE, MyDataX.nbytes)
|
516 |
# clDataV = cl.Buffer(ctx, mf.READ_WRITE, MyDataV.nbytes)
|
517 |
# clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes)
|
518 |
# clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes)
|
519 |
# clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes)
|
520 |
|
521 |
clDataX = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataX) |
522 |
clDataV = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataV) |
523 |
clPotential = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyPotential) |
524 |
clKinetic = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyKinetic) |
525 |
clCoM = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyCoM) |
526 |
|
527 |
print('All particles superimposed.')
|
528 |
|
529 |
print(SizeOfBox.dtype) |
530 |
|
531 |
# Set particles to RNG points
|
532 |
if InitialRandom:
|
533 |
MyRoutines.SplutterPoints(queue,(Number,1),None,clDataX,SizeOfBox,np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32))) |
534 |
else:
|
535 |
MyRoutines.SplutterPoints(queue,(Number,1),None,clDataX,SizeOfBox,np.uint32(110271),np.uint32(250173)) |
536 |
|
537 |
print('All particules distributed')
|
538 |
|
539 |
CLLaunch=MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number)) |
540 |
CLLaunch.wait() |
541 |
cl.enqueue_copy(queue,MyCoM,clCoM) |
542 |
print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
543 |
|
544 |
if VirielStress:
|
545 |
CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,MyFloat(0.),np.uint32(110271),np.uint32(250173)) |
546 |
else:
|
547 |
CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,Velocity,np.uint32(110271),np.uint32(250173)) |
548 |
CLLaunch.wait() |
549 |
|
550 |
if GraphSamples:
|
551 |
cl.enqueue_copy(queue, MyDataX, clDataX) |
552 |
t0=np.array([[MyDataX[0][0],MyDataX[0][1],MyDataX[0][2]]]) |
553 |
t1=np.array([[MyDataX[1][0],MyDataX[1][1],MyDataX[1][2]]]) |
554 |
tL=np.array([[MyDataX[-1][0],MyDataX[-1][1],MyDataX[-1][2]]]) |
555 |
|
556 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
557 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
558 |
CLLaunch.wait() |
559 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
560 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
561 |
print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
562 |
|
563 |
if GraphSamples:
|
564 |
cl.enqueue_copy(queue, MyDataX, clDataX) |
565 |
t0=np.array([[MyDataX[0][0],MyDataX[0][1],MyDataX[0][2]]]) |
566 |
t1=np.array([[MyDataX[1][0],MyDataX[1][1],MyDataX[1][2]]]) |
567 |
tL=np.array([[MyDataX[-1][0],MyDataX[-1][1],MyDataX[-1][2]]]) |
568 |
|
569 |
time_start=time.time() |
570 |
for i in range(Iterations): |
571 |
if Method=="RungeKutta": |
572 |
CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clDataX,clDataV,Step) |
573 |
elif Method=="ExplicitEuler": |
574 |
CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step) |
575 |
elif Method=="Heun": |
576 |
CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clDataX,clDataV,Step) |
577 |
else:
|
578 |
CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step) |
579 |
CLLaunch.wait() |
580 |
|
581 |
if CheckEnergies:
|
582 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
583 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
584 |
CLLaunch.wait() |
585 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
586 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
587 |
print(np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
588 |
|
589 |
print(MyPotential,MyKinetic) |
590 |
|
591 |
if GraphSamples:
|
592 |
cl.enqueue_copy(queue, MyDataX, clDataX) |
593 |
t0=np.append(t0,[MyDataX[0][0],MyDataX[0][1],MyDataX[0][2]]) |
594 |
t1=np.append(t1,[MyDataX[1][0],MyDataX[1][1],MyDataX[1][2]]) |
595 |
tL=np.append(tL,[MyDataX[-1][0],MyDataX[-1][1],MyDataX[-1][2]]) |
596 |
print("\nDuration on %s for each %s\n" % (Device,(time.time()-time_start)/Iterations))
|
597 |
|
598 |
MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number)) |
599 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
600 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
601 |
CLLaunch.wait() |
602 |
cl.enqueue_copy(queue,MyCoM,clCoM) |
603 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
604 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
605 |
print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
606 |
print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
607 |
|
608 |
if GraphSamples:
|
609 |
t0=np.transpose(np.reshape(t0,(Iterations+1,3))) |
610 |
t1=np.transpose(np.reshape(t1,(Iterations+1,3))) |
611 |
tL=np.transpose(np.reshape(tL,(Iterations+1,3))) |
612 |
|
613 |
import matplotlib.pyplot as plt |
614 |
from mpl_toolkits.mplot3d import Axes3D |
615 |
|
616 |
fig = plt.figure() |
617 |
ax = fig.gca(projection='3d')
|
618 |
ax.scatter(t0[0],t0[1],t0[2], marker='^',color='blue') |
619 |
ax.scatter(t1[0],t1[1],t1[2], marker='o',color='red') |
620 |
ax.scatter(tL[0],tL[1],tL[2], marker='D',color='green') |
621 |
|
622 |
ax.set_xlabel('X Label')
|
623 |
ax.set_ylabel('Y Label')
|
624 |
ax.set_zlabel('Z Label')
|
625 |
|
626 |
plt.show() |
627 |
|
628 |
clDataX.release() |
629 |
clDataV.release() |
630 |
clKinetic.release() |
631 |
clPotential.release() |