root / NBody / NBody.py @ 162
Historique | Voir | Annoter | Télécharger (20,29 ko)
1 | 128 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 136 | equemene | # -*- coding: utf-8 -*-
|
3 | 116 | equemene | """
|
4 | 116 | equemene | Demonstrateur OpenCL d'interaction NCorps
|
5 | 116 | equemene |
|
6 | 116 | equemene | Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr> CeCILLv2
|
7 | 116 | equemene | """
|
8 | 116 | equemene | import getopt |
9 | 116 | equemene | import sys |
10 | 116 | equemene | import time |
11 | 116 | equemene | import numpy as np |
12 | 116 | equemene | import pyopencl as cl |
13 | 116 | equemene | import pyopencl.array as cl_array |
14 | 116 | equemene | from numpy.random import randint as nprnd |
15 | 116 | equemene | |
16 | 132 | equemene | def DictionariesAPI(): |
17 | 132 | equemene | Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
18 | 132 | equemene | Computing={'FP32':0,'FP64':1} |
19 | 132 | equemene | return(Marsaglia,Computing)
|
20 | 132 | equemene | |
21 | 142 | equemene | BlobOpenCL= """
|
22 | 116 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
23 | 116 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
24 | 116 | equemene | #define MWC (znew+wnew)
|
25 | 116 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
26 | 116 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
27 | 116 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
28 | 116 | equemene |
|
29 | 132 | equemene | #define TFP32 0
|
30 | 132 | equemene | #define TFP64 1
|
31 | 132 | equemene |
|
32 | 151 | equemene | #define LENGTH 1.e0f
|
33 | 116 | equemene |
|
34 | 132 | equemene | #if TYPE == TFP32
|
35 | 132 | equemene | #define MYFLOAT4 float4
|
36 | 132 | equemene | #define MYFLOAT8 float8
|
37 | 132 | equemene | #define MYFLOAT float
|
38 | 151 | equemene | #define DISTANCE fast_distance
|
39 | 132 | equemene | #else
|
40 | 155 | equemene | #if defined(cl_khr_fp64) // Khronos extension available?
|
41 | 155 | equemene | #pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
42 | 155 | equemene | #define DOUBLE_SUPPORT_AVAILABLE
|
43 | 155 | equemene | #elif defined(cl_amd_fp64) // AMD extension available?
|
44 | 155 | equemene | #pragma OPENCL EXTENSION cl_amd_fp64 : enable
|
45 | 155 | equemene | #define DOUBLE_SUPPORT_AVAILABLE
|
46 | 155 | equemene | #endif
|
47 | 132 | equemene | #define MYFLOAT4 double4
|
48 | 132 | equemene | #define MYFLOAT8 double8
|
49 | 132 | equemene | #define MYFLOAT double
|
50 | 151 | equemene | #define DISTANCE distance
|
51 | 132 | equemene | #endif
|
52 | 132 | equemene |
|
53 | 160 | equemene | #define MWCfp (MYFLOAT)(MWC * 2.3283064365386963e-10f)
|
54 | 160 | equemene | #define KISSfp (MYFLOAT)(KISS * 2.3283064365386963e-10f)
|
55 | 160 | equemene | #define SHR3fp (MYFLOAT)(SHR3 * 2.3283064365386963e-10f)
|
56 | 160 | equemene | #define CONGfp (MYFLOAT)(CONG * 2.3283064365386963e-10f)
|
57 | 160 | equemene |
|
58 | 160 | equemene | #define PI (MYFLOAT)3.141592653589793238462643197169399375105820974944592307816406286e0f
|
59 | 160 | equemene |
|
60 | 160 | equemene | #define SMALL_NUM 1.e-9f
|
61 | 160 | equemene |
|
62 | 132 | equemene | MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
63 | 116 | equemene | {
|
64 | 160 | equemene | private MYFLOAT r=DISTANCE(n,m);
|
65 | 155 | equemene |
|
66 | 160 | equemene | return((n-m)/(MYFLOAT)(r*r*r));
|
67 | 116 | equemene | }
|
68 | 116 | equemene |
|
69 | 141 | equemene | MYFLOAT4 InteractionCore(MYFLOAT4 m,MYFLOAT4 n)
|
70 | 141 | equemene | {
|
71 | 160 | equemene | private MYFLOAT core=(MYFLOAT)1.e5f;
|
72 | 160 | equemene | private MYFLOAT r=DISTANCE(n,m);
|
73 | 160 | equemene | private MYFLOAT d=r*r+core*core;
|
74 | 141 | equemene |
|
75 | 155 | equemene | return(core*(n-m)/(MYFLOAT)(d*d));
|
76 | 141 | equemene | }
|
77 | 141 | equemene |
|
78 | 133 | equemene | MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
79 | 133 | equemene | {
|
80 | 151 | equemene | return((MYFLOAT)(-1.e0f)/(DISTANCE(n,m)));
|
81 | 133 | equemene | }
|
82 | 133 | equemene |
|
83 | 160 | equemene | MYFLOAT AtomicPotential(__global MYFLOAT4* clDataX,int gid)
|
84 | 139 | equemene | {
|
85 | 160 | equemene | private MYFLOAT potential=(MYFLOAT)0.e0f;
|
86 | 160 | equemene | private MYFLOAT4 x=clDataX[gid];
|
87 | 139 | equemene |
|
88 | 139 | equemene | for (int i=0;i<get_global_size(0);i++)
|
89 | 139 | equemene | {
|
90 | 139 | equemene | if (gid != i)
|
91 | 160 | equemene | potential+=PairPotential(x,clDataX[i]);
|
92 | 139 | equemene | }
|
93 | 133 | equemene |
|
94 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
95 | 141 | equemene | return(potential);
|
96 | 139 | equemene | }
|
97 | 139 | equemene |
|
98 | 160 | equemene | MYFLOAT AtomicPotentialCoM(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int gid)
|
99 | 139 | equemene | {
|
100 | 160 | equemene | return(PairPotential(clDataX[gid],clCoM[0]));
|
101 | 139 | equemene | }
|
102 | 139 | equemene |
|
103 | 160 | equemene | MYFLOAT8 AtomicRungeKutta(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
104 | 116 | equemene | {
|
105 | 160 | equemene | private MYFLOAT4 a0,v0,x0,a1,v1,x1,a2,v2,x2,a3,v3,x3,a4,v4,x4,xf,vf;
|
106 | 160 | equemene |
|
107 | 160 | equemene | a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
108 | 160 | equemene | v0=(MYFLOAT4)clDataInV[gid];
|
109 | 160 | equemene | x0=(MYFLOAT4)clDataInX[gid];
|
110 | 133 | equemene | int N = get_global_size(0);
|
111 | 133 | equemene |
|
112 | 133 | equemene | for (int i=0;i<N;i++)
|
113 | 121 | equemene | {
|
114 | 121 | equemene | if (gid != i)
|
115 | 160 | equemene | a0+=Interaction(x0,clDataInX[i]);
|
116 | 121 | equemene | }
|
117 | 121 | equemene |
|
118 | 160 | equemene | a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
119 | 160 | equemene | v1=v0+a0*dt;
|
120 | 160 | equemene | x1=x0+v0*dt;
|
121 | 133 | equemene | for (int i=0;i<N;i++)
|
122 | 121 | equemene | {
|
123 | 121 | equemene | if (gid != i)
|
124 | 160 | equemene | a1+=Interaction(x1,clDataInX[i]);
|
125 | 121 | equemene | }
|
126 | 121 | equemene |
|
127 | 160 | equemene | a2=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
128 | 160 | equemene | v2=v0+a1*dt*(MYFLOAT)5.e-1f;
|
129 | 160 | equemene | x2=x0+v1*dt*(MYFLOAT)5.e-1f;
|
130 | 133 | equemene | for (int i=0;i<N;i++)
|
131 | 121 | equemene | {
|
132 | 121 | equemene | if (gid != i)
|
133 | 160 | equemene | a2+=Interaction(x2,clDataInX[i]);
|
134 | 121 | equemene | }
|
135 | 121 | equemene |
|
136 | 160 | equemene | a3=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
137 | 160 | equemene | v3=v0+a2*dt*(MYFLOAT)5.e-1f;
|
138 | 160 | equemene | x3=x0+v2*dt*(MYFLOAT)5.e-1f;
|
139 | 133 | equemene | for (int i=0;i<N;i++)
|
140 | 121 | equemene | {
|
141 | 121 | equemene | if (gid != i)
|
142 | 160 | equemene | a3+=Interaction(x3,clDataInX[i]);
|
143 | 121 | equemene | }
|
144 | 121 | equemene |
|
145 | 160 | equemene | a4=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
146 | 160 | equemene | v4=v0+a3*dt;
|
147 | 160 | equemene | x4=x0+v3*dt;
|
148 | 141 | equemene | for (int i=0;i<N;i++)
|
149 | 141 | equemene | {
|
150 | 141 | equemene | if (gid != i)
|
151 | 160 | equemene | a4+=Interaction(x4,clDataInX[i]);
|
152 | 141 | equemene | }
|
153 | 141 | equemene |
|
154 | 160 | equemene | xf=x0+dt*(v1+(MYFLOAT)2.e0f*(v2+v3)+v4)/(MYFLOAT)6.e0f;
|
155 | 160 | equemene | vf=v0+dt*(a1+(MYFLOAT)2.e0f*(a2+a3)+a4)/(MYFLOAT)6.e0f;
|
156 | 121 | equemene |
|
157 | 160 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,1.e0f,vf.s0,vf.s1,vf.s2,1.e0f));
|
158 | 121 | equemene | }
|
159 | 121 | equemene |
|
160 | 121 | equemene | // Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
161 | 121 | equemene |
|
162 | 160 | equemene | MYFLOAT8 AtomicHeun(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
163 | 121 | equemene | {
|
164 | 160 | equemene | private MYFLOAT4 x,v,a,xi,vi,ai,xf,vf;
|
165 | 116 | equemene |
|
166 | 160 | equemene | x=(MYFLOAT4)clDataInX[gid];
|
167 | 160 | equemene | v=(MYFLOAT4)clDataInV[gid];
|
168 | 151 | equemene | a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
169 | 141 | equemene |
|
170 | 141 | equemene | for (int i=0;i<get_global_size(0);i++)
|
171 | 116 | equemene | {
|
172 | 116 | equemene | if (gid != i)
|
173 | 160 | equemene | a+=Interaction(x,clDataInX[i]);
|
174 | 116 | equemene | }
|
175 | 141 | equemene |
|
176 | 141 | equemene | vi=v+dt*a;
|
177 | 141 | equemene | xi=x+dt*vi;
|
178 | 151 | equemene | ai=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
179 | 141 | equemene |
|
180 | 141 | equemene | for (int i=0;i<get_global_size(0);i++)
|
181 | 116 | equemene | {
|
182 | 116 | equemene | if (gid != i)
|
183 | 160 | equemene | ai+=Interaction(xi,clDataInX[i]);
|
184 | 116 | equemene | }
|
185 | 141 | equemene |
|
186 | 160 | equemene | vf=v+dt*(a+ai)/(MYFLOAT)2.e0f;
|
187 | 160 | equemene | xf=x+dt*(v+vi)/(MYFLOAT)2.e0f;
|
188 | 118 | equemene |
|
189 | 160 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,1.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
190 | 119 | equemene | }
|
191 | 119 | equemene |
|
192 | 160 | equemene | MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
193 | 119 | equemene | {
|
194 | 160 | equemene | private MYFLOAT4 x,v,a,xf,vf;
|
195 | 119 | equemene |
|
196 | 160 | equemene | x=(MYFLOAT4)clDataInX[gid];
|
197 | 160 | equemene | v=(MYFLOAT4)clDataInV[gid];
|
198 | 151 | equemene | a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
199 | 160 | equemene |
|
200 | 119 | equemene | for (int i=0;i<get_global_size(0);i++)
|
201 | 119 | equemene | {
|
202 | 119 | equemene | if (gid != i)
|
203 | 160 | equemene | a+=Interaction(x,clDataInX[i]);
|
204 | 119 | equemene | }
|
205 | 133 | equemene |
|
206 | 119 | equemene | vf=v+dt*a;
|
207 | 133 | equemene | xf=x+dt*vf;
|
208 | 118 | equemene |
|
209 | 160 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,1.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
210 | 116 | equemene | }
|
211 | 116 | equemene |
|
212 | 160 | equemene | MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
213 | 140 | equemene | {
|
214 | 140 | equemene | MYFLOAT4 x,v,a,xf,vf;
|
215 | 140 | equemene |
|
216 | 160 | equemene | x=(MYFLOAT4)clDataInX[gid];
|
217 | 160 | equemene | v=(MYFLOAT4)clDataInV[gid];
|
218 | 151 | equemene | a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
219 | 160 | equemene |
|
220 | 140 | equemene | for (int i=0;i<get_global_size(0);i++)
|
221 | 140 | equemene | {
|
222 | 140 | equemene | if (gid != i)
|
223 | 160 | equemene | a+=Interaction(x,clDataInX[i]);
|
224 | 140 | equemene | }
|
225 | 140 | equemene |
|
226 | 140 | equemene | vf=v+dt*a;
|
227 | 140 | equemene | xf=x+dt*v;
|
228 | 140 | equemene |
|
229 | 160 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,1.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
230 | 140 | equemene | }
|
231 | 140 | equemene |
|
232 | 160 | equemene | __kernel void SplutterPoints(__global MYFLOAT4* clDataX, MYFLOAT box,
|
233 | 139 | equemene | uint seed_z,uint seed_w)
|
234 | 116 | equemene | {
|
235 | 116 | equemene | int gid = get_global_id(0);
|
236 | 116 | equemene | uint z=seed_z+(uint)gid;
|
237 | 116 | equemene | uint w=seed_w-(uint)gid;
|
238 | 133 | equemene |
|
239 | 155 | equemene | MYFLOAT x0=box*(MYFLOAT)(MWCfp-(MYFLOAT)5.e-1f);
|
240 | 155 | equemene | MYFLOAT y0=box*(MYFLOAT)(MWCfp-(MYFLOAT)5.e-1f);
|
241 | 155 | equemene | MYFLOAT z0=box*(MYFLOAT)(MWCfp-(MYFLOAT)5.e-1f);
|
242 | 137 | equemene |
|
243 | 160 | equemene | clDataX[gid].s0123 = (MYFLOAT4) (x0,y0,z0,1.e0f);
|
244 | 116 | equemene | }
|
245 | 116 | equemene |
|
246 | 160 | equemene | __kernel void SplutterStress(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
|
247 | 139 | equemene | {
|
248 | 139 | equemene | int gid = get_global_id(0);
|
249 | 142 | equemene | MYFLOAT N = (MYFLOAT)get_global_size(0);
|
250 | 139 | equemene | uint z=seed_z+(uint)gid;
|
251 | 139 | equemene | uint w=seed_w-(uint)gid;
|
252 | 139 | equemene |
|
253 | 139 | equemene | if (velocity<SMALL_NUM) {
|
254 | 160 | equemene | MYFLOAT4 SpeedVector=(MYFLOAT4)normalize(cross(clDataX[gid],clCoM[0]))*sqrt(-AtomicPotential(clDataX,gid)/(MYFLOAT)2.e0f);
|
255 | 160 | equemene | clDataV[gid]=SpeedVector;
|
256 | 139 | equemene | }
|
257 | 139 | equemene | else
|
258 | 139 | equemene | {
|
259 | 155 | equemene | // cast to float for sin,cos are NEEDED by Mesa FP64 implementation!
|
260 | 142 | equemene | MYFLOAT theta=MWCfp*PI;
|
261 | 151 | equemene | MYFLOAT phi=MWCfp*PI*(MYFLOAT)2.e0f;
|
262 | 155 | equemene | MYFLOAT sinTheta=sin((float)theta);
|
263 | 142 | equemene |
|
264 | 160 | equemene | clDataV[gid].s0=velocity*sinTheta*cos((float)phi);
|
265 | 160 | equemene | clDataV[gid].s1=velocity*sinTheta*sin((float)phi);
|
266 | 160 | equemene | clDataV[gid].s2=velocity*cos((float)theta);
|
267 | 160 | equemene | clDataV[gid].s3=(MYFLOAT)1.e0f;
|
268 | 139 | equemene | }
|
269 | 139 | equemene | }
|
270 | 139 | equemene |
|
271 | 160 | equemene | __kernel void RungeKutta(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
272 | 116 | equemene | {
|
273 | 116 | equemene | int gid = get_global_id(0);
|
274 | 116 | equemene |
|
275 | 160 | equemene | MYFLOAT8 clDataGid=AtomicRungeKutta(clDataX,clDataV,gid,h);
|
276 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
277 | 160 | equemene | clDataX[gid]=clDataGid.lo;
|
278 | 160 | equemene | clDataV[gid]=clDataGid.hi;
|
279 | 116 | equemene | }
|
280 | 116 | equemene |
|
281 | 160 | equemene | __kernel void ImplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
282 | 116 | equemene | {
|
283 | 116 | equemene | int gid = get_global_id(0);
|
284 | 116 | equemene |
|
285 | 160 | equemene | MYFLOAT8 clDataGid=AtomicImplicitEuler(clDataX,clDataV,gid,h);
|
286 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
287 | 160 | equemene | clDataX[gid]=clDataGid.lo;
|
288 | 160 | equemene | clDataV[gid]=clDataGid.hi;
|
289 | 116 | equemene | }
|
290 | 133 | equemene |
|
291 | 160 | equemene | __kernel void Heun(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
292 | 141 | equemene | {
|
293 | 141 | equemene | int gid = get_global_id(0);
|
294 | 141 | equemene |
|
295 | 160 | equemene | MYFLOAT8 clDataGid=AtomicHeun(clDataX,clDataV,gid,h);
|
296 | 141 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
297 | 160 | equemene | clDataX[gid]=clDataGid.lo;
|
298 | 160 | equemene | clDataV[gid]=clDataGid.hi;
|
299 | 141 | equemene | }
|
300 | 141 | equemene |
|
301 | 160 | equemene | __kernel void ExplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
302 | 140 | equemene | {
|
303 | 140 | equemene | int gid = get_global_id(0);
|
304 | 140 | equemene |
|
305 | 160 | equemene | MYFLOAT8 clDataGid=AtomicExplicitEuler(clDataX,clDataV,gid,h);
|
306 | 140 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
307 | 160 | equemene | clDataX[gid]=clDataGid.lo;
|
308 | 160 | equemene | clDataV[gid]=clDataGid.hi;
|
309 | 140 | equemene | }
|
310 | 139 | equemene |
|
311 | 160 | equemene | __kernel void CoMPotential(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
|
312 | 133 | equemene | {
|
313 | 133 | equemene | int gid = get_global_id(0);
|
314 | 133 | equemene |
|
315 | 160 | equemene | clPotential[gid]=PairPotential(clDataX[gid],clCoM[0]);
|
316 | 139 | equemene | }
|
317 | 139 | equemene |
|
318 | 160 | equemene | __kernel void Potential(__global MYFLOAT4* clDataX,__global MYFLOAT* clPotential)
|
319 | 139 | equemene | {
|
320 | 139 | equemene | int gid = get_global_id(0);
|
321 | 139 | equemene |
|
322 | 155 | equemene | MYFLOAT potential=(MYFLOAT)0.e0f;
|
323 | 160 | equemene | MYFLOAT4 x=clDataX[gid];
|
324 | 133 | equemene |
|
325 | 133 | equemene | for (int i=0;i<get_global_size(0);i++)
|
326 | 133 | equemene | {
|
327 | 133 | equemene | if (gid != i)
|
328 | 160 | equemene | potential+=PairPotential(x,clDataX[i]);
|
329 | 133 | equemene | }
|
330 | 133 | equemene |
|
331 | 133 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
332 | 155 | equemene | clPotential[gid]=potential*(MYFLOAT)5.e-1f;
|
333 | 133 | equemene | }
|
334 | 133 | equemene |
|
335 | 160 | equemene | __kernel void CenterOfMass(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int Size)
|
336 | 139 | equemene | {
|
337 | 160 | equemene | MYFLOAT4 CoM=clDataX[0];
|
338 | 142 | equemene |
|
339 | 139 | equemene | for (int i=1;i<Size;i++)
|
340 | 139 | equemene | {
|
341 | 160 | equemene | CoM+=clDataX[i];
|
342 | 139 | equemene | }
|
343 | 142 | equemene |
|
344 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
345 | 160 | equemene | clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,1.e0f)/(MYFLOAT)Size;
|
346 | 139 | equemene | }
|
347 | 139 | equemene |
|
348 | 160 | equemene | __kernel void Kinetic(__global MYFLOAT4* clDataV,__global MYFLOAT* clKinetic)
|
349 | 133 | equemene | {
|
350 | 133 | equemene | int gid = get_global_id(0);
|
351 | 133 | equemene |
|
352 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
353 | 160 | equemene | MYFLOAT d=(MYFLOAT)length(clDataV[gid]);
|
354 | 155 | equemene | clKinetic[gid]=(MYFLOAT)5.e-1f*(MYFLOAT)(d*d);
|
355 | 133 | equemene | }
|
356 | 116 | equemene | """
|
357 | 116 | equemene | |
358 | 133 | equemene | def Energy(MyData): |
359 | 155 | equemene | return(sum(MyData*MyData)) |
360 | 133 | equemene | |
361 | 116 | equemene | if __name__=='__main__': |
362 | 116 | equemene | |
363 | 132 | equemene | # ValueType
|
364 | 132 | equemene | ValueType='FP32'
|
365 | 132 | equemene | class MyFloat(np.float32):pass |
366 | 160 | equemene | # clType8=cl_array.vec.float8
|
367 | 142 | equemene | clType4=cl_array.vec.float4 |
368 | 116 | equemene | # Set defaults values
|
369 | 118 | equemene | np.set_printoptions(precision=2)
|
370 | 116 | equemene | # Id of Device : 1 is for first find !
|
371 | 160 | equemene | Device=0
|
372 | 116 | equemene | # Iterations is integer
|
373 | 160 | equemene | Number=2
|
374 | 116 | equemene | # Size of box
|
375 | 132 | equemene | SizeOfBox=MyFloat(1.)
|
376 | 116 | equemene | # Initial velocity of particules
|
377 | 132 | equemene | Velocity=MyFloat(1.)
|
378 | 116 | equemene | # Redo the last process
|
379 | 160 | equemene | Iterations=int(np.pi*1024) |
380 | 116 | equemene | # Step
|
381 | 160 | equemene | Step=MyFloat(1./1024) |
382 | 121 | equemene | # Method of integration
|
383 | 150 | equemene | Method='ImplicitEuler'
|
384 | 132 | equemene | # InitialRandom
|
385 | 132 | equemene | InitialRandom=False
|
386 | 132 | equemene | # RNG Marsaglia Method
|
387 | 132 | equemene | RNG='MWC'
|
388 | 133 | equemene | # CheckEnergies
|
389 | 133 | equemene | CheckEnergies=False
|
390 | 134 | equemene | # Display samples in 3D
|
391 | 139 | equemene | GraphSamples=False
|
392 | 139 | equemene | # Viriel Distribution of stress
|
393 | 139 | equemene | VirielStress=True
|
394 | 132 | equemene | |
395 | 160 | equemene | HowToUse='%s -h [Help] -r [InitialRandom] -e [VirielStress] -g [GraphSamples] -c [CheckEnergies] -d <DeviceId> -n <NumberOfParticules> -z <SizeOfBox> -v <Velocity> -s <Step> -i <Iterations> -m <ImplicitEuler|RungeKutta|ExplicitEuler|Heun> -t <FP32|FP64>'
|
396 | 116 | equemene | |
397 | 116 | equemene | try:
|
398 | 139 | equemene | opts, args = getopt.getopt(sys.argv[1:],"rehgcd:n:z:v:i:s:m:t:",["random","viriel","graph","check","device=","number=","size=","velocity=","iterations=","step=","method=","valuetype="]) |
399 | 116 | equemene | except getopt.GetoptError:
|
400 | 128 | equemene | print(HowToUse % sys.argv[0])
|
401 | 116 | equemene | sys.exit(2)
|
402 | 116 | equemene | |
403 | 116 | equemene | for opt, arg in opts: |
404 | 116 | equemene | if opt == '-h': |
405 | 128 | equemene | print(HowToUse % sys.argv[0])
|
406 | 116 | equemene | |
407 | 128 | equemene | print("\nInformations about devices detected under OpenCL:")
|
408 | 116 | equemene | try:
|
409 | 132 | equemene | Id=0
|
410 | 116 | equemene | for platform in cl.get_platforms(): |
411 | 116 | equemene | for device in platform.get_devices(): |
412 | 137 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
413 | 149 | equemene | deviceType="xPU"
|
414 | 128 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
415 | 116 | equemene | Id=Id+1
|
416 | 116 | equemene | sys.exit() |
417 | 116 | equemene | except ImportError: |
418 | 128 | equemene | print("Your platform does not seem to support OpenCL")
|
419 | 116 | equemene | sys.exit() |
420 | 116 | equemene | |
421 | 132 | equemene | elif opt in ("-t", "--valuetype"): |
422 | 132 | equemene | if arg=='FP64': |
423 | 132 | equemene | class MyFloat(np.float64): pass |
424 | 142 | equemene | clType4=cl_array.vec.double4 |
425 | 132 | equemene | else:
|
426 | 132 | equemene | class MyFloat(np.float32):pass |
427 | 142 | equemene | clType4=cl_array.vec.float4 |
428 | 132 | equemene | ValueType = arg |
429 | 116 | equemene | elif opt in ("-d", "--device"): |
430 | 116 | equemene | Device=int(arg)
|
431 | 121 | equemene | elif opt in ("-m", "--method"): |
432 | 121 | equemene | Method=arg |
433 | 116 | equemene | elif opt in ("-n", "--number"): |
434 | 116 | equemene | Number=int(arg)
|
435 | 116 | equemene | elif opt in ("-z", "--size"): |
436 | 132 | equemene | SizeOfBox=MyFloat(arg) |
437 | 116 | equemene | elif opt in ("-v", "--velocity"): |
438 | 132 | equemene | Velocity=MyFloat(arg) |
439 | 139 | equemene | VirielStress=False
|
440 | 116 | equemene | elif opt in ("-s", "--step"): |
441 | 132 | equemene | Step=MyFloat(arg) |
442 | 120 | equemene | elif opt in ("-i", "--iterations"): |
443 | 120 | equemene | Iterations=int(arg)
|
444 | 132 | equemene | elif opt in ("-r", "--random"): |
445 | 132 | equemene | InitialRandom=True
|
446 | 133 | equemene | elif opt in ("-c", "--check"): |
447 | 133 | equemene | CheckEnergies=True
|
448 | 134 | equemene | elif opt in ("-g", "--graph"): |
449 | 134 | equemene | GraphSamples=True
|
450 | 139 | equemene | elif opt in ("-e", "--viriel"): |
451 | 139 | equemene | VirielStress=True
|
452 | 134 | equemene | |
453 | 160 | equemene | SizeOfBox=MyFloat(Number*SizeOfBox) |
454 | 132 | equemene | Velocity=MyFloat(Velocity) |
455 | 132 | equemene | Step=MyFloat(Step) |
456 | 132 | equemene | |
457 | 128 | equemene | print("Device choosed : %s" % Device)
|
458 | 128 | equemene | print("Number of particules : %s" % Number)
|
459 | 128 | equemene | print("Size of Box : %s" % SizeOfBox)
|
460 | 160 | equemene | print("Initial velocity : %s" % Velocity)
|
461 | 160 | equemene | print("Number of iterations : %s" % Iterations)
|
462 | 160 | equemene | print("Step of iteration : %s" % Step)
|
463 | 160 | equemene | print("Method of resolution : %s" % Method)
|
464 | 160 | equemene | print("Initial Random for RNG Seed : %s" % InitialRandom)
|
465 | 160 | equemene | print("Check for Energies : %s" % CheckEnergies)
|
466 | 160 | equemene | print("Graph for Samples : %s" % GraphSamples)
|
467 | 160 | equemene | print("ValueType is : %s" % ValueType)
|
468 | 139 | equemene | print("Viriel distribution of stress %s" % VirielStress)
|
469 | 116 | equemene | |
470 | 132 | equemene | # Create Numpy array of CL vector with 8 FP32
|
471 | 142 | equemene | MyCoM = np.zeros(1,dtype=clType4)
|
472 | 160 | equemene | MyDataX = np.zeros(Number, dtype=clType4) |
473 | 160 | equemene | MyDataV = np.zeros(Number, dtype=clType4) |
474 | 133 | equemene | MyPotential = np.zeros(Number, dtype=MyFloat) |
475 | 133 | equemene | MyKinetic = np.zeros(Number, dtype=MyFloat) |
476 | 132 | equemene | |
477 | 132 | equemene | Marsaglia,Computing=DictionariesAPI() |
478 | 132 | equemene | |
479 | 132 | equemene | # Scan the OpenCL arrays
|
480 | 132 | equemene | Id=0
|
481 | 116 | equemene | HasXPU=False
|
482 | 116 | equemene | for platform in cl.get_platforms(): |
483 | 116 | equemene | for device in platform.get_devices(): |
484 | 116 | equemene | if Id==Device:
|
485 | 116 | equemene | PlatForm=platform |
486 | 116 | equemene | XPU=device |
487 | 128 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
488 | 151 | equemene | print("Platform selected: ",platform.name)
|
489 | 116 | equemene | HasXPU=True
|
490 | 116 | equemene | Id+=1
|
491 | 116 | equemene | |
492 | 116 | equemene | if HasXPU==False: |
493 | 128 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
494 | 116 | equemene | sys.exit() |
495 | 116 | equemene | |
496 | 132 | equemene | # Create Context
|
497 | 116 | equemene | try:
|
498 | 116 | equemene | ctx = cl.Context([XPU]) |
499 | 116 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
500 | 116 | equemene | except:
|
501 | 128 | equemene | print("Crash during context creation")
|
502 | 116 | equemene | |
503 | 132 | equemene | print(Marsaglia[RNG],Computing[ValueType]) |
504 | 132 | equemene | # Build all routines used for the computing
|
505 | 151 | equemene | #BuildOptions="-DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
506 | 160 | equemene | #BuildOptions="-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
507 | 160 | equemene | BuildOptions="-cl-mad-enable -cl-kernel-arg-info -cl-fast-relaxed-math -cl-std=CL1.2 -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
508 | 160 | equemene | |
509 | 160 | equemene | if 'Intel' in PlatForm.name or 'Clover' in PlatForm.name or 'Portable' in PlatForm.name : |
510 | 151 | equemene | MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions) |
511 | 151 | equemene | else:
|
512 | 151 | equemene | MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions+" -cl-strict-aliasing")
|
513 | 160 | equemene | |
514 | 116 | equemene | mf = cl.mem_flags |
515 | 160 | equemene | # clDataX = cl.Buffer(ctx, mf.READ_WRITE, MyDataX.nbytes)
|
516 | 160 | equemene | # clDataV = cl.Buffer(ctx, mf.READ_WRITE, MyDataV.nbytes)
|
517 | 160 | equemene | # clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes)
|
518 | 160 | equemene | # clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes)
|
519 | 160 | equemene | # clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes)
|
520 | 116 | equemene | |
521 | 160 | equemene | clDataX = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataX) |
522 | 160 | equemene | clDataV = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataV) |
523 | 160 | equemene | clPotential = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyPotential) |
524 | 160 | equemene | clKinetic = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyKinetic) |
525 | 160 | equemene | clCoM = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyCoM) |
526 | 160 | equemene | |
527 | 134 | equemene | print('All particles superimposed.')
|
528 | 116 | equemene | |
529 | 132 | equemene | print(SizeOfBox.dtype) |
530 | 132 | equemene | |
531 | 132 | equemene | # Set particles to RNG points
|
532 | 132 | equemene | if InitialRandom:
|
533 | 160 | equemene | MyRoutines.SplutterPoints(queue,(Number,1),None,clDataX,SizeOfBox,np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32))) |
534 | 132 | equemene | else:
|
535 | 160 | equemene | MyRoutines.SplutterPoints(queue,(Number,1),None,clDataX,SizeOfBox,np.uint32(110271),np.uint32(250173)) |
536 | 116 | equemene | |
537 | 132 | equemene | print('All particules distributed')
|
538 | 139 | equemene | |
539 | 160 | equemene | CLLaunch=MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number)) |
540 | 160 | equemene | CLLaunch.wait() |
541 | 142 | equemene | cl.enqueue_copy(queue,MyCoM,clCoM) |
542 | 142 | equemene | print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
543 | 139 | equemene | |
544 | 139 | equemene | if VirielStress:
|
545 | 160 | equemene | CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,MyFloat(0.),np.uint32(110271),np.uint32(250173)) |
546 | 139 | equemene | else:
|
547 | 160 | equemene | CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,Velocity,np.uint32(110271),np.uint32(250173)) |
548 | 160 | equemene | CLLaunch.wait() |
549 | 139 | equemene | |
550 | 139 | equemene | if GraphSamples:
|
551 | 160 | equemene | cl.enqueue_copy(queue, MyDataX, clDataX) |
552 | 160 | equemene | t0=np.array([[MyDataX[0][0],MyDataX[0][1],MyDataX[0][2]]]) |
553 | 160 | equemene | t1=np.array([[MyDataX[1][0],MyDataX[1][1],MyDataX[1][2]]]) |
554 | 160 | equemene | tL=np.array([[MyDataX[-1][0],MyDataX[-1][1],MyDataX[-1][2]]]) |
555 | 139 | equemene | |
556 | 160 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
557 | 160 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
558 | 133 | equemene | CLLaunch.wait() |
559 | 141 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
560 | 141 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
561 | 142 | equemene | print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
562 | 133 | equemene | |
563 | 134 | equemene | if GraphSamples:
|
564 | 160 | equemene | cl.enqueue_copy(queue, MyDataX, clDataX) |
565 | 160 | equemene | t0=np.array([[MyDataX[0][0],MyDataX[0][1],MyDataX[0][2]]]) |
566 | 160 | equemene | t1=np.array([[MyDataX[1][0],MyDataX[1][1],MyDataX[1][2]]]) |
567 | 160 | equemene | tL=np.array([[MyDataX[-1][0],MyDataX[-1][1],MyDataX[-1][2]]]) |
568 | 116 | equemene | |
569 | 116 | equemene | time_start=time.time() |
570 | 128 | equemene | for i in range(Iterations): |
571 | 160 | equemene | if Method=="RungeKutta": |
572 | 160 | equemene | CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clDataX,clDataV,Step) |
573 | 140 | equemene | elif Method=="ExplicitEuler": |
574 | 160 | equemene | CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step) |
575 | 141 | equemene | elif Method=="Heun": |
576 | 160 | equemene | CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clDataX,clDataV,Step) |
577 | 140 | equemene | else:
|
578 | 160 | equemene | CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step) |
579 | 118 | equemene | CLLaunch.wait() |
580 | 160 | equemene | |
581 | 133 | equemene | if CheckEnergies:
|
582 | 160 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
583 | 160 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
584 | 133 | equemene | CLLaunch.wait() |
585 | 133 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
586 | 133 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
587 | 151 | equemene | print(np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
588 | 133 | equemene | |
589 | 139 | equemene | print(MyPotential,MyKinetic) |
590 | 139 | equemene | |
591 | 134 | equemene | if GraphSamples:
|
592 | 160 | equemene | cl.enqueue_copy(queue, MyDataX, clDataX) |
593 | 160 | equemene | t0=np.append(t0,[MyDataX[0][0],MyDataX[0][1],MyDataX[0][2]]) |
594 | 160 | equemene | t1=np.append(t1,[MyDataX[1][0],MyDataX[1][1],MyDataX[1][2]]) |
595 | 160 | equemene | tL=np.append(tL,[MyDataX[-1][0],MyDataX[-1][1],MyDataX[-1][2]]) |
596 | 160 | equemene | print("\nDuration on %s for each %s\n" % (Device,(time.time()-time_start)/Iterations))
|
597 | 135 | equemene | |
598 | 160 | equemene | MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number)) |
599 | 160 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
600 | 160 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
601 | 141 | equemene | CLLaunch.wait() |
602 | 160 | equemene | cl.enqueue_copy(queue,MyCoM,clCoM) |
603 | 141 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
604 | 141 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
605 | 160 | equemene | print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
606 | 151 | equemene | print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
607 | 141 | equemene | |
608 | 135 | equemene | if GraphSamples:
|
609 | 135 | equemene | t0=np.transpose(np.reshape(t0,(Iterations+1,3))) |
610 | 135 | equemene | t1=np.transpose(np.reshape(t1,(Iterations+1,3))) |
611 | 135 | equemene | tL=np.transpose(np.reshape(tL,(Iterations+1,3))) |
612 | 118 | equemene | |
613 | 135 | equemene | import matplotlib.pyplot as plt |
614 | 135 | equemene | from mpl_toolkits.mplot3d import Axes3D |
615 | 119 | equemene | |
616 | 135 | equemene | fig = plt.figure() |
617 | 135 | equemene | ax = fig.gca(projection='3d')
|
618 | 135 | equemene | ax.scatter(t0[0],t0[1],t0[2], marker='^',color='blue') |
619 | 135 | equemene | ax.scatter(t1[0],t1[1],t1[2], marker='o',color='red') |
620 | 135 | equemene | ax.scatter(tL[0],tL[1],tL[2], marker='D',color='green') |
621 | 135 | equemene | |
622 | 135 | equemene | ax.set_xlabel('X Label')
|
623 | 135 | equemene | ax.set_ylabel('Y Label')
|
624 | 135 | equemene | ax.set_zlabel('Z Label')
|
625 | 135 | equemene | |
626 | 135 | equemene | plt.show() |
627 | 119 | equemene | |
628 | 160 | equemene | clDataX.release() |
629 | 160 | equemene | clDataV.release() |
630 | 133 | equemene | clKinetic.release() |
631 | 133 | equemene | clPotential.release() |