root / NBody / NBody.py @ 149
Historique | Voir | Annoter | Télécharger (18,63 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
Demonstrateur OpenCL d'interaction NCorps
|
5 |
|
6 |
Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr> CeCILLv2
|
7 |
"""
|
8 |
import getopt |
9 |
import sys |
10 |
import time |
11 |
import numpy as np |
12 |
import pyopencl as cl |
13 |
import pyopencl.array as cl_array |
14 |
from numpy.random import randint as nprnd |
15 |
|
16 |
def DictionariesAPI(): |
17 |
Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
18 |
Computing={'FP32':0,'FP64':1} |
19 |
return(Marsaglia,Computing)
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
BlobOpenCL= """
|
32 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
33 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
34 |
#define MWC (znew+wnew)
|
35 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
36 |
#define CONG (jcong=69069*jcong+1234567)
|
37 |
#define KISS ((MWC^CONG)+SHR3)
|
38 |
|
39 |
#define MWCfp MWC * 2.328306435454494e-10f
|
40 |
#define KISSfp KISS * 2.328306435454494e-10f
|
41 |
#define SHR3fp SHR3 * 2.328306435454494e-10f
|
42 |
#define CONGfp CONG * 2.328306435454494e-10f
|
43 |
|
44 |
#define TFP32 0
|
45 |
#define TFP64 1
|
46 |
|
47 |
#define LENGTH 1e0f
|
48 |
|
49 |
#define PI 3.14159265359e0f
|
50 |
|
51 |
#define SMALL_NUM 1e-9f
|
52 |
|
53 |
#if TYPE == TFP32
|
54 |
#define MYFLOAT4 float4
|
55 |
#define MYFLOAT8 float8
|
56 |
#define MYFLOAT float
|
57 |
#else
|
58 |
#pragma OPENCL EXTENSION cl_khr_fp64: enable
|
59 |
#define MYFLOAT4 double4
|
60 |
#define MYFLOAT8 double8
|
61 |
#define MYFLOAT double
|
62 |
#endif
|
63 |
|
64 |
MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
65 |
{
|
66 |
return((n-m)/pow(distance(n,m),3));
|
67 |
}
|
68 |
|
69 |
MYFLOAT4 InteractionCore(MYFLOAT4 m,MYFLOAT4 n)
|
70 |
{
|
71 |
MYFLOAT core=1e5f;
|
72 |
MYFLOAT r=distance(n,m);
|
73 |
|
74 |
return(core*(n-m)/(MYFLOAT)(pow(r*r+core*core,2)));
|
75 |
}
|
76 |
|
77 |
MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
78 |
{
|
79 |
return((MYFLOAT)(-1e0f)/(distance(n,m)));
|
80 |
}
|
81 |
|
82 |
MYFLOAT AtomicPotential(__global MYFLOAT8* clData,int gid)
|
83 |
{
|
84 |
MYFLOAT potential=0e0f;
|
85 |
MYFLOAT4 x=clData[gid].lo;
|
86 |
|
87 |
for (int i=0;i<get_global_size(0);i++)
|
88 |
{
|
89 |
if (gid != i)
|
90 |
potential+=PairPotential(x,clData[i].lo);
|
91 |
}
|
92 |
|
93 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
94 |
//return(5e-1f*potential);
|
95 |
return(potential);
|
96 |
}
|
97 |
|
98 |
MYFLOAT AtomicPotentialCoM(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,int gid)
|
99 |
{
|
100 |
return(PairPotential(clData[gid].lo,clCoM[0]));
|
101 |
}
|
102 |
|
103 |
MYFLOAT8 AtomicRungeKutta(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
104 |
{
|
105 |
MYFLOAT4 a0=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
106 |
MYFLOAT4 v0=(MYFLOAT4)clDataIn[gid].hi;
|
107 |
MYFLOAT4 x0=(MYFLOAT4)clDataIn[gid].lo;
|
108 |
int N = get_global_size(0);
|
109 |
|
110 |
for (int i=0;i<N;i++)
|
111 |
{
|
112 |
if (gid != i)
|
113 |
a0+=Interaction(x0,clDataIn[i].lo);
|
114 |
}
|
115 |
|
116 |
MYFLOAT4 a1=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
117 |
MYFLOAT4 v1=v0+a0*dt;
|
118 |
MYFLOAT4 x1=x0+v0*dt;
|
119 |
for (int i=0;i<N;i++)
|
120 |
{
|
121 |
if (gid != i)
|
122 |
a1+=Interaction(x1,clDataIn[i].lo);
|
123 |
}
|
124 |
|
125 |
MYFLOAT4 a2=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
126 |
MYFLOAT4 v2=v0+a1*dt*(MYFLOAT)5e-1f;
|
127 |
MYFLOAT4 x2=x0+v1*dt*(MYFLOAT)5e-1f;
|
128 |
for (int i=0;i<N;i++)
|
129 |
{
|
130 |
if (gid != i)
|
131 |
a2+=Interaction(x2,clDataIn[i].lo);
|
132 |
}
|
133 |
|
134 |
MYFLOAT4 a3=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
135 |
MYFLOAT4 v3=v0+a2*dt*(MYFLOAT)5e-1f;
|
136 |
MYFLOAT4 x3=x0+v2*dt*(MYFLOAT)5e-1f;
|
137 |
for (int i=0;i<N;i++)
|
138 |
{
|
139 |
if (gid != i)
|
140 |
a3+=Interaction(x3,clDataIn[i].lo);
|
141 |
}
|
142 |
|
143 |
MYFLOAT4 a4=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
144 |
MYFLOAT4 v4=v0+a3*dt;
|
145 |
MYFLOAT4 x4=x0+v3*dt;
|
146 |
for (int i=0;i<N;i++)
|
147 |
{
|
148 |
if (gid != i)
|
149 |
a4+=Interaction(x4,clDataIn[i].lo);
|
150 |
}
|
151 |
|
152 |
MYFLOAT4 xf=x0+dt*(v1+(MYFLOAT)2e0f*(v2+v3)+v4)/(MYFLOAT)6e0f;
|
153 |
MYFLOAT4 vf=v0+dt*(a1+(MYFLOAT)2e0f*(a2+a3)+a4)/(MYFLOAT)6e0f;
|
154 |
|
155 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0e0f,vf.s0,vf.s1,vf.s2,0e0f));
|
156 |
}
|
157 |
|
158 |
// Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
159 |
|
160 |
MYFLOAT8 AtomicHeun(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
161 |
{
|
162 |
MYFLOAT4 x,v,a,xi,vi,ai,xf,vf;
|
163 |
|
164 |
x=(MYFLOAT4)clDataIn[gid].lo;
|
165 |
v=(MYFLOAT4)clDataIn[gid].hi;
|
166 |
a=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
167 |
|
168 |
for (int i=0;i<get_global_size(0);i++)
|
169 |
{
|
170 |
if (gid != i)
|
171 |
a+=Interaction(x,clDataIn[i].lo);
|
172 |
}
|
173 |
|
174 |
vi=v+dt*a;
|
175 |
xi=x+dt*vi;
|
176 |
ai=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
177 |
|
178 |
for (int i=0;i<get_global_size(0);i++)
|
179 |
{
|
180 |
if (gid != i)
|
181 |
ai+=Interaction(xi,clDataIn[i].lo);
|
182 |
}
|
183 |
|
184 |
vf=v+dt*(a+ai)*5e-1f;
|
185 |
xf=x+dt*(v+vi)*5e-1f;
|
186 |
|
187 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0e0f,vf.s0,vf.s1,vf.s2,0e0f));
|
188 |
}
|
189 |
|
190 |
MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
191 |
{
|
192 |
MYFLOAT4 x,v,a,xf,vf;
|
193 |
|
194 |
x=(MYFLOAT4)clDataIn[gid].lo;
|
195 |
v=(MYFLOAT4)clDataIn[gid].hi;
|
196 |
a=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
197 |
for (int i=0;i<get_global_size(0);i++)
|
198 |
{
|
199 |
if (gid != i)
|
200 |
a+=Interaction(x,clDataIn[i].lo);
|
201 |
//a+=InteractionCore(x,clDataIn[i].lo);
|
202 |
}
|
203 |
|
204 |
vf=v+dt*a;
|
205 |
xf=x+dt*vf;
|
206 |
|
207 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0e0f,vf.s0,vf.s1,vf.s2,0e0f));
|
208 |
}
|
209 |
|
210 |
MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
211 |
{
|
212 |
MYFLOAT4 x,v,a,xf,vf;
|
213 |
|
214 |
x=(MYFLOAT4)clDataIn[gid].lo;
|
215 |
v=(MYFLOAT4)clDataIn[gid].hi;
|
216 |
a=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
217 |
for (int i=0;i<get_global_size(0);i++)
|
218 |
{
|
219 |
if (gid != i)
|
220 |
a+=Interaction(x,clDataIn[i].lo);
|
221 |
}
|
222 |
|
223 |
vf=v+dt*a;
|
224 |
xf=x+dt*v;
|
225 |
|
226 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0e0f,vf.s0,vf.s1,vf.s2,0e0f));
|
227 |
}
|
228 |
|
229 |
__kernel void SplutterPoints(__global MYFLOAT8* clData, MYFLOAT box,
|
230 |
uint seed_z,uint seed_w)
|
231 |
{
|
232 |
int gid = get_global_id(0);
|
233 |
uint z=seed_z+(uint)gid;
|
234 |
uint w=seed_w-(uint)gid;
|
235 |
|
236 |
MYFLOAT x0=box*(MYFLOAT)(MWCfp-5e-1f);
|
237 |
MYFLOAT y0=box*(MYFLOAT)(MWCfp-5e-1f);
|
238 |
MYFLOAT z0=box*(MYFLOAT)(MWCfp-5e-1f);
|
239 |
|
240 |
clData[gid].s01234567 = (MYFLOAT8) (x0,y0,z0,0e0f,0e0f,0e0f,0e0f,0e0f);
|
241 |
}
|
242 |
|
243 |
__kernel void SplutterStress(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
|
244 |
{
|
245 |
int gid = get_global_id(0);
|
246 |
MYFLOAT N = (MYFLOAT)get_global_size(0);
|
247 |
uint z=seed_z+(uint)gid;
|
248 |
uint w=seed_w-(uint)gid;
|
249 |
|
250 |
if (velocity<SMALL_NUM) {
|
251 |
MYFLOAT4 SpeedVector=(MYFLOAT4)normalize(cross(clData[gid].lo,clCoM[0]))*sqrt(-AtomicPotential(clData,gid)*5e-1f);
|
252 |
clData[gid].hi=SpeedVector;
|
253 |
}
|
254 |
else
|
255 |
{
|
256 |
MYFLOAT theta=MWCfp*PI;
|
257 |
MYFLOAT phi=MWCfp*PI*(MYFLOAT)2e0f;
|
258 |
MYFLOAT sinTheta=sin(theta);
|
259 |
|
260 |
clData[gid].s4=velocity*sinTheta*cos(phi);
|
261 |
clData[gid].s5=velocity*sinTheta*sin(phi);
|
262 |
clData[gid].s6=velocity*cos(theta);
|
263 |
}
|
264 |
}
|
265 |
|
266 |
__kernel void RungeKutta(__global MYFLOAT8* clData,MYFLOAT h)
|
267 |
{
|
268 |
int gid = get_global_id(0);
|
269 |
|
270 |
MYFLOAT8 clDataGid=AtomicRungeKutta(clData,gid,h);
|
271 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
272 |
clData[gid]=clDataGid;
|
273 |
}
|
274 |
|
275 |
__kernel void ImplicitEuler(__global MYFLOAT8* clData,MYFLOAT h)
|
276 |
{
|
277 |
int gid = get_global_id(0);
|
278 |
|
279 |
MYFLOAT8 clDataGid=AtomicImplicitEuler(clData,gid,h);
|
280 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
281 |
clData[gid]=clDataGid;
|
282 |
}
|
283 |
|
284 |
__kernel void Heun(__global MYFLOAT8* clData,MYFLOAT h)
|
285 |
{
|
286 |
int gid = get_global_id(0);
|
287 |
|
288 |
MYFLOAT8 clDataGid=AtomicHeun(clData,gid,h);
|
289 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
290 |
clData[gid]=clDataGid;
|
291 |
}
|
292 |
|
293 |
__kernel void ExplicitEuler(__global MYFLOAT8* clData,MYFLOAT h)
|
294 |
{
|
295 |
int gid = get_global_id(0);
|
296 |
|
297 |
MYFLOAT8 clDataGid=AtomicExplicitEuler(clData,gid,h);
|
298 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
299 |
clData[gid]=clDataGid;
|
300 |
}
|
301 |
|
302 |
__kernel void CoMPotential(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
|
303 |
{
|
304 |
int gid = get_global_id(0);
|
305 |
|
306 |
clPotential[gid]=PairPotential(clData[gid].lo,clCoM[0]);
|
307 |
}
|
308 |
|
309 |
__kernel void Potential(__global MYFLOAT8* clData,__global MYFLOAT* clPotential)
|
310 |
{
|
311 |
int gid = get_global_id(0);
|
312 |
|
313 |
MYFLOAT potential=0e0f;
|
314 |
MYFLOAT4 x=clData[gid].lo;
|
315 |
|
316 |
for (int i=0;i<get_global_size(0);i++)
|
317 |
{
|
318 |
if (gid != i)
|
319 |
potential+=PairPotential(x,clData[i].lo);
|
320 |
}
|
321 |
|
322 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
323 |
clPotential[gid]=(MYFLOAT)5e-1f*potential;
|
324 |
}
|
325 |
|
326 |
__kernel void CenterOfMass(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,int Size)
|
327 |
{
|
328 |
MYFLOAT4 CoM=clData[0].lo;
|
329 |
|
330 |
for (int i=1;i<Size;i++)
|
331 |
{
|
332 |
CoM+=clData[i].lo;
|
333 |
}
|
334 |
|
335 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
336 |
clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,0e0f)/(MYFLOAT)Size;
|
337 |
}
|
338 |
|
339 |
__kernel void Kinetic(__global MYFLOAT8* clData,__global MYFLOAT* clKinetic)
|
340 |
{
|
341 |
int gid = get_global_id(0);
|
342 |
|
343 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
344 |
clKinetic[gid]=(MYFLOAT)5e-1f*(MYFLOAT)pow(length(clData[gid].hi),2);
|
345 |
}
|
346 |
"""
|
347 |
|
348 |
def Energy(MyData): |
349 |
return(sum(pow(MyData,2))) |
350 |
|
351 |
if __name__=='__main__': |
352 |
|
353 |
# ValueType
|
354 |
ValueType='FP32'
|
355 |
class MyFloat(np.float32):pass |
356 |
clType8=cl_array.vec.float8 |
357 |
clType4=cl_array.vec.float4 |
358 |
# Set defaults values
|
359 |
np.set_printoptions(precision=2)
|
360 |
# Id of Device : 1 is for first find !
|
361 |
Device=1
|
362 |
# Iterations is integer
|
363 |
Number=4
|
364 |
# Size of box
|
365 |
SizeOfBox=MyFloat(1.)
|
366 |
# Initial velocity of particules
|
367 |
Velocity=MyFloat(1.)
|
368 |
# Redo the last process
|
369 |
Iterations=100
|
370 |
# Step
|
371 |
Step=MyFloat(0.01)
|
372 |
# Method of integration
|
373 |
Method='RungeKutta'
|
374 |
# InitialRandom
|
375 |
InitialRandom=False
|
376 |
# RNG Marsaglia Method
|
377 |
RNG='MWC'
|
378 |
# CheckEnergies
|
379 |
CheckEnergies=False
|
380 |
# Display samples in 3D
|
381 |
GraphSamples=False
|
382 |
# Viriel Distribution of stress
|
383 |
VirielStress=True
|
384 |
|
385 |
HowToUse='%s -h [Help] -r [InitialRandom] -e [VirielStress] -g [GraphSamples] -c [CheckEnergies] -d <DeviceId> -n <NumberOfParticules> -z <SizeOfBox> -v <Velocity> -s <Step> -i <Iterations> -m <RungeKutta|ImplicitEuler|ExplicitEuler|Heun> -t <FP32|FP64>'
|
386 |
|
387 |
try:
|
388 |
opts, args = getopt.getopt(sys.argv[1:],"rehgcd:n:z:v:i:s:m:t:",["random","viriel","graph","check","device=","number=","size=","velocity=","iterations=","step=","method=","valuetype="]) |
389 |
except getopt.GetoptError:
|
390 |
print(HowToUse % sys.argv[0])
|
391 |
sys.exit(2)
|
392 |
|
393 |
for opt, arg in opts: |
394 |
if opt == '-h': |
395 |
print(HowToUse % sys.argv[0])
|
396 |
|
397 |
print("\nInformations about devices detected under OpenCL:")
|
398 |
try:
|
399 |
Id=0
|
400 |
for platform in cl.get_platforms(): |
401 |
for device in platform.get_devices(): |
402 |
#deviceType=cl.device_type.to_string(device.type)
|
403 |
deviceType="xPU"
|
404 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
405 |
Id=Id+1
|
406 |
sys.exit() |
407 |
except ImportError: |
408 |
print("Your platform does not seem to support OpenCL")
|
409 |
sys.exit() |
410 |
|
411 |
elif opt in ("-t", "--valuetype"): |
412 |
if arg=='FP64': |
413 |
class MyFloat(np.float64): pass |
414 |
clType8=cl_array.vec.double8 |
415 |
clType4=cl_array.vec.double4 |
416 |
else:
|
417 |
class MyFloat(np.float32):pass |
418 |
clType8=cl_array.vec.float8 |
419 |
clType4=cl_array.vec.float4 |
420 |
ValueType = arg |
421 |
elif opt in ("-d", "--device"): |
422 |
Device=int(arg)
|
423 |
elif opt in ("-m", "--method"): |
424 |
Method=arg |
425 |
elif opt in ("-n", "--number"): |
426 |
Number=int(arg)
|
427 |
elif opt in ("-z", "--size"): |
428 |
SizeOfBox=MyFloat(arg) |
429 |
elif opt in ("-v", "--velocity"): |
430 |
Velocity=MyFloat(arg) |
431 |
VirielStress=False
|
432 |
elif opt in ("-s", "--step"): |
433 |
Step=MyFloat(arg) |
434 |
elif opt in ("-i", "--iterations"): |
435 |
Iterations=int(arg)
|
436 |
elif opt in ("-r", "--random"): |
437 |
InitialRandom=True
|
438 |
elif opt in ("-c", "--check"): |
439 |
CheckEnergies=True
|
440 |
elif opt in ("-g", "--graph"): |
441 |
GraphSamples=True
|
442 |
elif opt in ("-e", "--viriel"): |
443 |
VirielStress=True
|
444 |
|
445 |
SizeOfBox=MyFloat(np.power(Number,1./3.)*SizeOfBox) |
446 |
Velocity=MyFloat(Velocity) |
447 |
Step=MyFloat(Step) |
448 |
|
449 |
print("Device choosed : %s" % Device)
|
450 |
print("Number of particules : %s" % Number)
|
451 |
print("Size of Box : %s" % SizeOfBox)
|
452 |
print("Initial velocity %s" % Velocity)
|
453 |
print("Number of iterations %s" % Iterations)
|
454 |
print("Step of iteration %s" % Step)
|
455 |
print("Method of resolution %s" % Method)
|
456 |
print("Initial Random for RNG Seed %s" % InitialRandom)
|
457 |
print("Check for Energies %s" % CheckEnergies)
|
458 |
print("Graph for Samples %s" % GraphSamples)
|
459 |
print("ValueType is %s" % ValueType)
|
460 |
print("Viriel distribution of stress %s" % VirielStress)
|
461 |
|
462 |
# Create Numpy array of CL vector with 8 FP32
|
463 |
MyCoM = np.zeros(1,dtype=clType4)
|
464 |
MyData = np.zeros(Number, dtype=clType8) |
465 |
MyPotential = np.zeros(Number, dtype=MyFloat) |
466 |
MyKinetic = np.zeros(Number, dtype=MyFloat) |
467 |
|
468 |
Marsaglia,Computing=DictionariesAPI() |
469 |
|
470 |
# Scan the OpenCL arrays
|
471 |
Id=0
|
472 |
HasXPU=False
|
473 |
for platform in cl.get_platforms(): |
474 |
for device in platform.get_devices(): |
475 |
if Id==Device:
|
476 |
PlatForm=platform |
477 |
XPU=device |
478 |
print("CPU/GPU selected: ",device.name.lstrip())
|
479 |
HasXPU=True
|
480 |
Id+=1
|
481 |
|
482 |
if HasXPU==False: |
483 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
484 |
sys.exit() |
485 |
|
486 |
# Create Context
|
487 |
try:
|
488 |
ctx = cl.Context([XPU]) |
489 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
490 |
except:
|
491 |
print("Crash during context creation")
|
492 |
|
493 |
print(Marsaglia[RNG],Computing[ValueType]) |
494 |
# Build all routines used for the computing
|
495 |
# MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType]))
|
496 |
MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = "-DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType]))
|
497 |
|
498 |
mf = cl.mem_flags |
499 |
clData = cl.Buffer(ctx, mf.READ_WRITE, MyData.nbytes) |
500 |
clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes) |
501 |
clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes) |
502 |
clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes) |
503 |
#clData = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyData)
|
504 |
|
505 |
print('All particles superimposed.')
|
506 |
|
507 |
print(SizeOfBox.dtype) |
508 |
|
509 |
# Set particles to RNG points
|
510 |
if InitialRandom:
|
511 |
MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32))) |
512 |
else:
|
513 |
MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,np.uint32(110271),np.uint32(250173)) |
514 |
|
515 |
print('All particules distributed')
|
516 |
|
517 |
MyRoutines.CenterOfMass(queue,(1,1),None,clData,clCoM,np.int32(Number)) |
518 |
cl.enqueue_copy(queue,MyCoM,clCoM) |
519 |
print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
520 |
|
521 |
if VirielStress:
|
522 |
MyRoutines.SplutterStress(queue,(Number,1),None,clData,clCoM,np.float32(0.),np.uint32(110271),np.uint32(250173)) |
523 |
else:
|
524 |
MyRoutines.SplutterStress(queue,(Number,1),None,clData,clCoM,Velocity,np.uint32(110271),np.uint32(250173)) |
525 |
|
526 |
if GraphSamples:
|
527 |
cl.enqueue_copy(queue, MyData, clData) |
528 |
t0=np.array([[MyData[0][0],MyData[0][1],MyData[0][2]]]) |
529 |
t1=np.array([[MyData[1][0],MyData[1][1],MyData[1][2]]]) |
530 |
tL=np.array([[MyData[-1][0],MyData[-1][1],MyData[-1][2]]]) |
531 |
s0=np.array([[MyData[0][4],MyData[0][5],MyData[0][6],MyData[0][7]]]) |
532 |
s1=np.array([[MyData[1][4],MyData[1][5],MyData[1][6],MyData[1][7]]]) |
533 |
sL=np.array([[MyData[-1][4],MyData[-1][5],MyData[-1][6],MyData[-1][7]]]) |
534 |
|
535 |
#print(t0,t1,tL)
|
536 |
#print(s0,s1,sL)
|
537 |
|
538 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
539 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
540 |
CLLaunch.wait() |
541 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
542 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
543 |
print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
544 |
|
545 |
if GraphSamples:
|
546 |
cl.enqueue_copy(queue, MyData, clData) |
547 |
t0=np.array([[MyData[0][0],MyData[0][1],MyData[0][2]]]) |
548 |
t1=np.array([[MyData[1][0],MyData[1][1],MyData[1][2]]]) |
549 |
tL=np.array([[MyData[-1][0],MyData[-1][1],MyData[-1][2]]]) |
550 |
|
551 |
time_start=time.time() |
552 |
for i in range(Iterations): |
553 |
if Method=="ImplicitEuler": |
554 |
CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clData,Step) |
555 |
elif Method=="ExplicitEuler": |
556 |
CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clData,Step) |
557 |
elif Method=="Heun": |
558 |
CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clData,Step) |
559 |
else:
|
560 |
CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clData,Step) |
561 |
CLLaunch.wait() |
562 |
if CheckEnergies:
|
563 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
564 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
565 |
CLLaunch.wait() |
566 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
567 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
568 |
print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
569 |
|
570 |
print(MyPotential,MyKinetic) |
571 |
|
572 |
if GraphSamples:
|
573 |
cl.enqueue_copy(queue, MyData, clData) |
574 |
t0=np.append(t0,[MyData[0][0],MyData[0][1],MyData[0][2]]) |
575 |
t1=np.append(t1,[MyData[1][0],MyData[1][1],MyData[1][2]]) |
576 |
tL=np.append(tL,[MyData[-1][0],MyData[-1][1],MyData[-1][2]]) |
577 |
print("\nDuration on %s for each %s" % (Device,(time.time()-time_start)/Iterations))
|
578 |
|
579 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
580 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
581 |
CLLaunch.wait() |
582 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
583 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
584 |
print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
585 |
MyRoutines.CenterOfMass(queue,(1,1),None,clData,clCoM,np.int32(Number)) |
586 |
cl.enqueue_copy(queue,MyCoM,clCoM) |
587 |
print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
588 |
|
589 |
if GraphSamples:
|
590 |
t0=np.transpose(np.reshape(t0,(Iterations+1,3))) |
591 |
t1=np.transpose(np.reshape(t1,(Iterations+1,3))) |
592 |
tL=np.transpose(np.reshape(tL,(Iterations+1,3))) |
593 |
|
594 |
import matplotlib.pyplot as plt |
595 |
from mpl_toolkits.mplot3d import Axes3D |
596 |
|
597 |
fig = plt.figure() |
598 |
ax = fig.gca(projection='3d')
|
599 |
ax.scatter(t0[0],t0[1],t0[2], marker='^',color='blue') |
600 |
ax.scatter(t1[0],t1[1],t1[2], marker='o',color='red') |
601 |
ax.scatter(tL[0],tL[1],tL[2], marker='D',color='green') |
602 |
|
603 |
ax.set_xlabel('X Label')
|
604 |
ax.set_ylabel('Y Label')
|
605 |
ax.set_zlabel('Z Label')
|
606 |
|
607 |
plt.show() |
608 |
|
609 |
clData.release() |
610 |
clKinetic.release() |
611 |
clPotential.release() |