root / NBody / NBody.py @ 149
Historique | Voir | Annoter | Télécharger (18,63 ko)
1 | 128 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 136 | equemene | # -*- coding: utf-8 -*-
|
3 | 116 | equemene | """
|
4 | 116 | equemene | Demonstrateur OpenCL d'interaction NCorps
|
5 | 116 | equemene |
|
6 | 116 | equemene | Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr> CeCILLv2
|
7 | 116 | equemene | """
|
8 | 116 | equemene | import getopt |
9 | 116 | equemene | import sys |
10 | 116 | equemene | import time |
11 | 116 | equemene | import numpy as np |
12 | 116 | equemene | import pyopencl as cl |
13 | 116 | equemene | import pyopencl.array as cl_array |
14 | 116 | equemene | from numpy.random import randint as nprnd |
15 | 116 | equemene | |
16 | 132 | equemene | def DictionariesAPI(): |
17 | 132 | equemene | Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
18 | 132 | equemene | Computing={'FP32':0,'FP64':1} |
19 | 132 | equemene | return(Marsaglia,Computing)
|
20 | 132 | equemene | |
21 | 137 | equemene | |
22 | 137 | equemene | |
23 | 137 | equemene | |
24 | 137 | equemene | |
25 | 137 | equemene | |
26 | 137 | equemene | |
27 | 137 | equemene | |
28 | 137 | equemene | |
29 | 137 | equemene | |
30 | 142 | equemene | |
31 | 142 | equemene | BlobOpenCL= """
|
32 | 116 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
33 | 116 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
34 | 116 | equemene | #define MWC (znew+wnew)
|
35 | 116 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
36 | 116 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
37 | 116 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
38 | 116 | equemene |
|
39 | 116 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
40 | 116 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
41 | 116 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
42 | 116 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
43 | 116 | equemene |
|
44 | 132 | equemene | #define TFP32 0
|
45 | 132 | equemene | #define TFP64 1
|
46 | 132 | equemene |
|
47 | 137 | equemene | #define LENGTH 1e0f
|
48 | 116 | equemene |
|
49 | 137 | equemene | #define PI 3.14159265359e0f
|
50 | 116 | equemene |
|
51 | 137 | equemene | #define SMALL_NUM 1e-9f
|
52 | 116 | equemene |
|
53 | 132 | equemene | #if TYPE == TFP32
|
54 | 132 | equemene | #define MYFLOAT4 float4
|
55 | 132 | equemene | #define MYFLOAT8 float8
|
56 | 132 | equemene | #define MYFLOAT float
|
57 | 132 | equemene | #else
|
58 | 135 | equemene | #pragma OPENCL EXTENSION cl_khr_fp64: enable
|
59 | 132 | equemene | #define MYFLOAT4 double4
|
60 | 132 | equemene | #define MYFLOAT8 double8
|
61 | 132 | equemene | #define MYFLOAT double
|
62 | 132 | equemene | #endif
|
63 | 132 | equemene |
|
64 | 132 | equemene | MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
65 | 116 | equemene | {
|
66 | 139 | equemene | return((n-m)/pow(distance(n,m),3));
|
67 | 116 | equemene | }
|
68 | 116 | equemene |
|
69 | 141 | equemene | MYFLOAT4 InteractionCore(MYFLOAT4 m,MYFLOAT4 n)
|
70 | 141 | equemene | {
|
71 | 141 | equemene | MYFLOAT core=1e5f;
|
72 | 141 | equemene | MYFLOAT r=distance(n,m);
|
73 | 141 | equemene |
|
74 | 141 | equemene | return(core*(n-m)/(MYFLOAT)(pow(r*r+core*core,2)));
|
75 | 141 | equemene | }
|
76 | 141 | equemene |
|
77 | 133 | equemene | MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
78 | 133 | equemene | {
|
79 | 137 | equemene | return((MYFLOAT)(-1e0f)/(distance(n,m)));
|
80 | 133 | equemene | }
|
81 | 133 | equemene |
|
82 | 139 | equemene | MYFLOAT AtomicPotential(__global MYFLOAT8* clData,int gid)
|
83 | 139 | equemene | {
|
84 | 139 | equemene | MYFLOAT potential=0e0f;
|
85 | 139 | equemene | MYFLOAT4 x=clData[gid].lo;
|
86 | 139 | equemene |
|
87 | 139 | equemene | for (int i=0;i<get_global_size(0);i++)
|
88 | 139 | equemene | {
|
89 | 139 | equemene | if (gid != i)
|
90 | 139 | equemene | potential+=PairPotential(x,clData[i].lo);
|
91 | 139 | equemene | }
|
92 | 133 | equemene |
|
93 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
94 | 142 | equemene | //return(5e-1f*potential);
|
95 | 141 | equemene | return(potential);
|
96 | 139 | equemene | }
|
97 | 139 | equemene |
|
98 | 142 | equemene | MYFLOAT AtomicPotentialCoM(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,int gid)
|
99 | 139 | equemene | {
|
100 | 142 | equemene | return(PairPotential(clData[gid].lo,clCoM[0]));
|
101 | 139 | equemene | }
|
102 | 139 | equemene |
|
103 | 132 | equemene | MYFLOAT8 AtomicRungeKutta(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
104 | 116 | equemene | {
|
105 | 141 | equemene | MYFLOAT4 a0=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
106 | 141 | equemene | MYFLOAT4 v0=(MYFLOAT4)clDataIn[gid].hi;
|
107 | 133 | equemene | MYFLOAT4 x0=(MYFLOAT4)clDataIn[gid].lo;
|
108 | 133 | equemene | int N = get_global_size(0);
|
109 | 133 | equemene |
|
110 | 133 | equemene | for (int i=0;i<N;i++)
|
111 | 121 | equemene | {
|
112 | 121 | equemene | if (gid != i)
|
113 | 121 | equemene | a0+=Interaction(x0,clDataIn[i].lo);
|
114 | 121 | equemene | }
|
115 | 121 | equemene |
|
116 | 139 | equemene | MYFLOAT4 a1=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
117 | 141 | equemene | MYFLOAT4 v1=v0+a0*dt;
|
118 | 141 | equemene | MYFLOAT4 x1=x0+v0*dt;
|
119 | 133 | equemene | for (int i=0;i<N;i++)
|
120 | 121 | equemene | {
|
121 | 121 | equemene | if (gid != i)
|
122 | 121 | equemene | a1+=Interaction(x1,clDataIn[i].lo);
|
123 | 121 | equemene | }
|
124 | 121 | equemene |
|
125 | 141 | equemene | MYFLOAT4 a2=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
126 | 141 | equemene | MYFLOAT4 v2=v0+a1*dt*(MYFLOAT)5e-1f;
|
127 | 137 | equemene | MYFLOAT4 x2=x0+v1*dt*(MYFLOAT)5e-1f;
|
128 | 133 | equemene | for (int i=0;i<N;i++)
|
129 | 121 | equemene | {
|
130 | 121 | equemene | if (gid != i)
|
131 | 121 | equemene | a2+=Interaction(x2,clDataIn[i].lo);
|
132 | 121 | equemene | }
|
133 | 121 | equemene |
|
134 | 139 | equemene | MYFLOAT4 a3=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
135 | 141 | equemene | MYFLOAT4 v3=v0+a2*dt*(MYFLOAT)5e-1f;
|
136 | 141 | equemene | MYFLOAT4 x3=x0+v2*dt*(MYFLOAT)5e-1f;
|
137 | 133 | equemene | for (int i=0;i<N;i++)
|
138 | 121 | equemene | {
|
139 | 121 | equemene | if (gid != i)
|
140 | 121 | equemene | a3+=Interaction(x3,clDataIn[i].lo);
|
141 | 121 | equemene | }
|
142 | 121 | equemene |
|
143 | 141 | equemene | MYFLOAT4 a4=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
144 | 141 | equemene | MYFLOAT4 v4=v0+a3*dt;
|
145 | 141 | equemene | MYFLOAT4 x4=x0+v3*dt;
|
146 | 141 | equemene | for (int i=0;i<N;i++)
|
147 | 141 | equemene | {
|
148 | 141 | equemene | if (gid != i)
|
149 | 141 | equemene | a4+=Interaction(x4,clDataIn[i].lo);
|
150 | 141 | equemene | }
|
151 | 141 | equemene |
|
152 | 141 | equemene | MYFLOAT4 xf=x0+dt*(v1+(MYFLOAT)2e0f*(v2+v3)+v4)/(MYFLOAT)6e0f;
|
153 | 141 | equemene | MYFLOAT4 vf=v0+dt*(a1+(MYFLOAT)2e0f*(a2+a3)+a4)/(MYFLOAT)6e0f;
|
154 | 121 | equemene |
|
155 | 139 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0e0f,vf.s0,vf.s1,vf.s2,0e0f));
|
156 | 121 | equemene | }
|
157 | 121 | equemene |
|
158 | 121 | equemene | // Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
159 | 121 | equemene |
|
160 | 141 | equemene | MYFLOAT8 AtomicHeun(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
161 | 121 | equemene | {
|
162 | 141 | equemene | MYFLOAT4 x,v,a,xi,vi,ai,xf,vf;
|
163 | 116 | equemene |
|
164 | 141 | equemene | x=(MYFLOAT4)clDataIn[gid].lo;
|
165 | 141 | equemene | v=(MYFLOAT4)clDataIn[gid].hi;
|
166 | 141 | equemene | a=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
167 | 141 | equemene |
|
168 | 141 | equemene | for (int i=0;i<get_global_size(0);i++)
|
169 | 116 | equemene | {
|
170 | 116 | equemene | if (gid != i)
|
171 | 141 | equemene | a+=Interaction(x,clDataIn[i].lo);
|
172 | 116 | equemene | }
|
173 | 141 | equemene |
|
174 | 141 | equemene | vi=v+dt*a;
|
175 | 141 | equemene | xi=x+dt*vi;
|
176 | 141 | equemene | ai=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
177 | 141 | equemene |
|
178 | 141 | equemene | for (int i=0;i<get_global_size(0);i++)
|
179 | 116 | equemene | {
|
180 | 116 | equemene | if (gid != i)
|
181 | 141 | equemene | ai+=Interaction(xi,clDataIn[i].lo);
|
182 | 116 | equemene | }
|
183 | 141 | equemene |
|
184 | 141 | equemene | vf=v+dt*(a+ai)*5e-1f;
|
185 | 141 | equemene | xf=x+dt*(v+vi)*5e-1f;
|
186 | 118 | equemene |
|
187 | 139 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0e0f,vf.s0,vf.s1,vf.s2,0e0f));
|
188 | 119 | equemene | }
|
189 | 119 | equemene |
|
190 | 140 | equemene | MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
191 | 119 | equemene | {
|
192 | 132 | equemene | MYFLOAT4 x,v,a,xf,vf;
|
193 | 119 | equemene |
|
194 | 137 | equemene | x=(MYFLOAT4)clDataIn[gid].lo;
|
195 | 137 | equemene | v=(MYFLOAT4)clDataIn[gid].hi;
|
196 | 139 | equemene | a=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
197 | 119 | equemene | for (int i=0;i<get_global_size(0);i++)
|
198 | 119 | equemene | {
|
199 | 119 | equemene | if (gid != i)
|
200 | 119 | equemene | a+=Interaction(x,clDataIn[i].lo);
|
201 | 141 | equemene | //a+=InteractionCore(x,clDataIn[i].lo);
|
202 | 119 | equemene | }
|
203 | 133 | equemene |
|
204 | 119 | equemene | vf=v+dt*a;
|
205 | 133 | equemene | xf=x+dt*vf;
|
206 | 118 | equemene |
|
207 | 139 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0e0f,vf.s0,vf.s1,vf.s2,0e0f));
|
208 | 116 | equemene | }
|
209 | 116 | equemene |
|
210 | 140 | equemene | MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
211 | 140 | equemene | {
|
212 | 140 | equemene | MYFLOAT4 x,v,a,xf,vf;
|
213 | 140 | equemene |
|
214 | 140 | equemene | x=(MYFLOAT4)clDataIn[gid].lo;
|
215 | 140 | equemene | v=(MYFLOAT4)clDataIn[gid].hi;
|
216 | 140 | equemene | a=(MYFLOAT4)(0e0f,0e0f,0e0f,0e0f);
|
217 | 140 | equemene | for (int i=0;i<get_global_size(0);i++)
|
218 | 140 | equemene | {
|
219 | 140 | equemene | if (gid != i)
|
220 | 140 | equemene | a+=Interaction(x,clDataIn[i].lo);
|
221 | 140 | equemene | }
|
222 | 140 | equemene |
|
223 | 140 | equemene | vf=v+dt*a;
|
224 | 140 | equemene | xf=x+dt*v;
|
225 | 140 | equemene |
|
226 | 140 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0e0f,vf.s0,vf.s1,vf.s2,0e0f));
|
227 | 140 | equemene | }
|
228 | 140 | equemene |
|
229 | 139 | equemene | __kernel void SplutterPoints(__global MYFLOAT8* clData, MYFLOAT box,
|
230 | 139 | equemene | uint seed_z,uint seed_w)
|
231 | 116 | equemene | {
|
232 | 116 | equemene | int gid = get_global_id(0);
|
233 | 116 | equemene | uint z=seed_z+(uint)gid;
|
234 | 116 | equemene | uint w=seed_w-(uint)gid;
|
235 | 133 | equemene |
|
236 | 137 | equemene | MYFLOAT x0=box*(MYFLOAT)(MWCfp-5e-1f);
|
237 | 137 | equemene | MYFLOAT y0=box*(MYFLOAT)(MWCfp-5e-1f);
|
238 | 137 | equemene | MYFLOAT z0=box*(MYFLOAT)(MWCfp-5e-1f);
|
239 | 137 | equemene |
|
240 | 137 | equemene | clData[gid].s01234567 = (MYFLOAT8) (x0,y0,z0,0e0f,0e0f,0e0f,0e0f,0e0f);
|
241 | 116 | equemene | }
|
242 | 116 | equemene |
|
243 | 142 | equemene | __kernel void SplutterStress(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
|
244 | 139 | equemene | {
|
245 | 139 | equemene | int gid = get_global_id(0);
|
246 | 142 | equemene | MYFLOAT N = (MYFLOAT)get_global_size(0);
|
247 | 139 | equemene | uint z=seed_z+(uint)gid;
|
248 | 139 | equemene | uint w=seed_w-(uint)gid;
|
249 | 139 | equemene |
|
250 | 139 | equemene | if (velocity<SMALL_NUM) {
|
251 | 142 | equemene | MYFLOAT4 SpeedVector=(MYFLOAT4)normalize(cross(clData[gid].lo,clCoM[0]))*sqrt(-AtomicPotential(clData,gid)*5e-1f);
|
252 | 139 | equemene | clData[gid].hi=SpeedVector;
|
253 | 139 | equemene | }
|
254 | 139 | equemene | else
|
255 | 139 | equemene | {
|
256 | 142 | equemene | MYFLOAT theta=MWCfp*PI;
|
257 | 142 | equemene | MYFLOAT phi=MWCfp*PI*(MYFLOAT)2e0f;
|
258 | 142 | equemene | MYFLOAT sinTheta=sin(theta);
|
259 | 142 | equemene |
|
260 | 139 | equemene | clData[gid].s4=velocity*sinTheta*cos(phi);
|
261 | 139 | equemene | clData[gid].s5=velocity*sinTheta*sin(phi);
|
262 | 139 | equemene | clData[gid].s6=velocity*cos(theta);
|
263 | 139 | equemene | }
|
264 | 139 | equemene | }
|
265 | 139 | equemene |
|
266 | 132 | equemene | __kernel void RungeKutta(__global MYFLOAT8* clData,MYFLOAT h)
|
267 | 116 | equemene | {
|
268 | 116 | equemene | int gid = get_global_id(0);
|
269 | 116 | equemene |
|
270 | 132 | equemene | MYFLOAT8 clDataGid=AtomicRungeKutta(clData,gid,h);
|
271 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
272 | 121 | equemene | clData[gid]=clDataGid;
|
273 | 116 | equemene | }
|
274 | 116 | equemene |
|
275 | 140 | equemene | __kernel void ImplicitEuler(__global MYFLOAT8* clData,MYFLOAT h)
|
276 | 116 | equemene | {
|
277 | 116 | equemene | int gid = get_global_id(0);
|
278 | 116 | equemene |
|
279 | 140 | equemene | MYFLOAT8 clDataGid=AtomicImplicitEuler(clData,gid,h);
|
280 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
281 | 121 | equemene | clData[gid]=clDataGid;
|
282 | 116 | equemene | }
|
283 | 133 | equemene |
|
284 | 141 | equemene | __kernel void Heun(__global MYFLOAT8* clData,MYFLOAT h)
|
285 | 141 | equemene | {
|
286 | 141 | equemene | int gid = get_global_id(0);
|
287 | 141 | equemene |
|
288 | 141 | equemene | MYFLOAT8 clDataGid=AtomicHeun(clData,gid,h);
|
289 | 141 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
290 | 141 | equemene | clData[gid]=clDataGid;
|
291 | 141 | equemene | }
|
292 | 141 | equemene |
|
293 | 140 | equemene | __kernel void ExplicitEuler(__global MYFLOAT8* clData,MYFLOAT h)
|
294 | 140 | equemene | {
|
295 | 140 | equemene | int gid = get_global_id(0);
|
296 | 140 | equemene |
|
297 | 140 | equemene | MYFLOAT8 clDataGid=AtomicExplicitEuler(clData,gid,h);
|
298 | 140 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
299 | 140 | equemene | clData[gid]=clDataGid;
|
300 | 140 | equemene | }
|
301 | 139 | equemene |
|
302 | 142 | equemene | __kernel void CoMPotential(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
|
303 | 133 | equemene | {
|
304 | 133 | equemene | int gid = get_global_id(0);
|
305 | 133 | equemene |
|
306 | 142 | equemene | clPotential[gid]=PairPotential(clData[gid].lo,clCoM[0]);
|
307 | 139 | equemene | }
|
308 | 139 | equemene |
|
309 | 142 | equemene | __kernel void Potential(__global MYFLOAT8* clData,__global MYFLOAT* clPotential)
|
310 | 139 | equemene | {
|
311 | 139 | equemene | int gid = get_global_id(0);
|
312 | 139 | equemene |
|
313 | 137 | equemene | MYFLOAT potential=0e0f;
|
314 | 133 | equemene | MYFLOAT4 x=clData[gid].lo;
|
315 | 133 | equemene |
|
316 | 133 | equemene | for (int i=0;i<get_global_size(0);i++)
|
317 | 133 | equemene | {
|
318 | 133 | equemene | if (gid != i)
|
319 | 133 | equemene | potential+=PairPotential(x,clData[i].lo);
|
320 | 133 | equemene | }
|
321 | 133 | equemene |
|
322 | 133 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
323 | 137 | equemene | clPotential[gid]=(MYFLOAT)5e-1f*potential;
|
324 | 133 | equemene | }
|
325 | 133 | equemene |
|
326 | 142 | equemene | __kernel void CenterOfMass(__global MYFLOAT8* clData,__global MYFLOAT4* clCoM,int Size)
|
327 | 139 | equemene | {
|
328 | 139 | equemene | MYFLOAT4 CoM=clData[0].lo;
|
329 | 142 | equemene |
|
330 | 139 | equemene | for (int i=1;i<Size;i++)
|
331 | 139 | equemene | {
|
332 | 139 | equemene | CoM+=clData[i].lo;
|
333 | 139 | equemene | }
|
334 | 142 | equemene |
|
335 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
336 | 142 | equemene | clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,0e0f)/(MYFLOAT)Size;
|
337 | 139 | equemene | }
|
338 | 139 | equemene |
|
339 | 133 | equemene | __kernel void Kinetic(__global MYFLOAT8* clData,__global MYFLOAT* clKinetic)
|
340 | 133 | equemene | {
|
341 | 133 | equemene | int gid = get_global_id(0);
|
342 | 133 | equemene |
|
343 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
344 | 142 | equemene | clKinetic[gid]=(MYFLOAT)5e-1f*(MYFLOAT)pow(length(clData[gid].hi),2);
|
345 | 133 | equemene | }
|
346 | 116 | equemene | """
|
347 | 116 | equemene | |
348 | 133 | equemene | def Energy(MyData): |
349 | 133 | equemene | return(sum(pow(MyData,2))) |
350 | 133 | equemene | |
351 | 116 | equemene | if __name__=='__main__': |
352 | 116 | equemene | |
353 | 132 | equemene | # ValueType
|
354 | 132 | equemene | ValueType='FP32'
|
355 | 132 | equemene | class MyFloat(np.float32):pass |
356 | 142 | equemene | clType8=cl_array.vec.float8 |
357 | 142 | equemene | clType4=cl_array.vec.float4 |
358 | 116 | equemene | # Set defaults values
|
359 | 118 | equemene | np.set_printoptions(precision=2)
|
360 | 116 | equemene | # Id of Device : 1 is for first find !
|
361 | 120 | equemene | Device=1
|
362 | 116 | equemene | # Iterations is integer
|
363 | 133 | equemene | Number=4
|
364 | 116 | equemene | # Size of box
|
365 | 132 | equemene | SizeOfBox=MyFloat(1.)
|
366 | 116 | equemene | # Initial velocity of particules
|
367 | 132 | equemene | Velocity=MyFloat(1.)
|
368 | 116 | equemene | # Redo the last process
|
369 | 133 | equemene | Iterations=100
|
370 | 116 | equemene | # Step
|
371 | 133 | equemene | Step=MyFloat(0.01)
|
372 | 121 | equemene | # Method of integration
|
373 | 121 | equemene | Method='RungeKutta'
|
374 | 132 | equemene | # InitialRandom
|
375 | 132 | equemene | InitialRandom=False
|
376 | 132 | equemene | # RNG Marsaglia Method
|
377 | 132 | equemene | RNG='MWC'
|
378 | 133 | equemene | # CheckEnergies
|
379 | 133 | equemene | CheckEnergies=False
|
380 | 134 | equemene | # Display samples in 3D
|
381 | 139 | equemene | GraphSamples=False
|
382 | 139 | equemene | # Viriel Distribution of stress
|
383 | 139 | equemene | VirielStress=True
|
384 | 132 | equemene | |
385 | 142 | equemene | HowToUse='%s -h [Help] -r [InitialRandom] -e [VirielStress] -g [GraphSamples] -c [CheckEnergies] -d <DeviceId> -n <NumberOfParticules> -z <SizeOfBox> -v <Velocity> -s <Step> -i <Iterations> -m <RungeKutta|ImplicitEuler|ExplicitEuler|Heun> -t <FP32|FP64>'
|
386 | 116 | equemene | |
387 | 116 | equemene | try:
|
388 | 139 | equemene | opts, args = getopt.getopt(sys.argv[1:],"rehgcd:n:z:v:i:s:m:t:",["random","viriel","graph","check","device=","number=","size=","velocity=","iterations=","step=","method=","valuetype="]) |
389 | 116 | equemene | except getopt.GetoptError:
|
390 | 128 | equemene | print(HowToUse % sys.argv[0])
|
391 | 116 | equemene | sys.exit(2)
|
392 | 116 | equemene | |
393 | 116 | equemene | for opt, arg in opts: |
394 | 116 | equemene | if opt == '-h': |
395 | 128 | equemene | print(HowToUse % sys.argv[0])
|
396 | 116 | equemene | |
397 | 128 | equemene | print("\nInformations about devices detected under OpenCL:")
|
398 | 116 | equemene | try:
|
399 | 132 | equemene | Id=0
|
400 | 116 | equemene | for platform in cl.get_platforms(): |
401 | 116 | equemene | for device in platform.get_devices(): |
402 | 137 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
403 | 149 | equemene | deviceType="xPU"
|
404 | 128 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
405 | 116 | equemene | Id=Id+1
|
406 | 116 | equemene | sys.exit() |
407 | 116 | equemene | except ImportError: |
408 | 128 | equemene | print("Your platform does not seem to support OpenCL")
|
409 | 116 | equemene | sys.exit() |
410 | 116 | equemene | |
411 | 132 | equemene | elif opt in ("-t", "--valuetype"): |
412 | 132 | equemene | if arg=='FP64': |
413 | 132 | equemene | class MyFloat(np.float64): pass |
414 | 142 | equemene | clType8=cl_array.vec.double8 |
415 | 142 | equemene | clType4=cl_array.vec.double4 |
416 | 132 | equemene | else:
|
417 | 132 | equemene | class MyFloat(np.float32):pass |
418 | 142 | equemene | clType8=cl_array.vec.float8 |
419 | 142 | equemene | clType4=cl_array.vec.float4 |
420 | 132 | equemene | ValueType = arg |
421 | 116 | equemene | elif opt in ("-d", "--device"): |
422 | 116 | equemene | Device=int(arg)
|
423 | 121 | equemene | elif opt in ("-m", "--method"): |
424 | 121 | equemene | Method=arg |
425 | 116 | equemene | elif opt in ("-n", "--number"): |
426 | 116 | equemene | Number=int(arg)
|
427 | 116 | equemene | elif opt in ("-z", "--size"): |
428 | 132 | equemene | SizeOfBox=MyFloat(arg) |
429 | 116 | equemene | elif opt in ("-v", "--velocity"): |
430 | 132 | equemene | Velocity=MyFloat(arg) |
431 | 139 | equemene | VirielStress=False
|
432 | 116 | equemene | elif opt in ("-s", "--step"): |
433 | 132 | equemene | Step=MyFloat(arg) |
434 | 120 | equemene | elif opt in ("-i", "--iterations"): |
435 | 120 | equemene | Iterations=int(arg)
|
436 | 132 | equemene | elif opt in ("-r", "--random"): |
437 | 132 | equemene | InitialRandom=True
|
438 | 133 | equemene | elif opt in ("-c", "--check"): |
439 | 133 | equemene | CheckEnergies=True
|
440 | 134 | equemene | elif opt in ("-g", "--graph"): |
441 | 134 | equemene | GraphSamples=True
|
442 | 139 | equemene | elif opt in ("-e", "--viriel"): |
443 | 139 | equemene | VirielStress=True
|
444 | 134 | equemene | |
445 | 141 | equemene | SizeOfBox=MyFloat(np.power(Number,1./3.)*SizeOfBox) |
446 | 132 | equemene | Velocity=MyFloat(Velocity) |
447 | 132 | equemene | Step=MyFloat(Step) |
448 | 132 | equemene | |
449 | 128 | equemene | print("Device choosed : %s" % Device)
|
450 | 128 | equemene | print("Number of particules : %s" % Number)
|
451 | 128 | equemene | print("Size of Box : %s" % SizeOfBox)
|
452 | 139 | equemene | print("Initial velocity %s" % Velocity)
|
453 | 139 | equemene | print("Number of iterations %s" % Iterations)
|
454 | 139 | equemene | print("Step of iteration %s" % Step)
|
455 | 139 | equemene | print("Method of resolution %s" % Method)
|
456 | 139 | equemene | print("Initial Random for RNG Seed %s" % InitialRandom)
|
457 | 139 | equemene | print("Check for Energies %s" % CheckEnergies)
|
458 | 139 | equemene | print("Graph for Samples %s" % GraphSamples)
|
459 | 139 | equemene | print("ValueType is %s" % ValueType)
|
460 | 139 | equemene | print("Viriel distribution of stress %s" % VirielStress)
|
461 | 116 | equemene | |
462 | 132 | equemene | # Create Numpy array of CL vector with 8 FP32
|
463 | 142 | equemene | MyCoM = np.zeros(1,dtype=clType4)
|
464 | 142 | equemene | MyData = np.zeros(Number, dtype=clType8) |
465 | 133 | equemene | MyPotential = np.zeros(Number, dtype=MyFloat) |
466 | 133 | equemene | MyKinetic = np.zeros(Number, dtype=MyFloat) |
467 | 132 | equemene | |
468 | 132 | equemene | Marsaglia,Computing=DictionariesAPI() |
469 | 132 | equemene | |
470 | 132 | equemene | # Scan the OpenCL arrays
|
471 | 132 | equemene | Id=0
|
472 | 116 | equemene | HasXPU=False
|
473 | 116 | equemene | for platform in cl.get_platforms(): |
474 | 116 | equemene | for device in platform.get_devices(): |
475 | 116 | equemene | if Id==Device:
|
476 | 116 | equemene | PlatForm=platform |
477 | 116 | equemene | XPU=device |
478 | 128 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
479 | 116 | equemene | HasXPU=True
|
480 | 116 | equemene | Id+=1
|
481 | 116 | equemene | |
482 | 116 | equemene | if HasXPU==False: |
483 | 128 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
484 | 116 | equemene | sys.exit() |
485 | 116 | equemene | |
486 | 132 | equemene | # Create Context
|
487 | 116 | equemene | try:
|
488 | 116 | equemene | ctx = cl.Context([XPU]) |
489 | 116 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
490 | 116 | equemene | except:
|
491 | 128 | equemene | print("Crash during context creation")
|
492 | 116 | equemene | |
493 | 132 | equemene | print(Marsaglia[RNG],Computing[ValueType]) |
494 | 132 | equemene | # Build all routines used for the computing
|
495 | 137 | equemene | # MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType]))
|
496 | 137 | equemene | MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = "-DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType]))
|
497 | 119 | equemene | |
498 | 116 | equemene | mf = cl.mem_flags |
499 | 119 | equemene | clData = cl.Buffer(ctx, mf.READ_WRITE, MyData.nbytes) |
500 | 133 | equemene | clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes) |
501 | 133 | equemene | clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes) |
502 | 139 | equemene | clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes) |
503 | 119 | equemene | #clData = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyData)
|
504 | 116 | equemene | |
505 | 134 | equemene | print('All particles superimposed.')
|
506 | 116 | equemene | |
507 | 132 | equemene | print(SizeOfBox.dtype) |
508 | 132 | equemene | |
509 | 132 | equemene | # Set particles to RNG points
|
510 | 132 | equemene | if InitialRandom:
|
511 | 139 | equemene | MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32))) |
512 | 132 | equemene | else:
|
513 | 139 | equemene | MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,np.uint32(110271),np.uint32(250173)) |
514 | 116 | equemene | |
515 | 132 | equemene | print('All particules distributed')
|
516 | 139 | equemene | |
517 | 139 | equemene | MyRoutines.CenterOfMass(queue,(1,1),None,clData,clCoM,np.int32(Number)) |
518 | 142 | equemene | cl.enqueue_copy(queue,MyCoM,clCoM) |
519 | 142 | equemene | print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
520 | 139 | equemene | |
521 | 139 | equemene | if VirielStress:
|
522 | 139 | equemene | MyRoutines.SplutterStress(queue,(Number,1),None,clData,clCoM,np.float32(0.),np.uint32(110271),np.uint32(250173)) |
523 | 139 | equemene | else:
|
524 | 139 | equemene | MyRoutines.SplutterStress(queue,(Number,1),None,clData,clCoM,Velocity,np.uint32(110271),np.uint32(250173)) |
525 | 139 | equemene | |
526 | 139 | equemene | if GraphSamples:
|
527 | 139 | equemene | cl.enqueue_copy(queue, MyData, clData) |
528 | 139 | equemene | t0=np.array([[MyData[0][0],MyData[0][1],MyData[0][2]]]) |
529 | 139 | equemene | t1=np.array([[MyData[1][0],MyData[1][1],MyData[1][2]]]) |
530 | 139 | equemene | tL=np.array([[MyData[-1][0],MyData[-1][1],MyData[-1][2]]]) |
531 | 139 | equemene | s0=np.array([[MyData[0][4],MyData[0][5],MyData[0][6],MyData[0][7]]]) |
532 | 139 | equemene | s1=np.array([[MyData[1][4],MyData[1][5],MyData[1][6],MyData[1][7]]]) |
533 | 139 | equemene | sL=np.array([[MyData[-1][4],MyData[-1][5],MyData[-1][6],MyData[-1][7]]]) |
534 | 139 | equemene | |
535 | 141 | equemene | #print(t0,t1,tL)
|
536 | 141 | equemene | #print(s0,s1,sL)
|
537 | 139 | equemene | |
538 | 142 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
539 | 141 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
540 | 133 | equemene | CLLaunch.wait() |
541 | 141 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
542 | 141 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
543 | 142 | equemene | print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
544 | 133 | equemene | |
545 | 134 | equemene | if GraphSamples:
|
546 | 134 | equemene | cl.enqueue_copy(queue, MyData, clData) |
547 | 134 | equemene | t0=np.array([[MyData[0][0],MyData[0][1],MyData[0][2]]]) |
548 | 134 | equemene | t1=np.array([[MyData[1][0],MyData[1][1],MyData[1][2]]]) |
549 | 134 | equemene | tL=np.array([[MyData[-1][0],MyData[-1][1],MyData[-1][2]]]) |
550 | 116 | equemene | |
551 | 116 | equemene | time_start=time.time() |
552 | 128 | equemene | for i in range(Iterations): |
553 | 140 | equemene | if Method=="ImplicitEuler": |
554 | 140 | equemene | CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clData,Step) |
555 | 140 | equemene | elif Method=="ExplicitEuler": |
556 | 140 | equemene | CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clData,Step) |
557 | 141 | equemene | elif Method=="Heun": |
558 | 141 | equemene | CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clData,Step) |
559 | 140 | equemene | else:
|
560 | 132 | equemene | CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clData,Step) |
561 | 118 | equemene | CLLaunch.wait() |
562 | 133 | equemene | if CheckEnergies:
|
563 | 142 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
564 | 141 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
565 | 133 | equemene | CLLaunch.wait() |
566 | 133 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
567 | 133 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
568 | 133 | equemene | print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
569 | 133 | equemene | |
570 | 139 | equemene | print(MyPotential,MyKinetic) |
571 | 139 | equemene | |
572 | 134 | equemene | if GraphSamples:
|
573 | 134 | equemene | cl.enqueue_copy(queue, MyData, clData) |
574 | 134 | equemene | t0=np.append(t0,[MyData[0][0],MyData[0][1],MyData[0][2]]) |
575 | 134 | equemene | t1=np.append(t1,[MyData[1][0],MyData[1][1],MyData[1][2]]) |
576 | 134 | equemene | tL=np.append(tL,[MyData[-1][0],MyData[-1][1],MyData[-1][2]]) |
577 | 128 | equemene | print("\nDuration on %s for each %s" % (Device,(time.time()-time_start)/Iterations))
|
578 | 135 | equemene | |
579 | 142 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
580 | 141 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
581 | 141 | equemene | CLLaunch.wait() |
582 | 141 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
583 | 141 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
584 | 142 | equemene | print('Viriel=%s Potential=%s Kinetic=%s'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
585 | 142 | equemene | MyRoutines.CenterOfMass(queue,(1,1),None,clData,clCoM,np.int32(Number)) |
586 | 142 | equemene | cl.enqueue_copy(queue,MyCoM,clCoM) |
587 | 142 | equemene | print('Center Of Mass: (%s,%s,%s)' % (MyCoM[0][0],MyCoM[0][1],MyCoM[0][2])) |
588 | 141 | equemene | |
589 | 135 | equemene | if GraphSamples:
|
590 | 135 | equemene | t0=np.transpose(np.reshape(t0,(Iterations+1,3))) |
591 | 135 | equemene | t1=np.transpose(np.reshape(t1,(Iterations+1,3))) |
592 | 135 | equemene | tL=np.transpose(np.reshape(tL,(Iterations+1,3))) |
593 | 118 | equemene | |
594 | 135 | equemene | import matplotlib.pyplot as plt |
595 | 135 | equemene | from mpl_toolkits.mplot3d import Axes3D |
596 | 119 | equemene | |
597 | 135 | equemene | fig = plt.figure() |
598 | 135 | equemene | ax = fig.gca(projection='3d')
|
599 | 135 | equemene | ax.scatter(t0[0],t0[1],t0[2], marker='^',color='blue') |
600 | 135 | equemene | ax.scatter(t1[0],t1[1],t1[2], marker='o',color='red') |
601 | 135 | equemene | ax.scatter(tL[0],tL[1],tL[2], marker='D',color='green') |
602 | 135 | equemene | |
603 | 135 | equemene | ax.set_xlabel('X Label')
|
604 | 135 | equemene | ax.set_ylabel('Y Label')
|
605 | 135 | equemene | ax.set_zlabel('Z Label')
|
606 | 135 | equemene | |
607 | 135 | equemene | plt.show() |
608 | 119 | equemene | |
609 | 119 | equemene | clData.release() |
610 | 133 | equemene | clKinetic.release() |
611 | 133 | equemene | clPotential.release() |