root / NBody / NBody.py @ 136
Historique | Voir | Annoter | Télécharger (14,47 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
Demonstrateur OpenCL d'interaction NCorps
|
5 |
|
6 |
Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr> CeCILLv2
|
7 |
"""
|
8 |
import getopt |
9 |
import sys |
10 |
import time |
11 |
import numpy as np |
12 |
import pyopencl as cl |
13 |
import pyopencl.array as cl_array |
14 |
from numpy.random import randint as nprnd |
15 |
|
16 |
def DictionariesAPI(): |
17 |
Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
18 |
Computing={'FP32':0,'FP64':1} |
19 |
return(Marsaglia,Computing)
|
20 |
|
21 |
BlobOpenCL= """
|
22 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
23 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
24 |
#define MWC (znew+wnew)
|
25 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
26 |
#define CONG (jcong=69069*jcong+1234567)
|
27 |
#define KISS ((MWC^CONG)+SHR3)
|
28 |
|
29 |
#define MWCfp MWC * 2.328306435454494e-10f
|
30 |
#define KISSfp KISS * 2.328306435454494e-10f
|
31 |
#define SHR3fp SHR3 * 2.328306435454494e-10f
|
32 |
#define CONGfp CONG * 2.328306435454494e-10f
|
33 |
|
34 |
#define TFP32 0
|
35 |
#define TFP64 1
|
36 |
|
37 |
#define LENGTH 1.
|
38 |
|
39 |
#define PI 3.14159265359
|
40 |
|
41 |
#define SMALL_NUM 0.000000001
|
42 |
|
43 |
#if TYPE == TFP32
|
44 |
#define MYFLOAT4 float4
|
45 |
#define MYFLOAT8 float8
|
46 |
#define MYFLOAT float
|
47 |
#else
|
48 |
#pragma OPENCL EXTENSION cl_khr_fp64: enable
|
49 |
#define MYFLOAT4 double4
|
50 |
#define MYFLOAT8 double8
|
51 |
#define MYFLOAT double
|
52 |
#endif
|
53 |
|
54 |
MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
55 |
{
|
56 |
// return((n-m)/(MYFLOAT)pow(distance(n,m),2));
|
57 |
return((n-m)/(MYFLOAT)pow(distance(n,m),2));
|
58 |
}
|
59 |
|
60 |
MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
61 |
{
|
62 |
return((MYFLOAT)-1./distance(n,m));
|
63 |
}
|
64 |
|
65 |
// Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
66 |
|
67 |
|
68 |
MYFLOAT8 AtomicRungeKutta(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
69 |
{
|
70 |
MYFLOAT4 x0=(MYFLOAT4)clDataIn[gid].lo;
|
71 |
MYFLOAT4 v0=(MYFLOAT4)clDataIn[gid].hi;
|
72 |
MYFLOAT4 a0=(MYFLOAT4)(0.,0.,0.,0.);
|
73 |
int N = get_global_size(0);
|
74 |
|
75 |
for (int i=0;i<N;i++)
|
76 |
{
|
77 |
if (gid != i)
|
78 |
a0+=Interaction(x0,clDataIn[i].lo);
|
79 |
}
|
80 |
|
81 |
MYFLOAT4 x1=x0+v0*(MYFLOAT)0.5*dt;
|
82 |
MYFLOAT4 v1=v0+a0*(MYFLOAT)0.5*dt;
|
83 |
MYFLOAT4 a1=(MYFLOAT4)(0.,0.,0.,0.);
|
84 |
for (int i=0;i<N;i++)
|
85 |
{
|
86 |
if (gid != i)
|
87 |
a1+=Interaction(x1,clDataIn[i].lo);
|
88 |
}
|
89 |
|
90 |
MYFLOAT4 x2=x0+v1*(MYFLOAT)0.5*dt;
|
91 |
MYFLOAT4 v2=v0+a1*(MYFLOAT)0.5*dt;
|
92 |
MYFLOAT4 a2=(MYFLOAT4)(0.,0.,0.,0.);
|
93 |
for (int i=0;i<N;i++)
|
94 |
{
|
95 |
if (gid != i)
|
96 |
a2+=Interaction(x2,clDataIn[i].lo);
|
97 |
}
|
98 |
|
99 |
MYFLOAT4 x3=x0+v2*dt;
|
100 |
MYFLOAT4 v3=v0+a2*dt;
|
101 |
MYFLOAT4 a3=(MYFLOAT)(0.,0.,0.,0.);
|
102 |
for (int i=0;i<N;i++)
|
103 |
{
|
104 |
if (gid != i)
|
105 |
a3+=Interaction(x3,clDataIn[i].lo);
|
106 |
}
|
107 |
|
108 |
MYFLOAT4 xf=x0+dt*(v0+(MYFLOAT)2.*(v1+v2)+v3)/(MYFLOAT)6.;
|
109 |
MYFLOAT4 vf=v0+dt*(a0+(MYFLOAT)2.*(a1+a2)+a3)/(MYFLOAT)6.;
|
110 |
|
111 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,xf.s3,vf.s0,vf.s1,vf.s2,vf.s3));
|
112 |
}
|
113 |
|
114 |
// Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
115 |
|
116 |
MYFLOAT8 AtomicRungeKutta2(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
117 |
{
|
118 |
MYFLOAT4 x[4],v[4],a[4],xf,vf;
|
119 |
int N=get_global_size(0);
|
120 |
|
121 |
x[0]=clDataIn[gid].lo;
|
122 |
v[0]=clDataIn[gid].hi;
|
123 |
a[0]=(0.,0.,0.,0.);
|
124 |
|
125 |
for (int i=0;i<N;i++)
|
126 |
{
|
127 |
if (gid != i)
|
128 |
a[0]+=Interaction(x[0],clDataIn[i].lo);
|
129 |
}
|
130 |
|
131 |
x[1]=x[0]+v[0]*(MYFLOAT)0.5*dt;
|
132 |
v[1]=v[0]+a[0]*(MYFLOAT)0.5*dt;
|
133 |
a[1]=(0.,0.,0.,0.);
|
134 |
for (int i=0;i<N;i++)
|
135 |
{
|
136 |
if (gid != i)
|
137 |
a[1]+=Interaction(x[1],clDataIn[i].lo);
|
138 |
}
|
139 |
|
140 |
x[2]=x[0]+v[1]*(MYFLOAT)0.5*dt;
|
141 |
v[2]=v[0]+a[1]*(MYFLOAT)0.5*dt;
|
142 |
a[2]=(0.,0.,0.,0.);
|
143 |
for (int i=0;i<N;i++)
|
144 |
{
|
145 |
if (gid != i)
|
146 |
a[2]+=Interaction(x[2],clDataIn[i].lo);
|
147 |
}
|
148 |
|
149 |
x[3]=x[0]+v[2]*dt;
|
150 |
v[3]=v[0]+a[2]*dt;
|
151 |
a[3]=(0.,0.,0.,0.);
|
152 |
for (int i=0;i<N;i++)
|
153 |
{
|
154 |
if (gid != i)
|
155 |
a[3]+=Interaction(x[3],clDataIn[i].lo);
|
156 |
}
|
157 |
|
158 |
xf=x[0]+dt*(v[0]+(MYFLOAT)2.*(v[1]+v[2])+v[3])/(MYFLOAT)6.;
|
159 |
vf=v[0]+dt*(a[0]+(MYFLOAT)2.*(a[1]+a[2])+a[3])/(MYFLOAT)6.;
|
160 |
|
161 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,xf.s3,vf.s0,vf.s1,vf.s2,vf.s3));
|
162 |
}
|
163 |
|
164 |
MYFLOAT8 AtomicEuler(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
165 |
{
|
166 |
MYFLOAT4 x,v,a,xf,vf;
|
167 |
|
168 |
x=clDataIn[gid].lo;
|
169 |
v=clDataIn[gid].hi;
|
170 |
a=(0.,0.,0.,0.);
|
171 |
for (int i=0;i<get_global_size(0);i++)
|
172 |
{
|
173 |
if (gid != i)
|
174 |
a+=Interaction(x,clDataIn[i].lo);
|
175 |
}
|
176 |
|
177 |
vf=v+dt*a;
|
178 |
xf=x+dt*vf;
|
179 |
|
180 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,xf.s3,vf.s0,vf.s1,vf.s2,vf.s3));
|
181 |
}
|
182 |
|
183 |
__kernel void SplutterPoints(__global MYFLOAT8* clData, MYFLOAT box, MYFLOAT velocity,
|
184 |
uint seed_z,uint seed_w)
|
185 |
{
|
186 |
int gid = get_global_id(0);
|
187 |
MYFLOAT N = (MYFLOAT) get_global_size(0);
|
188 |
uint z=seed_z+(uint)gid;
|
189 |
uint w=seed_w-(uint)gid;
|
190 |
|
191 |
MYFLOAT theta=MWCfp*PI;
|
192 |
MYFLOAT phi=MWCfp*PI*(MYFLOAT)2.;
|
193 |
MYFLOAT sinTheta=sin(theta);
|
194 |
clData[gid].s01234567 = (MYFLOAT8) (box*(MYFLOAT)(MWCfp-0.5),box*(MYFLOAT)(MWCfp-0.5),box*(MYFLOAT)(MWCfp-0.5),0.,0.,0.,0.,0.);
|
195 |
MYFLOAT v=sqrt(N*(MYFLOAT)2./distance(clData[gid].lo,(MYFLOAT4) (0.,0.,0.,0.)));
|
196 |
clData[gid].s4=v*sinTheta*cos(phi);
|
197 |
clData[gid].s5=v*sinTheta*sin(phi);
|
198 |
clData[gid].s6=v*cos(theta);
|
199 |
}
|
200 |
|
201 |
__kernel void RungeKutta(__global MYFLOAT8* clData,MYFLOAT h)
|
202 |
{
|
203 |
int gid = get_global_id(0);
|
204 |
|
205 |
MYFLOAT8 clDataGid=AtomicRungeKutta(clData,gid,h);
|
206 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
207 |
clData[gid]=clDataGid;
|
208 |
}
|
209 |
|
210 |
__kernel void Euler(__global MYFLOAT8* clData,MYFLOAT h)
|
211 |
{
|
212 |
int gid = get_global_id(0);
|
213 |
|
214 |
MYFLOAT8 clDataGid=AtomicEuler(clData,gid,h);
|
215 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
216 |
clData[gid]=clDataGid;
|
217 |
}
|
218 |
|
219 |
__kernel void Potential(__global MYFLOAT8* clData,__global MYFLOAT* clPotential)
|
220 |
{
|
221 |
int gid = get_global_id(0);
|
222 |
|
223 |
MYFLOAT potential=0.;
|
224 |
MYFLOAT4 x=clData[gid].lo;
|
225 |
|
226 |
for (int i=0;i<get_global_size(0);i++)
|
227 |
{
|
228 |
if (gid != i)
|
229 |
potential+=PairPotential(x,clData[i].lo);
|
230 |
}
|
231 |
|
232 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
233 |
clPotential[gid]=(MYFLOAT)0.5*potential;
|
234 |
}
|
235 |
|
236 |
__kernel void Kinetic(__global MYFLOAT8* clData,__global MYFLOAT* clKinetic)
|
237 |
{
|
238 |
int gid = get_global_id(0);
|
239 |
|
240 |
clKinetic[gid]=(MYFLOAT)0.5*(pow(clData[gid].s4,2)+pow(clData[gid].s5,2)+pow(clData[gid].s6,2));
|
241 |
}
|
242 |
"""
|
243 |
|
244 |
def Energy(MyData): |
245 |
return(sum(pow(MyData,2))) |
246 |
|
247 |
if __name__=='__main__': |
248 |
|
249 |
# ValueType
|
250 |
ValueType='FP32'
|
251 |
class MyFloat(np.float32):pass |
252 |
clType=cl_array.vec.float8 |
253 |
# Set defaults values
|
254 |
np.set_printoptions(precision=2)
|
255 |
# Id of Device : 1 is for first find !
|
256 |
Device=1
|
257 |
# Iterations is integer
|
258 |
Number=4
|
259 |
# Size of box
|
260 |
SizeOfBox=MyFloat(1.)
|
261 |
# Initial velocity of particules
|
262 |
Velocity=MyFloat(1.)
|
263 |
# Redo the last process
|
264 |
Iterations=100
|
265 |
# Step
|
266 |
Step=MyFloat(0.01)
|
267 |
# Method of integration
|
268 |
Method='RungeKutta'
|
269 |
# InitialRandom
|
270 |
InitialRandom=False
|
271 |
# RNG Marsaglia Method
|
272 |
RNG='MWC'
|
273 |
# CheckEnergies
|
274 |
CheckEnergies=False
|
275 |
# Display samples in 3D
|
276 |
GraphSamples=False
|
277 |
|
278 |
HowToUse='%s -h [Help] -r [InitialRandom] -g [GraphSamples] -c [CheckEnergies] -d <DeviceId> -n <NumberOfParticules> -z <SizeOfBox> -v <Velocity> -s <Step> -i <Iterations> -m <RungeKutta|Euler> -t <FP32|FP64>'
|
279 |
|
280 |
try:
|
281 |
opts, args = getopt.getopt(sys.argv[1:],"rhgcd:n:z:v:i:s:m:t:",["random","graph","check","device=","number=","size=","velocity=","iterations=","step=","method=","valuetype="]) |
282 |
except getopt.GetoptError:
|
283 |
print(HowToUse % sys.argv[0])
|
284 |
sys.exit(2)
|
285 |
|
286 |
for opt, arg in opts: |
287 |
if opt == '-h': |
288 |
print(HowToUse % sys.argv[0])
|
289 |
|
290 |
print("\nInformations about devices detected under OpenCL:")
|
291 |
try:
|
292 |
Id=0
|
293 |
for platform in cl.get_platforms(): |
294 |
for device in platform.get_devices(): |
295 |
deviceType=cl.device_type.to_string(device.type) |
296 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
297 |
Id=Id+1
|
298 |
sys.exit() |
299 |
except ImportError: |
300 |
print("Your platform does not seem to support OpenCL")
|
301 |
sys.exit() |
302 |
|
303 |
elif opt in ("-t", "--valuetype"): |
304 |
if arg=='FP64': |
305 |
class MyFloat(np.float64): pass |
306 |
clType=cl_array.vec.double8 |
307 |
else:
|
308 |
class MyFloat(np.float32):pass |
309 |
clType=cl_array.vec.float8 |
310 |
ValueType = arg |
311 |
elif opt in ("-d", "--device"): |
312 |
Device=int(arg)
|
313 |
elif opt in ("-m", "--method"): |
314 |
Method=arg |
315 |
elif opt in ("-n", "--number"): |
316 |
Number=int(arg)
|
317 |
elif opt in ("-z", "--size"): |
318 |
SizeOfBox=MyFloat(arg) |
319 |
elif opt in ("-v", "--velocity"): |
320 |
Velocity=MyFloat(arg) |
321 |
elif opt in ("-s", "--step"): |
322 |
Step=MyFloat(arg) |
323 |
elif opt in ("-i", "--iterations"): |
324 |
Iterations=int(arg)
|
325 |
elif opt in ("-r", "--random"): |
326 |
InitialRandom=True
|
327 |
elif opt in ("-c", "--check"): |
328 |
CheckEnergies=True
|
329 |
elif opt in ("-g", "--graph"): |
330 |
GraphSamples=True
|
331 |
|
332 |
SizeOfBox=MyFloat(SizeOfBox) |
333 |
Velocity=MyFloat(Velocity) |
334 |
Step=MyFloat(Step) |
335 |
|
336 |
print("Device choosed : %s" % Device)
|
337 |
print("Number of particules : %s" % Number)
|
338 |
print("Size of Box : %s" % SizeOfBox)
|
339 |
print("Initial velocity % s" % Velocity)
|
340 |
print("Number of iterations % s" % Iterations)
|
341 |
print("Step of iteration % s" % Step)
|
342 |
print("Method of resolution % s" % Method)
|
343 |
print("Initial Random for RNG Seed % s" % InitialRandom)
|
344 |
print("Check for Energies % s" % CheckEnergies)
|
345 |
print("Graph for Samples % s" % GraphSamples)
|
346 |
print("ValueType is % s" % ValueType)
|
347 |
|
348 |
# Create Numpy array of CL vector with 8 FP32
|
349 |
MyData = np.zeros(Number, dtype=clType) |
350 |
MyPotential = np.zeros(Number, dtype=MyFloat) |
351 |
MyKinetic = np.zeros(Number, dtype=MyFloat) |
352 |
|
353 |
Marsaglia,Computing=DictionariesAPI() |
354 |
|
355 |
# Scan the OpenCL arrays
|
356 |
Id=0
|
357 |
HasXPU=False
|
358 |
for platform in cl.get_platforms(): |
359 |
for device in platform.get_devices(): |
360 |
if Id==Device:
|
361 |
PlatForm=platform |
362 |
XPU=device |
363 |
print("CPU/GPU selected: ",device.name.lstrip())
|
364 |
HasXPU=True
|
365 |
Id+=1
|
366 |
|
367 |
if HasXPU==False: |
368 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
369 |
sys.exit() |
370 |
|
371 |
# Create Context
|
372 |
try:
|
373 |
ctx = cl.Context([XPU]) |
374 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
375 |
except:
|
376 |
print("Crash during context creation")
|
377 |
|
378 |
print(Marsaglia[RNG],Computing[ValueType]) |
379 |
# Build all routines used for the computing
|
380 |
MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType]))
|
381 |
|
382 |
# Initial forced values for exploration
|
383 |
# MyData[0][0]=np.float32(-1.)
|
384 |
# MyData[0][1]=np.float32(0.)
|
385 |
# MyData[0][5]=np.float32(1.)
|
386 |
# MyData[1][0]=np.float32(1.)
|
387 |
# MyData[1][1]=np.float32(0.)
|
388 |
# MyData[1][5]=np.float32(-1.)
|
389 |
|
390 |
mf = cl.mem_flags |
391 |
clData = cl.Buffer(ctx, mf.READ_WRITE, MyData.nbytes) |
392 |
clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes) |
393 |
clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes) |
394 |
#clData = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyData)
|
395 |
|
396 |
print('All particles superimposed.')
|
397 |
|
398 |
print(SizeOfBox.dtype) |
399 |
|
400 |
# Set particles to RNG points
|
401 |
if InitialRandom:
|
402 |
MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,Velocity,np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32))) |
403 |
else:
|
404 |
MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,Velocity,np.uint32(110271),np.uint32(250173)) |
405 |
|
406 |
print('All particules distributed')
|
407 |
|
408 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
409 |
CLLaunch.wait() |
410 |
if CheckEnergies:
|
411 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
412 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
413 |
CLLaunch.wait() |
414 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
415 |
# print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic),MyPotential,MyKinetic)
|
416 |
print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
417 |
|
418 |
if GraphSamples:
|
419 |
cl.enqueue_copy(queue, MyData, clData) |
420 |
t0=np.array([[MyData[0][0],MyData[0][1],MyData[0][2]]]) |
421 |
t1=np.array([[MyData[1][0],MyData[1][1],MyData[1][2]]]) |
422 |
tL=np.array([[MyData[-1][0],MyData[-1][1],MyData[-1][2]]]) |
423 |
|
424 |
time_start=time.time() |
425 |
for i in range(Iterations): |
426 |
if Method=="RungeKutta": |
427 |
CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clData,Step) |
428 |
else:
|
429 |
CLLaunch=MyRoutines.Euler(queue,(Number,1),None,clData,Step) |
430 |
CLLaunch.wait() |
431 |
if CheckEnergies:
|
432 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
433 |
CLLaunch.wait() |
434 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
435 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
436 |
CLLaunch.wait() |
437 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
438 |
# print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic),MyPotential,MyKinetic)
|
439 |
print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
440 |
|
441 |
if GraphSamples:
|
442 |
cl.enqueue_copy(queue, MyData, clData) |
443 |
t0=np.append(t0,[MyData[0][0],MyData[0][1],MyData[0][2]]) |
444 |
t1=np.append(t1,[MyData[1][0],MyData[1][1],MyData[1][2]]) |
445 |
tL=np.append(tL,[MyData[-1][0],MyData[-1][1],MyData[-1][2]]) |
446 |
print("\nDuration on %s for each %s" % (Device,(time.time()-time_start)/Iterations))
|
447 |
|
448 |
if GraphSamples:
|
449 |
t0=np.transpose(np.reshape(t0,(Iterations+1,3))) |
450 |
t1=np.transpose(np.reshape(t1,(Iterations+1,3))) |
451 |
tL=np.transpose(np.reshape(tL,(Iterations+1,3))) |
452 |
|
453 |
import matplotlib.pyplot as plt |
454 |
from mpl_toolkits.mplot3d import Axes3D |
455 |
|
456 |
fig = plt.figure() |
457 |
ax = fig.gca(projection='3d')
|
458 |
ax.scatter(t0[0],t0[1],t0[2], marker='^',color='blue') |
459 |
ax.scatter(t1[0],t1[1],t1[2], marker='o',color='red') |
460 |
ax.scatter(tL[0],tL[1],tL[2], marker='D',color='green') |
461 |
|
462 |
ax.set_xlabel('X Label')
|
463 |
ax.set_ylabel('Y Label')
|
464 |
ax.set_zlabel('Z Label')
|
465 |
|
466 |
plt.show() |
467 |
|
468 |
clData.release() |
469 |
clKinetic.release() |
470 |
clPotential.release() |