root / NBody / NBody.py @ 136
Historique | Voir | Annoter | Télécharger (14,47 ko)
1 | 128 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 136 | equemene | # -*- coding: utf-8 -*-
|
3 | 116 | equemene | """
|
4 | 116 | equemene | Demonstrateur OpenCL d'interaction NCorps
|
5 | 116 | equemene |
|
6 | 116 | equemene | Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr> CeCILLv2
|
7 | 116 | equemene | """
|
8 | 116 | equemene | import getopt |
9 | 116 | equemene | import sys |
10 | 116 | equemene | import time |
11 | 116 | equemene | import numpy as np |
12 | 116 | equemene | import pyopencl as cl |
13 | 116 | equemene | import pyopencl.array as cl_array |
14 | 116 | equemene | from numpy.random import randint as nprnd |
15 | 116 | equemene | |
16 | 132 | equemene | def DictionariesAPI(): |
17 | 132 | equemene | Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
18 | 132 | equemene | Computing={'FP32':0,'FP64':1} |
19 | 132 | equemene | return(Marsaglia,Computing)
|
20 | 132 | equemene | |
21 | 116 | equemene | BlobOpenCL= """
|
22 | 116 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
23 | 116 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
24 | 116 | equemene | #define MWC (znew+wnew)
|
25 | 116 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
26 | 116 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
27 | 116 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
28 | 116 | equemene |
|
29 | 116 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
30 | 116 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
31 | 116 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
32 | 116 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
33 | 116 | equemene |
|
34 | 132 | equemene | #define TFP32 0
|
35 | 132 | equemene | #define TFP64 1
|
36 | 132 | equemene |
|
37 | 116 | equemene | #define LENGTH 1.
|
38 | 116 | equemene |
|
39 | 116 | equemene | #define PI 3.14159265359
|
40 | 116 | equemene |
|
41 | 116 | equemene | #define SMALL_NUM 0.000000001
|
42 | 116 | equemene |
|
43 | 132 | equemene | #if TYPE == TFP32
|
44 | 132 | equemene | #define MYFLOAT4 float4
|
45 | 132 | equemene | #define MYFLOAT8 float8
|
46 | 132 | equemene | #define MYFLOAT float
|
47 | 132 | equemene | #else
|
48 | 135 | equemene | #pragma OPENCL EXTENSION cl_khr_fp64: enable
|
49 | 132 | equemene | #define MYFLOAT4 double4
|
50 | 132 | equemene | #define MYFLOAT8 double8
|
51 | 132 | equemene | #define MYFLOAT double
|
52 | 132 | equemene | #endif
|
53 | 132 | equemene |
|
54 | 132 | equemene | MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
55 | 116 | equemene | {
|
56 | 136 | equemene | // return((n-m)/(MYFLOAT)pow(distance(n,m),2));
|
57 | 132 | equemene | return((n-m)/(MYFLOAT)pow(distance(n,m),2));
|
58 | 116 | equemene | }
|
59 | 116 | equemene |
|
60 | 133 | equemene | MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
61 | 133 | equemene | {
|
62 | 133 | equemene | return((MYFLOAT)-1./distance(n,m));
|
63 | 133 | equemene | }
|
64 | 133 | equemene |
|
65 | 120 | equemene | // Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
66 | 120 | equemene |
|
67 | 133 | equemene |
|
68 | 132 | equemene | MYFLOAT8 AtomicRungeKutta(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
69 | 116 | equemene | {
|
70 | 133 | equemene | MYFLOAT4 x0=(MYFLOAT4)clDataIn[gid].lo;
|
71 | 133 | equemene | MYFLOAT4 v0=(MYFLOAT4)clDataIn[gid].hi;
|
72 | 133 | equemene | MYFLOAT4 a0=(MYFLOAT4)(0.,0.,0.,0.);
|
73 | 133 | equemene | int N = get_global_size(0);
|
74 | 133 | equemene |
|
75 | 133 | equemene | for (int i=0;i<N;i++)
|
76 | 121 | equemene | {
|
77 | 121 | equemene | if (gid != i)
|
78 | 121 | equemene | a0+=Interaction(x0,clDataIn[i].lo);
|
79 | 121 | equemene | }
|
80 | 121 | equemene |
|
81 | 132 | equemene | MYFLOAT4 x1=x0+v0*(MYFLOAT)0.5*dt;
|
82 | 132 | equemene | MYFLOAT4 v1=v0+a0*(MYFLOAT)0.5*dt;
|
83 | 133 | equemene | MYFLOAT4 a1=(MYFLOAT4)(0.,0.,0.,0.);
|
84 | 133 | equemene | for (int i=0;i<N;i++)
|
85 | 121 | equemene | {
|
86 | 121 | equemene | if (gid != i)
|
87 | 121 | equemene | a1+=Interaction(x1,clDataIn[i].lo);
|
88 | 121 | equemene | }
|
89 | 121 | equemene |
|
90 | 132 | equemene | MYFLOAT4 x2=x0+v1*(MYFLOAT)0.5*dt;
|
91 | 132 | equemene | MYFLOAT4 v2=v0+a1*(MYFLOAT)0.5*dt;
|
92 | 133 | equemene | MYFLOAT4 a2=(MYFLOAT4)(0.,0.,0.,0.);
|
93 | 133 | equemene | for (int i=0;i<N;i++)
|
94 | 121 | equemene | {
|
95 | 121 | equemene | if (gid != i)
|
96 | 121 | equemene | a2+=Interaction(x2,clDataIn[i].lo);
|
97 | 121 | equemene | }
|
98 | 121 | equemene |
|
99 | 132 | equemene | MYFLOAT4 x3=x0+v2*dt;
|
100 | 132 | equemene | MYFLOAT4 v3=v0+a2*dt;
|
101 | 133 | equemene | MYFLOAT4 a3=(MYFLOAT)(0.,0.,0.,0.);
|
102 | 133 | equemene | for (int i=0;i<N;i++)
|
103 | 121 | equemene | {
|
104 | 121 | equemene | if (gid != i)
|
105 | 121 | equemene | a3+=Interaction(x3,clDataIn[i].lo);
|
106 | 121 | equemene | }
|
107 | 121 | equemene |
|
108 | 132 | equemene | MYFLOAT4 xf=x0+dt*(v0+(MYFLOAT)2.*(v1+v2)+v3)/(MYFLOAT)6.;
|
109 | 132 | equemene | MYFLOAT4 vf=v0+dt*(a0+(MYFLOAT)2.*(a1+a2)+a3)/(MYFLOAT)6.;
|
110 | 121 | equemene |
|
111 | 132 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,xf.s3,vf.s0,vf.s1,vf.s2,vf.s3));
|
112 | 121 | equemene | }
|
113 | 121 | equemene |
|
114 | 121 | equemene | // Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
115 | 121 | equemene |
|
116 | 132 | equemene | MYFLOAT8 AtomicRungeKutta2(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
117 | 121 | equemene | {
|
118 | 132 | equemene | MYFLOAT4 x[4],v[4],a[4],xf,vf;
|
119 | 133 | equemene | int N=get_global_size(0);
|
120 | 116 | equemene |
|
121 | 118 | equemene | x[0]=clDataIn[gid].lo;
|
122 | 118 | equemene | v[0]=clDataIn[gid].hi;
|
123 | 118 | equemene | a[0]=(0.,0.,0.,0.);
|
124 | 133 | equemene |
|
125 | 133 | equemene | for (int i=0;i<N;i++)
|
126 | 116 | equemene | {
|
127 | 116 | equemene | if (gid != i)
|
128 | 118 | equemene | a[0]+=Interaction(x[0],clDataIn[i].lo);
|
129 | 116 | equemene | }
|
130 | 118 | equemene |
|
131 | 132 | equemene | x[1]=x[0]+v[0]*(MYFLOAT)0.5*dt;
|
132 | 132 | equemene | v[1]=v[0]+a[0]*(MYFLOAT)0.5*dt;
|
133 | 118 | equemene | a[1]=(0.,0.,0.,0.);
|
134 | 133 | equemene | for (int i=0;i<N;i++)
|
135 | 116 | equemene | {
|
136 | 116 | equemene | if (gid != i)
|
137 | 118 | equemene | a[1]+=Interaction(x[1],clDataIn[i].lo);
|
138 | 116 | equemene | }
|
139 | 118 | equemene |
|
140 | 132 | equemene | x[2]=x[0]+v[1]*(MYFLOAT)0.5*dt;
|
141 | 132 | equemene | v[2]=v[0]+a[1]*(MYFLOAT)0.5*dt;
|
142 | 118 | equemene | a[2]=(0.,0.,0.,0.);
|
143 | 133 | equemene | for (int i=0;i<N;i++)
|
144 | 116 | equemene | {
|
145 | 116 | equemene | if (gid != i)
|
146 | 118 | equemene | a[2]+=Interaction(x[2],clDataIn[i].lo);
|
147 | 116 | equemene | }
|
148 | 118 | equemene |
|
149 | 118 | equemene | x[3]=x[0]+v[2]*dt;
|
150 | 118 | equemene | v[3]=v[0]+a[2]*dt;
|
151 | 118 | equemene | a[3]=(0.,0.,0.,0.);
|
152 | 133 | equemene | for (int i=0;i<N;i++)
|
153 | 116 | equemene | {
|
154 | 116 | equemene | if (gid != i)
|
155 | 118 | equemene | a[3]+=Interaction(x[3],clDataIn[i].lo);
|
156 | 116 | equemene | }
|
157 | 116 | equemene |
|
158 | 132 | equemene | xf=x[0]+dt*(v[0]+(MYFLOAT)2.*(v[1]+v[2])+v[3])/(MYFLOAT)6.;
|
159 | 132 | equemene | vf=v[0]+dt*(a[0]+(MYFLOAT)2.*(a[1]+a[2])+a[3])/(MYFLOAT)6.;
|
160 | 119 | equemene |
|
161 | 132 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,xf.s3,vf.s0,vf.s1,vf.s2,vf.s3));
|
162 | 119 | equemene | }
|
163 | 119 | equemene |
|
164 | 132 | equemene | MYFLOAT8 AtomicEuler(__global MYFLOAT8* clDataIn,int gid,MYFLOAT dt)
|
165 | 119 | equemene | {
|
166 | 132 | equemene | MYFLOAT4 x,v,a,xf,vf;
|
167 | 119 | equemene |
|
168 | 119 | equemene | x=clDataIn[gid].lo;
|
169 | 119 | equemene | v=clDataIn[gid].hi;
|
170 | 119 | equemene | a=(0.,0.,0.,0.);
|
171 | 119 | equemene | for (int i=0;i<get_global_size(0);i++)
|
172 | 119 | equemene | {
|
173 | 119 | equemene | if (gid != i)
|
174 | 119 | equemene | a+=Interaction(x,clDataIn[i].lo);
|
175 | 119 | equemene | }
|
176 | 133 | equemene |
|
177 | 119 | equemene | vf=v+dt*a;
|
178 | 133 | equemene | xf=x+dt*vf;
|
179 | 118 | equemene |
|
180 | 132 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,xf.s3,vf.s0,vf.s1,vf.s2,vf.s3));
|
181 | 116 | equemene | }
|
182 | 116 | equemene |
|
183 | 132 | equemene | __kernel void SplutterPoints(__global MYFLOAT8* clData, MYFLOAT box, MYFLOAT velocity,
|
184 | 116 | equemene | uint seed_z,uint seed_w)
|
185 | 116 | equemene | {
|
186 | 116 | equemene | int gid = get_global_id(0);
|
187 | 133 | equemene | MYFLOAT N = (MYFLOAT) get_global_size(0);
|
188 | 116 | equemene | uint z=seed_z+(uint)gid;
|
189 | 116 | equemene | uint w=seed_w-(uint)gid;
|
190 | 133 | equemene |
|
191 | 132 | equemene | MYFLOAT theta=MWCfp*PI;
|
192 | 133 | equemene | MYFLOAT phi=MWCfp*PI*(MYFLOAT)2.;
|
193 | 132 | equemene | MYFLOAT sinTheta=sin(theta);
|
194 | 133 | equemene | clData[gid].s01234567 = (MYFLOAT8) (box*(MYFLOAT)(MWCfp-0.5),box*(MYFLOAT)(MWCfp-0.5),box*(MYFLOAT)(MWCfp-0.5),0.,0.,0.,0.,0.);
|
195 | 133 | equemene | MYFLOAT v=sqrt(N*(MYFLOAT)2./distance(clData[gid].lo,(MYFLOAT4) (0.,0.,0.,0.)));
|
196 | 133 | equemene | clData[gid].s4=v*sinTheta*cos(phi);
|
197 | 133 | equemene | clData[gid].s5=v*sinTheta*sin(phi);
|
198 | 133 | equemene | clData[gid].s6=v*cos(theta);
|
199 | 116 | equemene | }
|
200 | 116 | equemene |
|
201 | 132 | equemene | __kernel void RungeKutta(__global MYFLOAT8* clData,MYFLOAT h)
|
202 | 116 | equemene | {
|
203 | 116 | equemene | int gid = get_global_id(0);
|
204 | 116 | equemene |
|
205 | 132 | equemene | MYFLOAT8 clDataGid=AtomicRungeKutta(clData,gid,h);
|
206 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
207 | 121 | equemene | clData[gid]=clDataGid;
|
208 | 116 | equemene | }
|
209 | 116 | equemene |
|
210 | 132 | equemene | __kernel void Euler(__global MYFLOAT8* clData,MYFLOAT h)
|
211 | 116 | equemene | {
|
212 | 116 | equemene | int gid = get_global_id(0);
|
213 | 116 | equemene |
|
214 | 132 | equemene | MYFLOAT8 clDataGid=AtomicEuler(clData,gid,h);
|
215 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
216 | 121 | equemene | clData[gid]=clDataGid;
|
217 | 116 | equemene | }
|
218 | 133 | equemene |
|
219 | 133 | equemene | __kernel void Potential(__global MYFLOAT8* clData,__global MYFLOAT* clPotential)
|
220 | 133 | equemene | {
|
221 | 133 | equemene | int gid = get_global_id(0);
|
222 | 133 | equemene |
|
223 | 133 | equemene | MYFLOAT potential=0.;
|
224 | 133 | equemene | MYFLOAT4 x=clData[gid].lo;
|
225 | 133 | equemene |
|
226 | 133 | equemene | for (int i=0;i<get_global_size(0);i++)
|
227 | 133 | equemene | {
|
228 | 133 | equemene | if (gid != i)
|
229 | 133 | equemene | potential+=PairPotential(x,clData[i].lo);
|
230 | 133 | equemene | }
|
231 | 133 | equemene |
|
232 | 133 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
233 | 133 | equemene | clPotential[gid]=(MYFLOAT)0.5*potential;
|
234 | 133 | equemene | }
|
235 | 133 | equemene |
|
236 | 133 | equemene | __kernel void Kinetic(__global MYFLOAT8* clData,__global MYFLOAT* clKinetic)
|
237 | 133 | equemene | {
|
238 | 133 | equemene | int gid = get_global_id(0);
|
239 | 133 | equemene |
|
240 | 133 | equemene | clKinetic[gid]=(MYFLOAT)0.5*(pow(clData[gid].s4,2)+pow(clData[gid].s5,2)+pow(clData[gid].s6,2));
|
241 | 133 | equemene | }
|
242 | 116 | equemene | """
|
243 | 116 | equemene | |
244 | 133 | equemene | def Energy(MyData): |
245 | 133 | equemene | return(sum(pow(MyData,2))) |
246 | 133 | equemene | |
247 | 116 | equemene | if __name__=='__main__': |
248 | 116 | equemene | |
249 | 132 | equemene | # ValueType
|
250 | 132 | equemene | ValueType='FP32'
|
251 | 132 | equemene | class MyFloat(np.float32):pass |
252 | 132 | equemene | clType=cl_array.vec.float8 |
253 | 116 | equemene | # Set defaults values
|
254 | 118 | equemene | np.set_printoptions(precision=2)
|
255 | 116 | equemene | # Id of Device : 1 is for first find !
|
256 | 120 | equemene | Device=1
|
257 | 116 | equemene | # Iterations is integer
|
258 | 133 | equemene | Number=4
|
259 | 116 | equemene | # Size of box
|
260 | 132 | equemene | SizeOfBox=MyFloat(1.)
|
261 | 116 | equemene | # Initial velocity of particules
|
262 | 132 | equemene | Velocity=MyFloat(1.)
|
263 | 116 | equemene | # Redo the last process
|
264 | 133 | equemene | Iterations=100
|
265 | 116 | equemene | # Step
|
266 | 133 | equemene | Step=MyFloat(0.01)
|
267 | 121 | equemene | # Method of integration
|
268 | 121 | equemene | Method='RungeKutta'
|
269 | 132 | equemene | # InitialRandom
|
270 | 132 | equemene | InitialRandom=False
|
271 | 132 | equemene | # RNG Marsaglia Method
|
272 | 132 | equemene | RNG='MWC'
|
273 | 133 | equemene | # CheckEnergies
|
274 | 133 | equemene | CheckEnergies=False
|
275 | 134 | equemene | # Display samples in 3D
|
276 | 134 | equemene | GraphSamples=False
|
277 | 132 | equemene | |
278 | 134 | equemene | HowToUse='%s -h [Help] -r [InitialRandom] -g [GraphSamples] -c [CheckEnergies] -d <DeviceId> -n <NumberOfParticules> -z <SizeOfBox> -v <Velocity> -s <Step> -i <Iterations> -m <RungeKutta|Euler> -t <FP32|FP64>'
|
279 | 116 | equemene | |
280 | 116 | equemene | try:
|
281 | 134 | equemene | opts, args = getopt.getopt(sys.argv[1:],"rhgcd:n:z:v:i:s:m:t:",["random","graph","check","device=","number=","size=","velocity=","iterations=","step=","method=","valuetype="]) |
282 | 116 | equemene | except getopt.GetoptError:
|
283 | 128 | equemene | print(HowToUse % sys.argv[0])
|
284 | 116 | equemene | sys.exit(2)
|
285 | 116 | equemene | |
286 | 116 | equemene | for opt, arg in opts: |
287 | 116 | equemene | if opt == '-h': |
288 | 128 | equemene | print(HowToUse % sys.argv[0])
|
289 | 116 | equemene | |
290 | 128 | equemene | print("\nInformations about devices detected under OpenCL:")
|
291 | 116 | equemene | try:
|
292 | 132 | equemene | Id=0
|
293 | 116 | equemene | for platform in cl.get_platforms(): |
294 | 116 | equemene | for device in platform.get_devices(): |
295 | 116 | equemene | deviceType=cl.device_type.to_string(device.type) |
296 | 128 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
297 | 116 | equemene | Id=Id+1
|
298 | 116 | equemene | sys.exit() |
299 | 116 | equemene | except ImportError: |
300 | 128 | equemene | print("Your platform does not seem to support OpenCL")
|
301 | 116 | equemene | sys.exit() |
302 | 116 | equemene | |
303 | 132 | equemene | elif opt in ("-t", "--valuetype"): |
304 | 132 | equemene | if arg=='FP64': |
305 | 132 | equemene | class MyFloat(np.float64): pass |
306 | 132 | equemene | clType=cl_array.vec.double8 |
307 | 132 | equemene | else:
|
308 | 132 | equemene | class MyFloat(np.float32):pass |
309 | 132 | equemene | clType=cl_array.vec.float8 |
310 | 132 | equemene | ValueType = arg |
311 | 116 | equemene | elif opt in ("-d", "--device"): |
312 | 116 | equemene | Device=int(arg)
|
313 | 121 | equemene | elif opt in ("-m", "--method"): |
314 | 121 | equemene | Method=arg |
315 | 116 | equemene | elif opt in ("-n", "--number"): |
316 | 116 | equemene | Number=int(arg)
|
317 | 116 | equemene | elif opt in ("-z", "--size"): |
318 | 132 | equemene | SizeOfBox=MyFloat(arg) |
319 | 116 | equemene | elif opt in ("-v", "--velocity"): |
320 | 132 | equemene | Velocity=MyFloat(arg) |
321 | 116 | equemene | elif opt in ("-s", "--step"): |
322 | 132 | equemene | Step=MyFloat(arg) |
323 | 120 | equemene | elif opt in ("-i", "--iterations"): |
324 | 120 | equemene | Iterations=int(arg)
|
325 | 132 | equemene | elif opt in ("-r", "--random"): |
326 | 132 | equemene | InitialRandom=True
|
327 | 133 | equemene | elif opt in ("-c", "--check"): |
328 | 133 | equemene | CheckEnergies=True
|
329 | 134 | equemene | elif opt in ("-g", "--graph"): |
330 | 134 | equemene | GraphSamples=True
|
331 | 134 | equemene | |
332 | 132 | equemene | SizeOfBox=MyFloat(SizeOfBox) |
333 | 132 | equemene | Velocity=MyFloat(Velocity) |
334 | 132 | equemene | Step=MyFloat(Step) |
335 | 132 | equemene | |
336 | 128 | equemene | print("Device choosed : %s" % Device)
|
337 | 128 | equemene | print("Number of particules : %s" % Number)
|
338 | 128 | equemene | print("Size of Box : %s" % SizeOfBox)
|
339 | 128 | equemene | print("Initial velocity % s" % Velocity)
|
340 | 128 | equemene | print("Number of iterations % s" % Iterations)
|
341 | 128 | equemene | print("Step of iteration % s" % Step)
|
342 | 128 | equemene | print("Method of resolution % s" % Method)
|
343 | 133 | equemene | print("Initial Random for RNG Seed % s" % InitialRandom)
|
344 | 134 | equemene | print("Check for Energies % s" % CheckEnergies)
|
345 | 134 | equemene | print("Graph for Samples % s" % GraphSamples)
|
346 | 132 | equemene | print("ValueType is % s" % ValueType)
|
347 | 116 | equemene | |
348 | 132 | equemene | # Create Numpy array of CL vector with 8 FP32
|
349 | 132 | equemene | MyData = np.zeros(Number, dtype=clType) |
350 | 133 | equemene | MyPotential = np.zeros(Number, dtype=MyFloat) |
351 | 133 | equemene | MyKinetic = np.zeros(Number, dtype=MyFloat) |
352 | 132 | equemene | |
353 | 132 | equemene | Marsaglia,Computing=DictionariesAPI() |
354 | 132 | equemene | |
355 | 132 | equemene | # Scan the OpenCL arrays
|
356 | 132 | equemene | Id=0
|
357 | 116 | equemene | HasXPU=False
|
358 | 116 | equemene | for platform in cl.get_platforms(): |
359 | 116 | equemene | for device in platform.get_devices(): |
360 | 116 | equemene | if Id==Device:
|
361 | 116 | equemene | PlatForm=platform |
362 | 116 | equemene | XPU=device |
363 | 128 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
364 | 116 | equemene | HasXPU=True
|
365 | 116 | equemene | Id+=1
|
366 | 116 | equemene | |
367 | 116 | equemene | if HasXPU==False: |
368 | 128 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
369 | 116 | equemene | sys.exit() |
370 | 116 | equemene | |
371 | 132 | equemene | # Create Context
|
372 | 116 | equemene | try:
|
373 | 116 | equemene | ctx = cl.Context([XPU]) |
374 | 116 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
375 | 116 | equemene | except:
|
376 | 128 | equemene | print("Crash during context creation")
|
377 | 116 | equemene | |
378 | 132 | equemene | print(Marsaglia[RNG],Computing[ValueType]) |
379 | 132 | equemene | # Build all routines used for the computing
|
380 | 132 | equemene | MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType]))
|
381 | 119 | equemene | |
382 | 119 | equemene | # Initial forced values for exploration
|
383 | 118 | equemene | # MyData[0][0]=np.float32(-1.)
|
384 | 118 | equemene | # MyData[0][1]=np.float32(0.)
|
385 | 118 | equemene | # MyData[0][5]=np.float32(1.)
|
386 | 118 | equemene | # MyData[1][0]=np.float32(1.)
|
387 | 118 | equemene | # MyData[1][1]=np.float32(0.)
|
388 | 118 | equemene | # MyData[1][5]=np.float32(-1.)
|
389 | 116 | equemene | |
390 | 116 | equemene | mf = cl.mem_flags |
391 | 119 | equemene | clData = cl.Buffer(ctx, mf.READ_WRITE, MyData.nbytes) |
392 | 133 | equemene | clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes) |
393 | 133 | equemene | clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes) |
394 | 119 | equemene | #clData = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyData)
|
395 | 116 | equemene | |
396 | 134 | equemene | print('All particles superimposed.')
|
397 | 116 | equemene | |
398 | 132 | equemene | print(SizeOfBox.dtype) |
399 | 132 | equemene | |
400 | 132 | equemene | # Set particles to RNG points
|
401 | 132 | equemene | if InitialRandom:
|
402 | 132 | equemene | MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,Velocity,np.uint32(nprnd(2**32)),np.uint32(nprnd(2**32))) |
403 | 132 | equemene | else:
|
404 | 132 | equemene | MyRoutines.SplutterPoints(queue,(Number,1),None,clData,SizeOfBox,Velocity,np.uint32(110271),np.uint32(250173)) |
405 | 116 | equemene | |
406 | 132 | equemene | print('All particules distributed')
|
407 | 119 | equemene | |
408 | 133 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
409 | 133 | equemene | CLLaunch.wait() |
410 | 133 | equemene | if CheckEnergies:
|
411 | 133 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
412 | 133 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
413 | 133 | equemene | CLLaunch.wait() |
414 | 133 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
415 | 133 | equemene | # print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic),MyPotential,MyKinetic)
|
416 | 133 | equemene | print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
417 | 133 | equemene | |
418 | 134 | equemene | if GraphSamples:
|
419 | 134 | equemene | cl.enqueue_copy(queue, MyData, clData) |
420 | 134 | equemene | t0=np.array([[MyData[0][0],MyData[0][1],MyData[0][2]]]) |
421 | 134 | equemene | t1=np.array([[MyData[1][0],MyData[1][1],MyData[1][2]]]) |
422 | 134 | equemene | tL=np.array([[MyData[-1][0],MyData[-1][1],MyData[-1][2]]]) |
423 | 116 | equemene | |
424 | 116 | equemene | time_start=time.time() |
425 | 128 | equemene | for i in range(Iterations): |
426 | 132 | equemene | if Method=="RungeKutta": |
427 | 132 | equemene | CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clData,Step) |
428 | 121 | equemene | else:
|
429 | 132 | equemene | CLLaunch=MyRoutines.Euler(queue,(Number,1),None,clData,Step) |
430 | 118 | equemene | CLLaunch.wait() |
431 | 133 | equemene | if CheckEnergies:
|
432 | 133 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clData,clPotential) |
433 | 133 | equemene | CLLaunch.wait() |
434 | 133 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
435 | 133 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clData,clKinetic) |
436 | 133 | equemene | CLLaunch.wait() |
437 | 133 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
438 | 133 | equemene | # print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic),MyPotential,MyKinetic)
|
439 | 133 | equemene | print(np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))
|
440 | 133 | equemene | |
441 | 134 | equemene | if GraphSamples:
|
442 | 134 | equemene | cl.enqueue_copy(queue, MyData, clData) |
443 | 134 | equemene | t0=np.append(t0,[MyData[0][0],MyData[0][1],MyData[0][2]]) |
444 | 134 | equemene | t1=np.append(t1,[MyData[1][0],MyData[1][1],MyData[1][2]]) |
445 | 134 | equemene | tL=np.append(tL,[MyData[-1][0],MyData[-1][1],MyData[-1][2]]) |
446 | 128 | equemene | print("\nDuration on %s for each %s" % (Device,(time.time()-time_start)/Iterations))
|
447 | 135 | equemene | |
448 | 135 | equemene | if GraphSamples:
|
449 | 135 | equemene | t0=np.transpose(np.reshape(t0,(Iterations+1,3))) |
450 | 135 | equemene | t1=np.transpose(np.reshape(t1,(Iterations+1,3))) |
451 | 135 | equemene | tL=np.transpose(np.reshape(tL,(Iterations+1,3))) |
452 | 118 | equemene | |
453 | 135 | equemene | import matplotlib.pyplot as plt |
454 | 135 | equemene | from mpl_toolkits.mplot3d import Axes3D |
455 | 119 | equemene | |
456 | 135 | equemene | fig = plt.figure() |
457 | 135 | equemene | ax = fig.gca(projection='3d')
|
458 | 135 | equemene | ax.scatter(t0[0],t0[1],t0[2], marker='^',color='blue') |
459 | 135 | equemene | ax.scatter(t1[0],t1[1],t1[2], marker='o',color='red') |
460 | 135 | equemene | ax.scatter(tL[0],tL[1],tL[2], marker='D',color='green') |
461 | 135 | equemene | |
462 | 135 | equemene | ax.set_xlabel('X Label')
|
463 | 135 | equemene | ax.set_ylabel('Y Label')
|
464 | 135 | equemene | ax.set_zlabel('Z Label')
|
465 | 135 | equemene | |
466 | 135 | equemene | plt.show() |
467 | 119 | equemene | |
468 | 119 | equemene | clData.release() |
469 | 133 | equemene | clKinetic.release() |
470 | 133 | equemene | clPotential.release() |