root / Pi / XPU / PiXPU.py
Historique | Voir | Annoter | Télécharger (31,71 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
#
|
3 |
# Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
4 |
#
|
5 |
# performs an estimation of Pi using Monte Carlo method
|
6 |
# a large amount of iterations is divided and distributed to compute units
|
7 |
# a lot of options are provided to perform scalabilty tests
|
8 |
#
|
9 |
# use -h for complete set of options
|
10 |
#
|
11 |
# CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr>
|
12 |
#
|
13 |
# Part of matrix programs from: https://forge.cbp.ens-lyon.fr/svn/bench4gpu/
|
14 |
|
15 |
# Thanks to Andreas Klockner for PyCUDA:
|
16 |
# http://mathema.tician.de/software/pycuda
|
17 |
# Thanks to Andreas Klockner for PyOpenCL:
|
18 |
# http://mathema.tician.de/software/pyopencl
|
19 |
#
|
20 |
|
21 |
# 2013-01-01 : problems with launch timeout
|
22 |
# http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
23 |
# Option "Interactive" "0" in /etc/X11/xorg.conf
|
24 |
|
25 |
# Common tools
|
26 |
import numpy |
27 |
from numpy.random import randint as nprnd |
28 |
import sys |
29 |
import getopt |
30 |
import time |
31 |
import itertools |
32 |
from socket import gethostname |
33 |
|
34 |
class PenStacle: |
35 |
"""Pentacle of Statistics from data"""
|
36 |
Avg=0
|
37 |
Med=0
|
38 |
Std=0
|
39 |
Min=0
|
40 |
Max=0
|
41 |
def __init__(self,Data): |
42 |
self.Avg=numpy.average(Data)
|
43 |
self.Med=numpy.median(Data)
|
44 |
self.Std=numpy.std(Data)
|
45 |
self.Max=numpy.max(Data)
|
46 |
self.Min=numpy.min(Data)
|
47 |
def display(self): |
48 |
print("%s %s %s %s %s" % (self.Avg,self.Med,self.Std,self.Min,self.Max)) |
49 |
|
50 |
class Experience: |
51 |
"""Metrology for experiences"""
|
52 |
DeviceStyle=''
|
53 |
DeviceId=0
|
54 |
AvgD=0
|
55 |
MedD=0
|
56 |
StdD=0
|
57 |
MinD=0
|
58 |
MaxD=0
|
59 |
AvgR=0
|
60 |
MedR=0
|
61 |
StdR=0
|
62 |
MinR=0
|
63 |
MaxR=0
|
64 |
def __init__(self,DeviceStyle,DeviceId,Iterations): |
65 |
self.DeviceStyle=DeviceStyle
|
66 |
self.DeviceId=DeviceId
|
67 |
self.Iterations
|
68 |
|
69 |
def Metrology(self,Data): |
70 |
Duration=PenStacle(Data) |
71 |
Rate=PenStacle(Iterations/Data) |
72 |
print("Duration %s" % Duration)
|
73 |
print("Rate %s" % Rate)
|
74 |
|
75 |
|
76 |
|
77 |
def DictionariesAPI(): |
78 |
Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
79 |
Computing={'INT32':0,'INT64':1,'FP32':2,'FP64':3} |
80 |
Test={True:1,False:0} |
81 |
return(Marsaglia,Computing,Test)
|
82 |
|
83 |
# find prime factors of a number
|
84 |
# Get for WWW :
|
85 |
# http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
86 |
def PrimeFactors(x): |
87 |
|
88 |
factorlist=numpy.array([]).astype('uint32')
|
89 |
loop=2
|
90 |
while loop<=x:
|
91 |
if x%loop==0: |
92 |
x/=loop |
93 |
factorlist=numpy.append(factorlist,[loop]) |
94 |
else:
|
95 |
loop+=1
|
96 |
return factorlist
|
97 |
|
98 |
# Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
99 |
# output is thread number
|
100 |
def BestThreadsNumber(jobs): |
101 |
factors=PrimeFactors(jobs) |
102 |
matrix=numpy.append([factors],[factors[::-1]],axis=0) |
103 |
threads=1
|
104 |
for factor in matrix.transpose().ravel(): |
105 |
threads=threads*factor |
106 |
if threads*threads>jobs or threads>512: |
107 |
break
|
108 |
return(long(threads)) |
109 |
|
110 |
# Predicted Amdahl Law (Reduced with s=1-p)
|
111 |
def AmdahlR(N, T1, p): |
112 |
return (T1*(1-p+p/N)) |
113 |
|
114 |
# Predicted Amdahl Law
|
115 |
def Amdahl(N, T1, s, p): |
116 |
return (T1*(s+p/N))
|
117 |
|
118 |
# Predicted Mylq Law with first order
|
119 |
def Mylq(N, T1,s,c,p): |
120 |
return (T1*(s+p/N)+c*N)
|
121 |
|
122 |
# Predicted Mylq Law with second order
|
123 |
def Mylq2(N, T1,s,c1,c2,p): |
124 |
return (T1*(s+p/N)+c1*N+c2*N*N)
|
125 |
|
126 |
def KernelCodeCuda(): |
127 |
KERNEL_CODE_CUDA="""
|
128 |
#define TCONG 0
|
129 |
#define TSHR3 1
|
130 |
#define TMWC 2
|
131 |
#define TKISS 3
|
132 |
|
133 |
#define TINT32 0
|
134 |
#define TINT64 1
|
135 |
#define TFP32 2
|
136 |
#define TFP64 3
|
137 |
|
138 |
#define IFTHEN 1
|
139 |
|
140 |
// Marsaglia RNG very simple implementation
|
141 |
|
142 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
143 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
144 |
#define MWC (znew+wnew)
|
145 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
146 |
#define CONG (jcong=69069*jcong+1234567)
|
147 |
#define KISS ((MWC^CONG)+SHR3)
|
148 |
|
149 |
#define MWCfp MWC * 2.328306435454494e-10f
|
150 |
#define KISSfp KISS * 2.328306435454494e-10f
|
151 |
#define SHR3fp SHR3 * 2.328306435454494e-10f
|
152 |
#define CONGfp CONG * 2.328306435454494e-10f
|
153 |
|
154 |
__device__ ulong MainLoop(ulong iterations,uint seed_w,uint seed_z,size_t work)
|
155 |
{
|
156 |
|
157 |
#if TRNG == TCONG
|
158 |
uint jcong=seed_z+work;
|
159 |
#elif TRNG == TSHR3
|
160 |
uint jsr=seed_w+work;
|
161 |
#elif TRNG == TMWC
|
162 |
uint z=seed_z+work;
|
163 |
uint w=seed_w+work;
|
164 |
#elif TRNG == TKISS
|
165 |
uint jcong=seed_z+work;
|
166 |
uint jsr=seed_w+work;
|
167 |
uint z=seed_z-work;
|
168 |
uint w=seed_w-work;
|
169 |
#endif
|
170 |
|
171 |
ulong total=0;
|
172 |
|
173 |
for (ulong i=0;i<iterations;i++) {
|
174 |
|
175 |
#if TYPE == TINT32
|
176 |
#define THEONE 1073741824
|
177 |
#if TRNG == TCONG
|
178 |
uint x=CONG>>17 ;
|
179 |
uint y=CONG>>17 ;
|
180 |
#elif TRNG == TSHR3
|
181 |
uint x=SHR3>>17 ;
|
182 |
uint y=SHR3>>17 ;
|
183 |
#elif TRNG == TMWC
|
184 |
uint x=MWC>>17 ;
|
185 |
uint y=MWC>>17 ;
|
186 |
#elif TRNG == TKISS
|
187 |
uint x=KISS>>17 ;
|
188 |
uint y=KISS>>17 ;
|
189 |
#endif
|
190 |
#elif TYPE == TINT64
|
191 |
#define THEONE 4611686018427387904
|
192 |
#if TRNG == TCONG
|
193 |
ulong x=(ulong)(CONG>>1) ;
|
194 |
ulong y=(ulong)(CONG>>1) ;
|
195 |
#elif TRNG == TSHR3
|
196 |
ulong x=(ulong)(SHR3>>1) ;
|
197 |
ulong y=(ulong)(SHR3>>1) ;
|
198 |
#elif TRNG == TMWC
|
199 |
ulong x=(ulong)(MWC>>1) ;
|
200 |
ulong y=(ulong)(MWC>>1) ;
|
201 |
#elif TRNG == TKISS
|
202 |
ulong x=(ulong)(KISS>>1) ;
|
203 |
ulong y=(ulong)(KISS>>1) ;
|
204 |
#endif
|
205 |
#elif TYPE == TFP32
|
206 |
#define THEONE 1.0f
|
207 |
#if TRNG == TCONG
|
208 |
float x=CONGfp ;
|
209 |
float y=CONGfp ;
|
210 |
#elif TRNG == TSHR3
|
211 |
float x=SHR3fp ;
|
212 |
float y=SHR3fp ;
|
213 |
#elif TRNG == TMWC
|
214 |
float x=MWCfp ;
|
215 |
float y=MWCfp ;
|
216 |
#elif TRNG == TKISS
|
217 |
float x=KISSfp ;
|
218 |
float y=KISSfp ;
|
219 |
#endif
|
220 |
#elif TYPE == TFP64
|
221 |
#define THEONE 1.0f
|
222 |
#if TRNG == TCONG
|
223 |
double x=(double)CONGfp ;
|
224 |
double y=(double)CONGfp ;
|
225 |
#elif TRNG == TSHR3
|
226 |
double x=(double)SHR3fp ;
|
227 |
double y=(double)SHR3fp ;
|
228 |
#elif TRNG == TMWC
|
229 |
double x=(double)MWCfp ;
|
230 |
double y=(double)MWCfp ;
|
231 |
#elif TRNG == TKISS
|
232 |
double x=(double)KISSfp ;
|
233 |
double y=(double)KISSfp ;
|
234 |
#endif
|
235 |
#endif
|
236 |
|
237 |
#if TEST == IFTHEN
|
238 |
if ((x*x+y*y) <=THEONE) {
|
239 |
total+=1;
|
240 |
}
|
241 |
#else
|
242 |
ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
|
243 |
total+=inside;
|
244 |
#endif
|
245 |
}
|
246 |
|
247 |
return(total);
|
248 |
}
|
249 |
|
250 |
__global__ void MainLoopBlocks(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
251 |
{
|
252 |
ulong total=MainLoop(iterations,seed_z,seed_w,blockIdx.x);
|
253 |
s[blockIdx.x]=total;
|
254 |
__syncthreads();
|
255 |
|
256 |
}
|
257 |
|
258 |
__global__ void MainLoopThreads(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
259 |
{
|
260 |
ulong total=MainLoop(iterations,seed_z,seed_w,threadIdx.x);
|
261 |
s[threadIdx.x]=total;
|
262 |
__syncthreads();
|
263 |
|
264 |
}
|
265 |
|
266 |
__global__ void MainLoopHybrid(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
267 |
{
|
268 |
ulong total=MainLoop(iterations,seed_z,seed_w,blockDim.x*blockIdx.x+threadIdx.x);
|
269 |
s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
270 |
__syncthreads();
|
271 |
}
|
272 |
|
273 |
"""
|
274 |
return(KERNEL_CODE_CUDA)
|
275 |
|
276 |
def KernelCodeOpenCL(): |
277 |
KERNEL_CODE_OPENCL="""
|
278 |
#define TCONG 0
|
279 |
#define TSHR3 1
|
280 |
#define TMWC 2
|
281 |
#define TKISS 3
|
282 |
|
283 |
#define TINT32 0
|
284 |
#define TINT64 1
|
285 |
#define TFP32 2
|
286 |
#define TFP64 3
|
287 |
|
288 |
#define IFTHEN 1
|
289 |
|
290 |
// Marsaglia RNG very simple implementation
|
291 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
292 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
293 |
|
294 |
#define MWC (znew+wnew)
|
295 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
296 |
#define CONG (jcong=69069*jcong+1234567)
|
297 |
#define KISS ((MWC^CONG)+SHR3)
|
298 |
|
299 |
#define MWCfp MWC * 2.328306435454494e-10f
|
300 |
#define KISSfp KISS * 2.328306435454494e-10f
|
301 |
#define CONGfp CONG * 2.328306435454494e-10f
|
302 |
#define SHR3fp SHR3 * 2.328306435454494e-10f
|
303 |
|
304 |
ulong MainLoop(ulong iterations,uint seed_z,uint seed_w,size_t work)
|
305 |
{
|
306 |
|
307 |
#if TRNG == TCONG
|
308 |
uint jcong=seed_z+work;
|
309 |
#elif TRNG == TSHR3
|
310 |
uint jsr=seed_w+work;
|
311 |
#elif TRNG == TMWC
|
312 |
uint z=seed_z+work;
|
313 |
uint w=seed_w+work;
|
314 |
#elif TRNG == TKISS
|
315 |
uint jcong=seed_z+work;
|
316 |
uint jsr=seed_w+work;
|
317 |
uint z=seed_z-work;
|
318 |
uint w=seed_w-work;
|
319 |
#endif
|
320 |
|
321 |
ulong total=0;
|
322 |
|
323 |
for (ulong i=0;i<iterations;i++) {
|
324 |
|
325 |
#if TYPE == TINT32
|
326 |
#define THEONE 1073741824
|
327 |
#if TRNG == TCONG
|
328 |
uint x=CONG>>17 ;
|
329 |
uint y=CONG>>17 ;
|
330 |
#elif TRNG == TSHR3
|
331 |
uint x=SHR3>>17 ;
|
332 |
uint y=SHR3>>17 ;
|
333 |
#elif TRNG == TMWC
|
334 |
uint x=MWC>>17 ;
|
335 |
uint y=MWC>>17 ;
|
336 |
#elif TRNG == TKISS
|
337 |
uint x=KISS>>17 ;
|
338 |
uint y=KISS>>17 ;
|
339 |
#endif
|
340 |
#elif TYPE == TINT64
|
341 |
#define THEONE 4611686018427387904
|
342 |
#if TRNG == TCONG
|
343 |
ulong x=(ulong)(CONG>>1) ;
|
344 |
ulong y=(ulong)(CONG>>1) ;
|
345 |
#elif TRNG == TSHR3
|
346 |
ulong x=(ulong)(SHR3>>1) ;
|
347 |
ulong y=(ulong)(SHR3>>1) ;
|
348 |
#elif TRNG == TMWC
|
349 |
ulong x=(ulong)(MWC>>1) ;
|
350 |
ulong y=(ulong)(MWC>>1) ;
|
351 |
#elif TRNG == TKISS
|
352 |
ulong x=(ulong)(KISS>>1) ;
|
353 |
ulong y=(ulong)(KISS>>1) ;
|
354 |
#endif
|
355 |
#elif TYPE == TFP32
|
356 |
#define THEONE 1.0f
|
357 |
#if TRNG == TCONG
|
358 |
float x=CONGfp ;
|
359 |
float y=CONGfp ;
|
360 |
#elif TRNG == TSHR3
|
361 |
float x=SHR3fp ;
|
362 |
float y=SHR3fp ;
|
363 |
#elif TRNG == TMWC
|
364 |
float x=MWCfp ;
|
365 |
float y=MWCfp ;
|
366 |
#elif TRNG == TKISS
|
367 |
float x=KISSfp ;
|
368 |
float y=KISSfp ;
|
369 |
#endif
|
370 |
#elif TYPE == TFP64
|
371 |
#pragma OPENCL EXTENSION cl_khr_fp64: enable
|
372 |
#define THEONE 1.0f
|
373 |
#if TRNG == TCONG
|
374 |
double x=(double)CONGfp ;
|
375 |
double y=(double)CONGfp ;
|
376 |
#elif TRNG == TSHR3
|
377 |
double x=(double)SHR3fp ;
|
378 |
double y=(double)SHR3fp ;
|
379 |
#elif TRNG == TMWC
|
380 |
double x=(double)MWCfp ;
|
381 |
double y=(double)MWCfp ;
|
382 |
#elif TRNG == TKISS
|
383 |
double x=(double)KISSfp ;
|
384 |
double y=(double)KISSfp ;
|
385 |
#endif
|
386 |
#endif
|
387 |
|
388 |
#if TEST == IFTHEN
|
389 |
if ((x*x+y*y) <= THEONE) {
|
390 |
total+=1;
|
391 |
}
|
392 |
#else
|
393 |
ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
|
394 |
total+=inside;
|
395 |
#endif
|
396 |
}
|
397 |
|
398 |
return(total);
|
399 |
}
|
400 |
|
401 |
__kernel void MainLoopGlobal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
402 |
{
|
403 |
ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
|
404 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
405 |
s[get_global_id(0)]=total;
|
406 |
}
|
407 |
|
408 |
__kernel void MainLoopLocal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
409 |
{
|
410 |
ulong total=MainLoop(iterations,seed_z,seed_w,get_local_id(0));
|
411 |
barrier(CLK_LOCAL_MEM_FENCE);
|
412 |
s[get_local_id(0)]=total;
|
413 |
}
|
414 |
|
415 |
__kernel void MainLoopHybrid(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
416 |
{
|
417 |
ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
|
418 |
barrier(CLK_GLOBAL_MEM_FENCE || CLK_LOCAL_MEM_FENCE);
|
419 |
s[get_global_id(0)]=total;
|
420 |
}
|
421 |
|
422 |
"""
|
423 |
return(KERNEL_CODE_OPENCL)
|
424 |
|
425 |
def MetropolisCuda(InputCU): |
426 |
|
427 |
print("Inside ",InputCU)
|
428 |
|
429 |
iterations=InputCU['Iterations']
|
430 |
steps=InputCU['Steps']
|
431 |
blocks=InputCU['Blocks']
|
432 |
threads=InputCU['Threads']
|
433 |
Device=InputCU['Device']
|
434 |
RNG=InputCU['RNG']
|
435 |
ValueType=InputCU['ValueType']
|
436 |
TestType=InputCU['IfThen']
|
437 |
Seeds=InputCU['Seeds']
|
438 |
|
439 |
Marsaglia,Computing,Test=DictionariesAPI() |
440 |
|
441 |
try:
|
442 |
# For PyCUDA import
|
443 |
import pycuda.driver as cuda |
444 |
from pycuda.compiler import SourceModule |
445 |
|
446 |
cuda.init() |
447 |
for Id in range(cuda.Device.count()): |
448 |
if Id==Device:
|
449 |
XPU=cuda.Device(Id) |
450 |
print("GPU selected %s" % XPU.name())
|
451 |
print
|
452 |
|
453 |
except ImportError: |
454 |
print("Platform does not seem to support CUDA")
|
455 |
|
456 |
circle=numpy.zeros(blocks*threads).astype(numpy.uint64) |
457 |
circleCU = cuda.InOut(circle) |
458 |
#circleCU = cuda.mem_alloc(circle.size*circle.dtype.itemize)
|
459 |
#cuda.memcpy_htod(circleCU, circle)
|
460 |
|
461 |
Context=XPU.make_context() |
462 |
|
463 |
try:
|
464 |
mod = SourceModule(KernelCodeCuda(),options=['--compiler-options','-DTRNG=%i -DTYPE=%s' % (Marsaglia[RNG],Computing[ValueType])]) |
465 |
#mod = SourceModule(KernelCodeCuda(),nvcc='nvcc',keep=True)
|
466 |
# Needed to set the compiler via ccbin for CUDA9 implementation
|
467 |
#mod = SourceModule(KernelCodeCuda(),options=['-ccbin','clang-3.9','--compiler-options','-DTRNG=%i' % Marsaglia[RNG],'-DTYPE=%s' % Computing[ValueType],'-DTEST=%s' % Test[TestType]],keep=True)
|
468 |
except:
|
469 |
print("Compilation seems to break")
|
470 |
|
471 |
MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
|
472 |
MetropolisThreadsCU=mod.get_function("MainLoopThreads")
|
473 |
MetropolisHybridCU=mod.get_function("MainLoopHybrid")
|
474 |
|
475 |
MyDuration=numpy.zeros(steps) |
476 |
|
477 |
jobs=blocks*threads; |
478 |
|
479 |
iterationsCU=numpy.uint64(iterations/jobs) |
480 |
if iterations%jobs!=0: |
481 |
iterationsCU+=numpy.uint64(1)
|
482 |
|
483 |
for i in range(steps): |
484 |
start_time=time.time() |
485 |
|
486 |
try:
|
487 |
MetropolisHybridCU(circleCU, |
488 |
numpy.uint64(iterationsCU), |
489 |
numpy.uint32(Seeds[0]),
|
490 |
numpy.uint32(Seeds[1]),
|
491 |
grid=(blocks,1),block=(threads,1,1)) |
492 |
except:
|
493 |
print("Crash during CUDA call")
|
494 |
|
495 |
elapsed = time.time()-start_time |
496 |
print("(Blocks/Threads)=(%i,%i) method done in %.2f s..." % (blocks,threads,elapsed))
|
497 |
|
498 |
MyDuration[i]=elapsed |
499 |
|
500 |
OutputCU={'Inside':sum(circle),'NewIterations':numpy.uint64(iterationsCU*jobs),'Duration':MyDuration} |
501 |
print(OutputCU) |
502 |
Context.pop() |
503 |
|
504 |
Context.detach() |
505 |
|
506 |
return(OutputCU)
|
507 |
|
508 |
def MetropolisOpenCL(InputCL): |
509 |
|
510 |
import pyopencl as cl |
511 |
|
512 |
iterations=InputCL['Iterations']
|
513 |
steps=InputCL['Steps']
|
514 |
blocks=InputCL['Blocks']
|
515 |
threads=InputCL['Threads']
|
516 |
Device=InputCL['Device']
|
517 |
RNG=InputCL['RNG']
|
518 |
ValueType=InputCL['ValueType']
|
519 |
TestType=InputCL['IfThen']
|
520 |
Seeds=InputCL['Seeds']
|
521 |
|
522 |
Marsaglia,Computing,Test=DictionariesAPI() |
523 |
|
524 |
# Initialisation des variables en les CASTant correctement
|
525 |
Id=0
|
526 |
HasXPU=False
|
527 |
for platform in cl.get_platforms(): |
528 |
for device in platform.get_devices(): |
529 |
if Id==Device:
|
530 |
XPU=device |
531 |
print("CPU/GPU selected: ",device.name.lstrip())
|
532 |
HasXPU=True
|
533 |
Id+=1
|
534 |
# print(Id)
|
535 |
|
536 |
if HasXPU==False: |
537 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
538 |
sys.exit() |
539 |
|
540 |
# Je cree le contexte et la queue pour son execution
|
541 |
try:
|
542 |
ctx = cl.Context(devices=[XPU]) |
543 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
544 |
except:
|
545 |
print("Crash during context creation")
|
546 |
|
547 |
# Je recupere les flag possibles pour les buffers
|
548 |
mf = cl.mem_flags |
549 |
|
550 |
circle=numpy.zeros(blocks*threads).astype(numpy.uint64) |
551 |
# circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle)
|
552 |
circleCL = cl.Buffer(ctx, mf.WRITE_ONLY,circle.nbytes) |
553 |
|
554 |
MetropolisCL = cl.Program(ctx,KernelCodeOpenCL()).build( options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%s -DTEST=%s" % (Marsaglia[RNG],Computing[ValueType],Test[TestType]))
|
555 |
|
556 |
MyDuration=numpy.zeros(steps) |
557 |
|
558 |
jobs=blocks*threads; |
559 |
|
560 |
iterationsCL=numpy.uint64(iterations/jobs) |
561 |
if iterations%jobs!=0: |
562 |
iterationsCL+=1
|
563 |
|
564 |
for i in range(steps): |
565 |
start_time=time.time() |
566 |
if threads == 1: |
567 |
CLLaunch=MetropolisCL.MainLoopGlobal(queue,(blocks,),None,
|
568 |
circleCL, |
569 |
numpy.uint64(iterationsCL), |
570 |
numpy.uint32(Seeds[0]),
|
571 |
numpy.uint32(Seeds[1]))
|
572 |
else:
|
573 |
CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,), |
574 |
circleCL, |
575 |
numpy.uint64(iterationsCL), |
576 |
numpy.uint32(Seeds[0]),
|
577 |
numpy.uint32(Seeds[1]))
|
578 |
|
579 |
CLLaunch.wait() |
580 |
cl.enqueue_copy(queue, circle, circleCL).wait() |
581 |
|
582 |
elapsed = time.time()-start_time |
583 |
print("(Blocks/Threads)=(%i,%i) method done in %.2f s..." % (blocks,threads,elapsed))
|
584 |
|
585 |
# Elapsed method based on CLLaunch doesn't work for Beignet OpenCL
|
586 |
# elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
587 |
|
588 |
# print circle,numpy.mean(circle),numpy.median(circle),numpy.std(circle)
|
589 |
MyDuration[i]=elapsed |
590 |
# AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
591 |
# MyPi[i]=numpy.median(AllPi)
|
592 |
# print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
593 |
|
594 |
circleCL.release() |
595 |
|
596 |
OutputCL={'Inside':sum(circle),'NewIterations':numpy.uint64(iterationsCL*jobs),'Duration':MyDuration} |
597 |
# print(OutputCL)
|
598 |
return(OutputCL)
|
599 |
|
600 |
|
601 |
def FitAndPrint(N,D,Curves): |
602 |
|
603 |
from scipy.optimize import curve_fit |
604 |
import matplotlib.pyplot as plt |
605 |
|
606 |
try:
|
607 |
coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
608 |
|
609 |
D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
610 |
coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
611 |
coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
612 |
coeffs_Amdahl[0]=D[0] |
613 |
print("Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2])) |
614 |
except:
|
615 |
print("Impossible to fit for Amdahl law : only %i elements" % len(D)) |
616 |
|
617 |
try:
|
618 |
coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
619 |
|
620 |
D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
621 |
coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
622 |
coeffs_AmdahlR[0]=D[0] |
623 |
print("Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1])) |
624 |
|
625 |
except:
|
626 |
print("Impossible to fit for Reduced Amdahl law : only %i elements" % len(D)) |
627 |
|
628 |
try:
|
629 |
coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
630 |
|
631 |
coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
632 |
# coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0]
|
633 |
coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
634 |
coeffs_Mylq[0]=D[0] |
635 |
print("Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0], |
636 |
coeffs_Mylq[1],
|
637 |
coeffs_Mylq[3],
|
638 |
coeffs_Mylq[2]))
|
639 |
D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
640 |
coeffs_Mylq[3])
|
641 |
except:
|
642 |
print("Impossible to fit for Mylq law : only %i elements" % len(D)) |
643 |
|
644 |
try:
|
645 |
coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
646 |
|
647 |
coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
648 |
# coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0]
|
649 |
# coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0]
|
650 |
coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
651 |
coeffs_Mylq2[0]=D[0] |
652 |
print("Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % (coeffs_Mylq2[0],coeffs_Mylq2[1],coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3])) |
653 |
|
654 |
except:
|
655 |
print("Impossible to fit for 2nd order Mylq law : only %i elements" % len(D)) |
656 |
|
657 |
if Curves:
|
658 |
plt.xlabel("Number of Threads/work Items")
|
659 |
plt.ylabel("Total Elapsed Time")
|
660 |
|
661 |
Experience,=plt.plot(N,D,'ro')
|
662 |
try:
|
663 |
pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
664 |
pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
665 |
except:
|
666 |
print("Fit curves seem not to be available")
|
667 |
|
668 |
plt.legend() |
669 |
plt.show() |
670 |
|
671 |
if __name__=='__main__': |
672 |
|
673 |
# Set defaults values
|
674 |
|
675 |
# GPU style can be Cuda (Nvidia implementation) or OpenCL
|
676 |
GpuStyle='OpenCL'
|
677 |
# Iterations is integer
|
678 |
Iterations=1000000000
|
679 |
# BlocksBlocks in first number of Blocks to explore
|
680 |
BlocksBegin=1024
|
681 |
# BlocksEnd is last number of Blocks to explore
|
682 |
BlocksEnd=1024
|
683 |
# BlocksStep is the step of Blocks to explore
|
684 |
BlocksStep=1
|
685 |
# ThreadsBlocks in first number of Blocks to explore
|
686 |
ThreadsBegin=1
|
687 |
# ThreadsEnd is last number of Blocks to explore
|
688 |
ThreadsEnd=1
|
689 |
# ThreadsStep is the step of Blocks to explore
|
690 |
ThreadsStep=1
|
691 |
# Redo is the times to redo the test to improve metrology
|
692 |
Redo=1
|
693 |
# OutMetrology is method for duration estimation : False is GPU inside
|
694 |
OutMetrology=False
|
695 |
Metrology='InMetro'
|
696 |
# Curves is True to print the curves
|
697 |
Curves=False
|
698 |
# Fit is True to print the curves
|
699 |
Fit=False
|
700 |
# Inside based on If
|
701 |
IfThen=False
|
702 |
# Marsaglia RNG
|
703 |
RNG='MWC'
|
704 |
# Value type : INT32, INT64, FP32, FP64
|
705 |
ValueType='FP32'
|
706 |
# Seeds for RNG
|
707 |
Seeds=110271,101008 |
708 |
|
709 |
HowToUse='%s -o (Out of Core Metrology) -c (Print Curves) -k (Case On IfThen) -d <DeviceId> -g <CUDA/OpenCL> -i <Iterations> -b <BlocksBegin> -e <BlocksEnd> -s <BlocksStep> -f <ThreadsFirst> -l <ThreadsLast> -t <ThreadssTep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>'
|
710 |
|
711 |
try:
|
712 |
opts, args = getopt.getopt(sys.argv[1:],"hockg:i:b:e:s:f:l:t:r:d:m:v:",["gpustyle=","iterations=","blocksBegin=","blocksEnd=","blocksStep=","threadsFirst=","threadsLast=","threadssTep=","redo=","device=","marsaglia=","valuetype="]) |
713 |
except getopt.GetoptError:
|
714 |
print(HowToUse % sys.argv[0])
|
715 |
sys.exit(2)
|
716 |
|
717 |
# List of Devices
|
718 |
Devices=[] |
719 |
Alu={} |
720 |
|
721 |
for opt, arg in opts: |
722 |
if opt == '-h': |
723 |
print(HowToUse % sys.argv[0])
|
724 |
|
725 |
print("\nInformations about devices detected under OpenCL API:")
|
726 |
# For PyOpenCL import
|
727 |
try:
|
728 |
import pyopencl as cl |
729 |
Id=0
|
730 |
for platform in cl.get_platforms(): |
731 |
for device in platform.get_devices(): |
732 |
#deviceType=cl.device_type.to_string(device.type)
|
733 |
deviceType="xPU"
|
734 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
735 |
Id=Id+1
|
736 |
|
737 |
except:
|
738 |
print("Your platform does not seem to support OpenCL")
|
739 |
|
740 |
print("\nInformations about devices detected under CUDA API:")
|
741 |
# For PyCUDA import
|
742 |
try:
|
743 |
import pycuda.driver as cuda |
744 |
cuda.init() |
745 |
for Id in range(cuda.Device.count()): |
746 |
device=cuda.Device(Id) |
747 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
748 |
print
|
749 |
except:
|
750 |
print("Your platform does not seem to support CUDA")
|
751 |
|
752 |
sys.exit() |
753 |
|
754 |
elif opt == '-o': |
755 |
OutMetrology=True
|
756 |
Metrology='OutMetro'
|
757 |
elif opt == '-c': |
758 |
Curves=True
|
759 |
elif opt == '-k': |
760 |
IfThen=True
|
761 |
elif opt in ("-d", "--device"): |
762 |
Devices.append(int(arg))
|
763 |
elif opt in ("-g", "--gpustyle"): |
764 |
GpuStyle = arg |
765 |
elif opt in ("-m", "--marsaglia"): |
766 |
RNG = arg |
767 |
elif opt in ("-v", "--valuetype"): |
768 |
ValueType = arg |
769 |
elif opt in ("-i", "--iterations"): |
770 |
Iterations = numpy.uint64(arg) |
771 |
elif opt in ("-b", "--blocksbegin"): |
772 |
BlocksBegin = int(arg)
|
773 |
BlocksEnd= BlocksBegin |
774 |
elif opt in ("-e", "--blocksend"): |
775 |
BlocksEnd = int(arg)
|
776 |
elif opt in ("-s", "--blocksstep"): |
777 |
BlocksStep = int(arg)
|
778 |
elif opt in ("-f", "--threadsfirst"): |
779 |
ThreadsBegin = int(arg)
|
780 |
ThreadsEnd = ThreadsBegin |
781 |
elif opt in ("-l", "--threadslast"): |
782 |
ThreadsEnd = int(arg)
|
783 |
elif opt in ("-t", "--threadsstep"): |
784 |
ThreadsStep = int(arg)
|
785 |
elif opt in ("-r", "--redo"): |
786 |
Redo = int(arg)
|
787 |
|
788 |
# If no device has been specified, take the first one!
|
789 |
if len(Devices)==0: |
790 |
Devices.append(0)
|
791 |
|
792 |
print("Devices Identification : %s" % Devices)
|
793 |
print("GpuStyle used : %s" % GpuStyle)
|
794 |
print("Iterations : %s" % Iterations)
|
795 |
print("Number of Blocks on begin : %s" % BlocksBegin)
|
796 |
print("Number of Blocks on end : %s" % BlocksEnd)
|
797 |
print("Step on Blocks : %s" % BlocksStep)
|
798 |
print("Number of Threads on begin : %s" % ThreadsBegin)
|
799 |
print("Number of Threads on end : %s" % ThreadsEnd)
|
800 |
print("Step on Threads : %s" % ThreadsStep)
|
801 |
print("Number of redo : %s" % Redo)
|
802 |
print("Metrology done out of XPU : %r" % OutMetrology)
|
803 |
print("Type of Marsaglia RNG used : %s" % RNG)
|
804 |
print("Type of variable : %s" % ValueType)
|
805 |
|
806 |
if GpuStyle=='CUDA': |
807 |
try:
|
808 |
# For PyCUDA import
|
809 |
import pycuda.driver as cuda |
810 |
|
811 |
cuda.init() |
812 |
for Id in range(cuda.Device.count()): |
813 |
device=cuda.Device(Id) |
814 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
815 |
if Id in Devices: |
816 |
Alu[Id]='GPU'
|
817 |
|
818 |
except ImportError: |
819 |
print("Platform does not seem to support CUDA")
|
820 |
|
821 |
if GpuStyle=='OpenCL': |
822 |
try:
|
823 |
# For PyOpenCL import
|
824 |
import pyopencl as cl |
825 |
Id=0
|
826 |
for platform in cl.get_platforms(): |
827 |
for device in platform.get_devices(): |
828 |
#deviceType=cl.device_type.to_string(device.type)
|
829 |
deviceType="xPU"
|
830 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
831 |
|
832 |
if Id in Devices: |
833 |
# Set the Alu as detected Device Type
|
834 |
Alu[Id]=deviceType |
835 |
Id=Id+1
|
836 |
except ImportError: |
837 |
print("Platform does not seem to support OpenCL")
|
838 |
|
839 |
#print(Devices,Alu)
|
840 |
|
841 |
BlocksList=range(BlocksBegin,BlocksEnd+BlocksStep,BlocksStep)
|
842 |
ThreadsList=range(ThreadsBegin,ThreadsEnd+ThreadsStep,ThreadsStep)
|
843 |
|
844 |
ExploredJobs=numpy.array([]).astype(numpy.uint32) |
845 |
ExploredBlocks=numpy.array([]).astype(numpy.uint32) |
846 |
ExploredThreads=numpy.array([]).astype(numpy.uint32) |
847 |
avgD=numpy.array([]).astype(numpy.float32) |
848 |
medD=numpy.array([]).astype(numpy.float32) |
849 |
stdD=numpy.array([]).astype(numpy.float32) |
850 |
minD=numpy.array([]).astype(numpy.float32) |
851 |
maxD=numpy.array([]).astype(numpy.float32) |
852 |
avgR=numpy.array([]).astype(numpy.float32) |
853 |
medR=numpy.array([]).astype(numpy.float32) |
854 |
stdR=numpy.array([]).astype(numpy.float32) |
855 |
minR=numpy.array([]).astype(numpy.float32) |
856 |
maxR=numpy.array([]).astype(numpy.float32) |
857 |
|
858 |
for Blocks,Threads in itertools.product(BlocksList,ThreadsList): |
859 |
|
860 |
# print Blocks,Threads
|
861 |
circle=numpy.zeros(Blocks*Threads).astype(numpy.uint64) |
862 |
ExploredJobs=numpy.append(ExploredJobs,Blocks*Threads) |
863 |
ExploredBlocks=numpy.append(ExploredBlocks,Blocks) |
864 |
ExploredThreads=numpy.append(ExploredThreads,Threads) |
865 |
|
866 |
if OutMetrology:
|
867 |
DurationItem=numpy.array([]).astype(numpy.float32) |
868 |
Duration=numpy.array([]).astype(numpy.float32) |
869 |
Rate=numpy.array([]).astype(numpy.float32) |
870 |
for i in range(Redo): |
871 |
start=time.time() |
872 |
if GpuStyle=='CUDA': |
873 |
try:
|
874 |
InputCU={} |
875 |
InputCU['Iterations']=Iterations
|
876 |
InputCU['Steps']=1 |
877 |
InputCU['Blocks']=Blocks
|
878 |
InputCU['Threads']=Threads
|
879 |
InputCU['Device']=Devices[0] |
880 |
InputCU['RNG']=RNG
|
881 |
InputCU['Seeds']=Seeds
|
882 |
InputCU['ValueType']=ValueType
|
883 |
InputCU['IfThen']=IfThen
|
884 |
OutputCU=MetropolisCuda(InputCU) |
885 |
Inside=OutputCU['Circle']
|
886 |
NewIterations=OutputCU['NewIterations']
|
887 |
Duration=OutputCU['Duration']
|
888 |
except:
|
889 |
print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
|
890 |
elif GpuStyle=='OpenCL': |
891 |
try:
|
892 |
InputCL={} |
893 |
InputCL['Iterations']=Iterations
|
894 |
InputCL['Steps']=1 |
895 |
InputCL['Blocks']=Blocks
|
896 |
InputCL['Threads']=Threads
|
897 |
InputCL['Device']=Devices[0] |
898 |
InputCL['RNG']=RNG
|
899 |
InputCL['Seeds']=Seeds
|
900 |
InputCL['ValueType']=ValueType
|
901 |
InputCL['IfThen']=IfThen
|
902 |
OutputCL=MetropolisOpenCL(InputCL) |
903 |
Inside=OutputCL['Circle']
|
904 |
NewIterations=OutputCL['NewIterations']
|
905 |
Duration=OutputCL['Duration']
|
906 |
except:
|
907 |
print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads))
|
908 |
Duration=numpy.append(Duration,time.time()-start) |
909 |
Rate=numpy.append(Rate,NewIterations/Duration[-1])
|
910 |
else:
|
911 |
if GpuStyle=='CUDA': |
912 |
try:
|
913 |
InputCU={} |
914 |
InputCU['Iterations']=Iterations
|
915 |
InputCU['Steps']=Redo
|
916 |
InputCU['Blocks']=Blocks
|
917 |
InputCU['Threads']=Threads
|
918 |
InputCU['Device']=Devices[0] |
919 |
InputCU['RNG']=RNG
|
920 |
InputCU['Seeds']=Seeds
|
921 |
InputCU['ValueType']=ValueType
|
922 |
InputCU['IfThen']=IfThen
|
923 |
OutputCU=MetropolisCuda(InputCU) |
924 |
Inside=OutputCU['Inside']
|
925 |
NewIterations=OutputCU['NewIterations']
|
926 |
Duration=OutputCU['Duration']
|
927 |
pycuda.context.pop() |
928 |
except:
|
929 |
print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
|
930 |
elif GpuStyle=='OpenCL': |
931 |
try:
|
932 |
InputCL={} |
933 |
InputCL['Iterations']=Iterations
|
934 |
InputCL['Steps']=Redo
|
935 |
InputCL['Blocks']=Blocks
|
936 |
InputCL['Threads']=Threads
|
937 |
InputCL['Device']=Devices[0] |
938 |
InputCL['RNG']=RNG
|
939 |
InputCL['Seeds']=Seeds
|
940 |
InputCL['ValueType']=ValueType
|
941 |
InputCL['IfThen']=IfThen
|
942 |
OutputCL=MetropolisOpenCL(InputCL) |
943 |
Inside=OutputCL['Inside']
|
944 |
NewIterations=OutputCL['NewIterations']
|
945 |
Duration=OutputCL['Duration']
|
946 |
except:
|
947 |
print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads))
|
948 |
Rate=NewIterations/Duration[-1]
|
949 |
print("Itops %i\nLogItops %.2f " % (int(Rate),numpy.log(Rate)/numpy.log(10))) |
950 |
print("Pi estimation %.8f" % (4./NewIterations*Inside)) |
951 |
|
952 |
avgD=numpy.append(avgD,numpy.average(Duration)) |
953 |
medD=numpy.append(medD,numpy.median(Duration)) |
954 |
stdD=numpy.append(stdD,numpy.std(Duration)) |
955 |
minD=numpy.append(minD,numpy.min(Duration)) |
956 |
maxD=numpy.append(maxD,numpy.max(Duration)) |
957 |
avgR=numpy.append(avgR,numpy.average(Rate)) |
958 |
medR=numpy.append(medR,numpy.median(Rate)) |
959 |
stdR=numpy.append(stdR,numpy.std(Rate)) |
960 |
minR=numpy.append(minR,numpy.min(Rate)) |
961 |
maxR=numpy.append(maxR,numpy.max(Rate)) |
962 |
|
963 |
print("%.2f %.2f %.2f %.2f %.2f %i %i %i %i %i" % (avgD[-1],medD[-1],stdD[-1],minD[-1],maxD[-1],avgR[-1],medR[-1],stdR[-1],minR[-1],maxR[-1])) |
964 |
|
965 |
numpy.savez("Pi_%s_%s_%s_%s_%s_%s_%s_%s_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),(ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR)) |
966 |
ToSave=[ ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR ] |
967 |
numpy.savetxt("Pi_%s_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %i %e %e %e %e %e %i %i %i %i %i') |
968 |
|
969 |
if Fit:
|
970 |
FitAndPrint(ExploredJobs,median,Curves) |