
Document Deliverable Project XLcloud / Magellan

FSN – AAP Cloud Computing #1
Planned date

Delivery date
07/03/2013

07/03/2013

Nature Internal

Statut Final Version Revision n°1

Document Properties

Document Title Energy Efficiency Architecture

Task number 4.2.1

Responsible François Rossigneux

Author(s) / contributor(s) Julien Carpentier
Jean-Patrick Gelas
Laurent Lefèvre
François Rossigneux

Document Status Final

Version Revision n°1

Summary

The main task was to design an architecture to retrieve power consumption data from wattmeters, and
send them to OpenStack Ceilometer.

The wattmeter drivers get power consumption data from various wattmeters, and send them on a bus.

The plugins listen the bus, and process the received data (make them available through an API,
building graphs...).

We have also developed a pollster for Ceilometer, so that it can query our API plugin.

Keywords

energy, wattmetre, api

http://www.xlcloud.org/bin/view/XLcloudProjectManagement/Energy+Saving+Service+Design+Specification+API+%26+Module

Energy Efficiency Architecture

Energy Efficiency
Architecture

2

Energy Efficiency Architecture

Sommaire
1 Introduction...4

1.1 Purpose... 4
1.2 Scope... 4

2 System Overview..5
3 System Architecture..7

3.1 Kwapi Drivers... 8
3.1.1 Driver classes (IPMI, Wattsup, OmegaWatt, etc) and superclass..8
3.1.2 Driver manager.. 8

3.2 Bus.. 9
3.3 Kwapi Plugins.. 10

3.3.1 API Plugin for Ceilometer...10
3.3.2 Visualization Plugin.. 11

4 Code organization...13

3

Energy Efficiency Architecture

1 Introduction

1.1 Purpose

This software design specification provides an overview of design and architecture of the proposed Energy
Efficiency Architecture (EEA) for XLcloud project.

1.2 Scope

OpenStack virtual machines scheduling doesn't take into account the energy efficiency criteria. So we need
to retrieve power consumption data, and keep them at the disposal of OpenStack. EEA was designed to
provide an architecture that collects wattmeters measurements, and offers an API for OpenStack.

4

Energy Efficiency Architecture

2 System Overview
As presented in the following figure, the servers are clustered in each datacenter, and each datacenter has
an internal administration network.These servers are monitored with wattmeters.

Eaton ePDU Voltage: 230 V
Current: 16 A
Outlets: C13, C19
Interface: serial, ethernet (SNMP)
Measure frequency: 1 value every 5 seconds
Measure precision: 1 W

Schleifenbauer ePDU Voltage: 230 V
Current: 16 A
Outlets: C13, C19
Interface: ethernet (SNMP, Modbus, MySQL)
Measure frequency: 1 value every 3 seconds
Measure precision: below 0.1 W

Dell iDRAC6 : IPMI Measures: internal sensors (Dell proprietary sensors)
Interface: IPMI
Measure frequency: 1 value every 5 seconds
Measure precision: 7 W

Wattmetre
(OmegaWatt)

Measure frequency:1 value per second
Measure precision: below 1 W
Interface: serial

On service machines, Kwapi-drivers retrieves power consumption data and sends them to Kwapi-API.

Then OpenStack queries Kwapi-API and stores power consumption data.

5

Figure 1: Datacenter architecture overview

Energy Efficiency Architecture

This figure reveals several layers, and the resulting software architecture could be summarized by the
following figure.

The produced software is named Kwapi, and has two main layers : a drivers layer, and a plugins layer.

The drivers layer retrieves measurements from wattmeters, and sends them on a bus.
(generally over network, but sometimes on a local bus if drivers and plugins are on the same machine)

The plugins layer includes several plugins that listen on the bus. There is currently two plugins : the first one
to provide an API for OpenStack Ceilometer, and the second one to provide a visualization interface.

6

Figure 2: Software architecture overview

Energy Efficiency Architecture

3 System Architecture

7

Figure 3: Software detailed architecture

Energy Efficiency Architecture

3.1 Kwapi Drivers

3.1.1 Driver classes (IPMI, Wattsup, OmegaWatt, etc) and superclass

Kwapi supports different kinds of wattmeters (IPMI, Wattsup, etc). Wattmeters communicate via IP networks
or serial links. Each wattmeter has one or more sensors (probes). Wattmeters send their values quite often
(each second), and they are listen by wattmeter drivers. Wattmeter drivers are derived from a Driver
superclass, itself derived from Thread. So drivers are threads. At least one driver thread is instantiated for
each wattmeter. Their constructors takes as arguments a list of probe IDs, and kwargs (specific arguments).

Driver threads roles are:

• Setting up wattmeter.
• Listening and decoding received data.
• Calling a driver superclass method with measurements as argument. This method appends a

signature to the measurements, and publishes them on the bus.

3.1.2 Driver manager

The driver manager is used as loader and checker for driver threads. It loads all drivers according to the
configuration file, and checks regularly that driver threads are alive. In case of crash, event is logged and the
driver thread is reloaded. We can imagine that a driver will crash if a technician unplug a wattmeter, for
example.

8

Figure 4: Bus message format

Energy Efficiency Architecture

3.2 Bus

Currently, the internal Kwapi bus is ZeroMQ. Publishers are driver threads, and subscribers are plugins.

Plugins can easily listen multiple data sources:

In the near future, we plan to use OpenStack RPC framework.

9

Figure 5: Bus design pattern

Figure 6: Multiple source example

Energy Efficiency Architecture

3.3 Kwapi Plugins

3.3.1 API Plugin for Ceilometer

API plugin allows Ceilometer pollster to get consumption data through a REST API. This plugin contains a
collector that computes kWh, and an API based on Flask (A Python Microframework).

 Collector

The collector stores these values for each probe:

Fields:

• Probe id could be the hostname of the monitored machine. But it is a bit more complicated because
a probe can monitor several machines (Managed PDU).

• Timestamp is updated when a new value is received.
• KWh is computed by taking into account new consumption value, and the elapsed time since the

previous update.
It allows Ceilometer to compute average consumption for the duration it wants (knowing the kWh
consumed and the time elapsed since its last check).

• Watts field offers the possibility to know live consumption of a device, without having to query two
times a probe in a small interval to deduce it. This could be especially useful if a probe has a large
refresh interval : there is no need to wait for the next value.

There is no watt logs to avoid duplicating the storage architecture of Ceilometer. The collector is cleaned
periodically to prevent a deleted probe from being stored indefinitely in the collector. So if a probe is not
updated for a long time, it is removed.

 API

Verb URL Parameters Expected result

GET /v1/ -
Returns detailed information about
this specific version of the API.

GET /v1/probe-ids/ - Returns all known probe IDs.

GET /v1/probes/ -
Returns all information about all
known probes.

GET /v1/probes/<probe>/ probe id
Returns all information about this
probe (id, timestamp, kWh, W).

GET /v1/probes/<probe>/<meter>/
 probe id
 meter { timestamp, kwh, w }

Returns the probe meter value.

 Authentication

The pollster provides a token (X-Auth-Token). The API plugin checks the token (Keystone request), and if the
token is valid, requested data are sent. Responses are not signed because Ceilometer trusts Kwapi plugin.

 Ceilometer pollster

Ceilometer pollster is started periodically by Ceilometer central agent. It knows the Kwapi URL by doing a

10

Figure 7: Collector record

Energy Efficiency Architecture

Keystone request (endpoint-get). It queries probe values through Kwapi API, using the GET /v1/probes/ call,
so that it gets all detailed informations about all probes in just one query. For each probe, it creates a counter

object and publishes it on the Ceilometer bus.

Published counters:

• Energy (cumulative type): represents kWh.

• Power (gauge type): represents watts.

Counter timestamps are Kwapi timestamps, so that Ceilometer doesn't store wrong data if a probe is not
updated. Ceilometer handles correctly the case where a probe value is reset (kWh decrease), because of its
cumulative type.

3.3.2 Visualization Plugin

 Web interface

The visualization plugin provides a web interface with power consumption graphs. It is based on Flask and
RRDtool.

In the menu bar, you can choose the period for which you want to display graphs (last minutes, hour, day,
week, month or year). By clicking on a probe, you can display all graphs available for this probe, with
different resolutions. Graphs are refreshed every five seconds, but bandwidth is saved by using the HTTP
304 response codes.

11

Figure 8: Aggregate and all probes consumption graphs

Energy Efficiency Architecture

Verb URL Parameters Expected result

GET /last/<period>/
period { minute, hour, day,
week, month, year}

Returns a webpage with an aggregate
graph and all probe graphs.

GET /probe/<probe>/ probe id
Returns a webpage with all graphs
about this probe (all periods).

GET /graph/<period>/
period { minute, hour, day,
week, month, year}

Returns an aggregate graph about this
period.

GET /graph/<period>/<probe>/
period { minute, hour, day,
week, month, year}
probe id

Returns a graph about this probe.

 Graphs

The aggregate graph shows the total power consumption (sum of all the probes). Each colour corresponds to
a probe.

The legend contains:

• Minimum, maximum, average and last power consumption.
• Energy consumed (kWh).
• Cost.

File sizes:

• RRD file: 10 Ko.
• Probe graph: 12 Ko.
• Aggregate graph: 24 Ko.

These is a cache mechanism: recent graphs are not rebuilt uselessly.

12

Energy Efficiency Architecture

4 Code organization
Repository: https://github.com/stackforge/kwapi

The main directory contains the sub-directories drivers and plugins.

In drivers directory, we found:

• driver_manager.py: loading and checking

• driver.py: driver superclass

• Several driver classes (for example ipmi.py, wattsup.py, etc)

The plugin directory a sub-directory for each plugin:

• api: API plugin for Ceilometer

• rrd: visualization plugin

The main directory also contain common code:

• openstack: common code (used for logging and configuration)

• security.py: used for message signing between drivers and plugins

13

	1 Introduction
	1.1 Purpose
	1.2 Scope

	2 System Overview
	3 System Architecture
	3.1 Kwapi Drivers
	3.1.1 Driver classes (IPMI, Wattsup, OmegaWatt, etc) and superclass
	3.1.2 Driver manager

	3.2 Bus
	3.3 Kwapi Plugins
	3.3.1 API Plugin for Ceilometer
	Collector
	API
	Authentication
	Ceilometer pollster

	3.3.2 Visualization Plugin
	Web interface
	Graphs

	4 Code organization

