
Energy monitoring and billing
in OpenStack based Cloud

François Rossigneux
INRIA, Lyon, France

Email: francois.rossigneux@inria.fr

Jean-Patrick Gelas
University of Lyon, France

Email: jean-patrick.gelas@univ-lyon1.fr

Laurent Lefèvre
LIP Laboratory, ENS Lyon, France
Email: laurent.lefevre@ens-lyon.fr

Abstract—Large data center composing the Cloud infrastruc-
tures are known for consuming a tremendous amount of energy.
Operators of those infrastructure require tools for monitoring
not only processing load, storage usage and network capacity,
but also power drained by each node. This very last information
is meaningful to better understand ressources usage, improve
global efficiency of the whole infrastructure, and eventually
billing customers on a ”pay-as-you-use” model. To achieve this,
a complete software framework and hardware architecture must
be provided. In this article, we introduce our energy monitoring
software framework called Kwapi. It supports several wattmeter
devices, formats the measurements to ease unification, and
sends them to several components for processing them. Kwapi
architecture is scalable and extensible, and interacts with the
famous OpenStack Ceilometer component.

I. INTRODUCTION

Clouds are now becoming a defacto standard for supporting
large scale secured remote operation (computing, storage,
network). Due to their ability in aggregating several virtu-
alized machines on physical infrastructures, clouds have the
potential to help reducing the over provisioning of resources
and thus could help in reducing energy consumption of these
infrastructures.

Motivations:
Without monitoring and measurement tools, no system

analysis can be done seriously. And without analysis, no
optimization and thus energy efficiency improvements can be
done.

An infrastructure which is monitored can take efficient
decisions, like scheduling a resource reservation ; placing or
moving virtual machines ; switching off unused resources
(and power on them only when required) ; supporting power
capping ; and set the air conditioner power optimally. It might
also be used to do applications energy profiling to improve
them on a new criteria (Joules or kWh).

Difficulties:
In brief, power monitoring open a large set of optimization

perspectives. However monitoring power is not easy and
straightforward. First, computing nodes does not consume
energy identically even though they are of the same model,
doing the same job or nothing (idle state). It means that
each node must be measured individually. Second, there is
currently on the market different power probes with different
behaviour, connections and communications protocols. A uni-
fication work must be done. Thus, one of our challenge was

to design and implement a framework which can be deployed
on a large scale infrastructure (like several large data centres
geographically disseminated).

This paper addresses the challenges of measuring the energy
consumption of Openstack based clouds and to inject measure-
ments in Openstack framework components like Ceilometer.

Thus, we propose to introduce our energy monitoring soft-
ware framework called Kwapi. It supports several wattmeter
devices, formats the measurements to ease unification, and
sends them to several components for processing them. Kwapi
architecture is scalable and extensible, and interacts with the
famous OpenStack Ceilometer component.

This paper is scheduled as follows: Section 2 proposes a
short state of the art about Energy and Clouds. Section 3
introduces briefly the hardware environment in the context of
measuring servers power consumption and highlights the het-
erogeneity aspects we have to tackle with this type of devices.
Section 4 provides a detailed study of the software side in
this research work. After a brief introduction to Ceilometer,
we describe the architecture and functioning of Kwapi. Then
we present two plugins among others we designed. The first
one interacts with Ceilometer, while the second one displays
measurements in quasi real time within a web page. To close
this section, we show how we take advantages of the ZeroMQ
bus. Section 5 proposes a performance evaluation followed by
a discussion, in section 6, about some improvements we may
add in the current Kwapi implementation. Finally, section 7
concludes this paper.

II. STATE OF THE ART ABOUT ENERGY AND CLOUDS

Energy and Clouds or ”Green Clouds” terms refers to
activities in the area of cloud computing whose goal is to
design and exploit IT resources in the most efficient ways in
terms of energy consumption. The goal is often twofold: first,
obtaining the very best output in terms of processing, storage
and communications for each consumed kWh, and second,
reducing the environmental impact of the creation, operation
and dismantlement of the infrastructure by taking into account
the whole lifecycle of all the infrastructure elements. Basically,
all the propositions made in the Green IT context fit Green
Clouds requirements.

To build and run an efficient green data center, several
aspects must be taken into account, ranging from hardware, to



geographic location of the facility, as well as software used to
help optimizing operations.

Hardware
While the word “cloud” is used to describe such
infrastructures, it is not “vaporware”, but they rely
on real interconnected computers consuming a lot of
resources to be built, used and eventually destroyed.
The good news is that manufacturers made major
efforts over the past decade to build computer re-
sources consuming less energy while providing al-
ways more performance. They also make progress in
using recyclable materials or easing the recyclability
of used materials.

Resources Consolidation
Thanks to the virtualization techniques we are able
to run independently several systems on the same
processing node which allows for optimal use of an
infrastructure by migrating and aggregating virtual
systems not heavily used to a given physical node.
Virtualization considered as a common technique
nowadays still represent a challenge to optimize VM
placement with respect to several factors.

Monitoring
To improve power efficiency while maintaining a
good quality of services it is mandatory to monitor
the infrastructure in terms of processing and storage
requirement and also power drain. Without all these
information, as mentioned above, it is not conceiv-
able to improve the operation of the infrastructure.

Scheduling
A cloud infrastructure whatever its flavor (IaaS,
SaaS,...) provides services. Services are required by
the end-users at a given time, immediately (or not)
for a defined period of time. Then, scheduling may
help in using the infrastructure efficiently.

Cooling
modern electronic equipment can run at higher tem-
perature. . . Free cooling is now an option to be
considered.

Strategic geographic location and Energy sources
A data center must be located in specific region
where renewable energy (hydroelectric, geothermal,
solar, wind or tidal power) is available... Networks
communication should not be a problem anymore.

Networking
Data network plays a crucial role in such infrastruc-
tures in terms of latency and throughput. But the
interconnect requires also power which is correlated
with performance.

Here are some initiatives worth to be mentioned (wikipedia
cut’n paste mostly):

• Green Grid is a non-profit, open industry consortium of
end-users, policy-makers, technology providers, facility
architects, and utility companies collaborating to improve
the resource efficiency of data centers and business

computing ecosystems. With more than 175 member
companies around the world, The Green Grid seeks to
unite global industry efforts, create a common set of
metrics, and develop technical resources and educational
tools to further its goals.

• Green500 list ranks computers from the TOP500 list of
supercomputers in terms of energy efficiency. Typically
measured as LINPACK FLOPS per watt.

• GreenQloud (Iceland) is a cloud computing services
company with headquarters in Iceland, offering truly
green cloud computing services powered by 100% renew-
able energy resources. GreenQloud’s services include car-
bon neutral cloud server hosting, online storage, backup
and cloud based computing and High performance com-
puting services to companies, National Research and
Education Networks (NRENS) and consumers.

• Green Comm Challenge is an organization founded
and led by Francesco De Leo that actively promotes
the development of energy conservation technology and
practices in the field of Information and Communications
Technology (ICT).

In conclusion, to build and run a real Green Cloud infras-
tructure all the Green IT propositions must be take into account
to maximize energy efficiency and minimize impact on the
environment. Alternative solutions like carbon offset credits
must be considered as a green marketing measure only. Given
the broad success of the cloud computing, adopted and used
equally by companies and private customers, infrastructures
hosting such services must definitively be efficient with min-
imal impact on the environment.

Finally, to the best of our knowledge, this paper is the first
one to present energy consideration in clouds based on the
OpenStack architecture.

III. HARDWARE ENVIRONMENT

Data centers are clusters of nodes, exploited by a sched-
uler which coordinates the distribution of tasks among the
nodes and sites. The scheduler selects the hosts by taking
into account the user requirements, but also multiple criteria,
including energy.

To measure nodes power consumption, several theoretical
power models have been proposed. However, real measure-
ments shows that there is always significative differences be-
tween theoretical values and real values measured empirically.
For example, we have observed a difference up to 20% in
energy consumption on four identical nodes (Dell R610),
bought the same day, located in the same room, and running
OpenStack Folsom on GNU/Linux Ubuntu 12.04. The reasons
for that are not obvious. This is why we focus our attention on
real hardware to do measurements and show their advantages
and limitations.

Available wattmeters on the market are very heterogeneous
in terms of links, communication protocols, packaging and
quality of measures. They are mostly packaged in multiple
outlet power strip called PDU or ePDU (see Figure 1, right),
or more recently in the IPMI cards embedded in computers,



Fig. 1. (Left) Prototype of wattmeter made by OmegaWatt for monitoring
150 nodes in our data center. (Right) Outlet power strip (ePDU) which allow
to query each outlet individually.

TABLE I
DEVICES CHARACTERISTICS DIFFER GREATLY

Name Protocol(s) / link(s) Frequency (s) Resolution (W)
Eaton Serial or SNMP / Ethernet 5 1
Schleifenbauer SNMP / Ethernet 3 0.1
OmegaWatt “IrDA” / Serial 1 0.125
Dell iDrac6 IPMI / Ethernet 5 7
Watts Up? Legacy / USB 1 0.1
ZES LMG450 Serial 0.05 0.01

used initially as an alternative to shutdown or power up the
computer chassis remotely. The type of links in use are either
Ethernet to transport IPMI or SNMP packets over IP, or
USB or RS-232 serial links. Wattmeters relying on Ethernet
are generally linked to the administration network (off the
data center customer’s network). Moreover, wattmeters may
have various behaviours. Some of them send measurements
on a regularly time basis (push), while some others must
be queried (pull). Among characteristics we may name are:
the maximum number of measurements per seconds (with a
lot of measurements per second, you will get a precise idea
of your application’s energy profile), resolution of the value,
sensibility of the probes and finally the methodology applied
for each measure (e.g. mean value between several measures,
instantaneous value, exponential moving average value). Table
I shows some characteristics of the devices we had the chance
to evaluate on our data center nodes.

IV. SOFTWARE ARCHITECTURE

Wattmeters generates a large amount of data that need
to be stored somewhere. The first approach would consist
to store the data on the monitored compute nodes, while
the second one would be to centralise all metrics in one
place. Local storage is more robust and scalable, but it has
two major drawbacks: the latency when the data must be
retrieved and the risk that the data be unavailable (if the
machines are in sleeping modes). Centralised storage allows to
access and process the data quickly, but could generate more
network traffic given that all measurements need to be sent
continuously over the network. But once they are centralised,

the network traffic is minimised whatever the number of query
to these measurements (through a specialised component like
Ceilometer).

We have chosen the centralised storage approach, while
minimising the network traffic and preserving the scalability.
Ceilometer is used to store our power consumption met-
rics, and we propose an architecture to retrieve values from
wattmeters, and send them to Ceilometer. In the following
section we will describe Ceilometer followed by Kwapi.

A. OpenStack Ceilometer

Ceilometer is the OpenStack’s framework for collecting
metrics, also used for billing. It has two types of agents: the
compute agent and the central agent.

The compute agents are running on each compute node.
They retrieve the resources usage related to a given instance
and a given resource owner, while the central agent executes
pollsters on the management server to retrieve the data that
are not related to a particular instance of calculation.

All metrics are published on the internal bus of Ceilometer
as counters (cumulative type, gauge or delta). This bus is
listened by several modules, like the Ceilometer Collector
which then stores these counters in a database. This database is
searchable via Ceilometer API, and allows to view the history
of a resource’s metrics.

In the context of energy metrics publication, we use the
central agent and a dedicated pollster we developed. It queries
the Kwapi API plugin and publishes cumulative (kWh) and
gauge (W) counters. These counters are not yet associated
with a particular user, since a server can host multiple clients
simultaneously.

B. Kwapi

Kwapi is our framework, designed for acquiring energy
consumption metrics. It allows, among other, to upload metrics
from the wattmeters to Ceilometer.

Its architecture is based on a layer of drivers, responsible
for the acquisition metrics, and a layer of plugins that collect
these metrics. The communication between these two layers
goes through a bus. In the case of a distributed architecture,
a plugin can listen to several drivers at remote locations (see
Figure 2).

Drivers and plugins are easily extensible to support other
types of wattmeters, and provide other services.

1) Drivers layer: The drivers are threads started by a
manager, which instantiate them with a set of parameters
loaded from a configuration file (unified with the OpenStack
configuration file format, similar to INI). These parameters are
used to query the meters (IP address, port, etc.) and indicate
the sensor IDs in the issued metrics. The metrics are Python
dictionary with a set of fields. Optional fields can be added,
such as voltage, amperage, etc.. The metrics are signed.

The manager periodically checks if all threads are active,
and restart them if necessary (incidents may occur, for example
if a meter is disconnected or becomes inaccessible). The
drivers can manage incidents themselves, but if they finish



Fig. 2. Software components in the global architecture

their execution, it does not matter because they will be
automatically restarted by the manager. It is important to avoid
losing measurements because the information reported is watts
and not kWh: if a value in watts is lost, we lose information.

2) Plugins layer: The plugins retrieve and process the
metrics sent by the drivers on the bus. They expose them to
other services (Ceilometer) or user (visualization). They can
subscribe to all sensors, or just some of them, through a system
of prefixes. After verifying the message signature, they extract
the fields, and process the received data. Currently Kwapi has
two plugins: a plugin API for Ceilometer, and a visualization
plugin.

a) API plugin for Ceilometer: The API plugin computes
the number of kWh of each probe, appends a timestamp, and
stores the last value in watts. These data are not stored in a
database, as Ceilometer already has one. If a probe has not
issued metrics for a long time, the corresponding data are
removed. This plugin has a REST API that allows to retrieve
the name of the probes, and W, kWh and timestamp. This
API is secured with OpenStack Keystone tokens: the client
provides a token, and the plugin contacts Keystone API to
check the token validity before sending its response.

b) Visualization plugins: The visualization plugin (Fig-
ure 3) builds RRD files from received metrics, and generates
graphs. Each graph shows a plot of the energy consumption in
a given period, with additional information (average electricity
consumption, minimum and maximum watts, last value, total
energy and cost in euros). A web interface displays the gen-
erated graphics. A cache mechanism triggers the regeneration

of graphics only if they are outdated, during the consultation.
RRD (Round-Robin Database) files are of fixed size, and store
several collections of metrics with different granularities.

3) Internal bus: ZeroMQ: Kwapi uses ZeroMQ, a fast
brokerless messaging framework (transmitters play the role
of buffers), written in C++. It supports a wide range of
bus: cross-thread communication, IPC, and TCP. Switching
from one to another is very simple. ZeroMQ provides several
design pattern (publisher/subscriber, request/response, etc). In
our architecture, we use a publisher/subscriber design pattern.
Drivers are the publishers, and plugins are the subscribers.
Between them, one or more forwarders simply forwards the
packets, and broadcasts a packet to all the plugins which have
subscribed to a given probe. Thanks to the forwarders, the
network usage is very optimised because the packets are sent
only once, regardless the number of plugins that listen a probe.
If a probe is not listened by any plugin, its measurements are
neither sent over the network nor to the first forwarder. The
forwarders not only reduce dramatically the network usage,
but allow to build flexible architectures, by bypassing networks
isolation problems, or doing load balancing. For example, in
the Figure 4, we could imagine that the link between Karlsruhe
and Stuttgart is less congested than the one between Karlsruhe
and Lyon. So rather than to establish a connection between
Karlsruhe and Lyon (and thereby duplicate the packets sent
between France and Germany), it is preferable to rely on the
Stuttgart node (supposed to be always powered on). In this
configuration, the Karlsruhe node needs to know only the
address of the Stuttgart node. But this very last one needs



Fig. 3. Snapshot of a webpage displaying the visualisations plugin in action

to know the addresses of the two french nodes.
In a very large architecture with thousands of nodes, it is

recommended to run severals servers with drivers, and severals
servers with plugins. Ceilometer is then able to collect the
metrics on severals Kwapi API plugins.

V. PERFORMANCES EVALUATION

We can evaluate Kwapi in terms of CPU, memory and
network bandwidth usage.

A. CPU and memory

The CPU and memory usage depends very much on the
drivers, plugins amount and complexity, and on the signing
of messages (enabled or not). If it lacks compute power or
memory, it is easy to add more servers.

B. Network

In a simple architecture where the drivers and the plugins
layers are on the same machine, the network traffic is minimal.
In a distributed architecture with low bandwidth, using many
forwarders decrease the network usage (no redundant packets
sent) but weakens the system (in case of forwarder node
failure).

The plugins can select the probes they want to watch, so
any useless traffic is eliminated.

To decrease the header overhead, it is better to send large
packets. The drivers, on their side, can build lists of measures,
and send them to the forwarder at one stroke. For example, this
is used in the PDU drivers with multiple outlets. And ZeroMQ,
on its side, has its own optimization mechanism: if several
drivers send metrics simultaneously, ZeroMQ aggregates them
in one packet. In our experiments, some packets contain up to
ten metrics. The metrics are Json dictionaries, which has the
advantage of being human readable and easily parsable, while

keeping a very small surcharge. The size of those dictionaries
may vary, depending on the number of fields set by the drivers
(signing add some overhead), while the ACKs have a fixed size
of 66 bytes (on a TCP link).

VI. LIMITATIONS

We can distinguish two types of limitations: the ones that
are inherent to the current implementation of Kwapi, and those
which are high level limitations that are not easily bypassable
without future innovations and new paradigms.

A. Kwapi limitations

1) Consumption accuracy if some messages are lost:
Losing a message between the driver and the plugin layers
diminish the power consumption accuracy: the plugin will
generally suppose that the consumption is identical to the last
message properly received. To overcome this limit, we could
compute the kWh in the driver layer. Or we could add some
redundancy in packets. But that induce additional costs that
would need to be compared with the packet loss rate.

2) Automatic acquisition of IPMI cards IP addresses:
The automatic configuration of the Kwapi drivers layer is a
challenge: there is no trivial mechanism for making corre-
spondence between a probe and the host ID. In addition, the
parameters to query the wattmeters are now defined manually
in the Kwapi configuration file. In the future, we intend to
implement a CMDB (configuration management database),
which would retrieve all properties attached to a host ID,
including the wattmeter configuration parameters (IPMI IP
address, outlet identifier in the case of a PDU, etc). However,
this database will need to be fed, probably by hand (at least
regarding the wattmeters).



Fig. 4. The tree architecture of ZeroMQ

3) Max open file descriptors limit: Each driver is a thread
because the creation of hundreds of process would be unnec-
essarily burdensome. In addition, it allows the use of cross-
thread communication in ZeroMQ, which increases efficiency
(no IPC socket).

The number of open files per process being limited, we may
encounter this limit if a large number of drivers are loaded.
It is possible to overcome the limit by setting a parameter
in /etc/security/limits.conf, to adjust the hard limit (for the
whole system) and soft limit (per process) accordingly. At
last, ZeroMQ then has its own limit, which is set when it is
instantiated. But this limitation is rarely a problem, because
the server will be probably overloaded before reaching this
limit (in a such situation, simply spread the drivers among
several servers).

4) Viewing the energy consumption of thousand compute
nodes: The current visualization plugin that we designed and
introduced above is useful for small-scale infrastructures, but
it would be inappropriate for a huge data center. Moreover, we
should consider how to graphically represent the consumption
of several thousands of nodes.

B. Other limitations (or ongoing works discussion)

1) Power consumption of a virtual machine (VM): Attribut-
ing energy consumption to a client is easier if there is only one
client per machine. But in a multi-tenancy environment, this
is much more difficult. We can rely on models to estimate the
consumption of VMs, but we can not prove the accuracy of the
results to the client. In addition, a single client on a machine
may be penalized because the static cost of the machine will

not be divided between several clients. We must find a fair
distribution of static costs.

2) Network energy cost (per switch, and also per stream):
For billing purposes, it would be normal to charge according
to the network cost incurred.

A simple approach would be to look at the volume of data
exchanged by the network adapter. But that does not take
into account the path of the packets in the network (number
of jumps), nor the network equipment efficiency. One could
imagine to append a marker of the packets: so, by receiving
packets, it would be easy to know the cost. But what about
the packet sent? The receiver should inform the source of the
cost involved. And how to charge the network traffic? Shall
we charge the source or the receiver, or both?

VII. CONCLUSION AND FUTURE WORKS

Measurements stored in the Ceilometer database will be
processed by several modules, which are currently under
development:

• An assignment module to assign metric to the users:
metrics are tight to a machine, but not the user who used
it. This module will do this association, allowing the users
to know their energy consumption, and the provider to
charge it (easier with one user per machine).

• A ranking module: identical machines do not have exactly
the same energy consumption, and their fans may run
faster or slower. This module will allow to retrieve the
most efficient machines in a set of identical machines. It
will be used by the scheduler, and a power saving mode
module.



• A scheduler that takes into account the energy efficiency
machines. For this, the consumption of the machines will
be compared with their performance (flops / W).

• A power saving mode module: in a set of identical
machines, the less efficient ones will be shut down.

ACKNOWLEDGMENT

This research is supported by the French FSN (Fonds
national pour la Société Numérique) XLcloud project. Some
experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr). Authors wish
to thank Julien Danjou for his help during the integration of
Kwapi with Openstack and Ceilometer.

REFERENCES

Not yet available.


