
Document Deliverable Project XLcloud / Magellan

FSN – AAP Cloud Computing #1
Planned date

Delivery date
01/06/2013

01/06/2013

Nature Internal

Statut Final Version Revision n°1

Document Properties

Document Title Blazar Architecture

Task number 4.2.3

Responsible François Rossigneux

Author(s) / contributor(s) Jean-Patrick Gelas
Laurent Lefèvre
François Rossigneux

Document Status Final

Version Revision n°1

Summary

The main task was to design a resource reservation service with a scheduling algorithm taking into
account the efficiency of each host and managing their standby modes.

Blazar, a resource reservation service, allows the user to book physical machines in order to
guarantee a mono-tenancy environment with homogeneous performances suitable for HPC
applications. The compute nodes are allocated in an efficient way, taking into account their efficiency,
and turned off when they are unused.

The efficiency metric is a mix of the power consumption, collected with Kwapi, and the performance
index given by an Unix bench. Each new machine added in the cloud is benchmarked, as for identical
CPU, the power consumption may vary up to 20% depending of the manufacturing hazards.

Keywords

reservation, ranking, standby, efficiency

Blazar Architecture

Resource Reservation
Architecture

2

Blazar Architecture

Sommaire
1 Introduction...4

1.1 Purpose... 4
1.2 Scope... 4

2 Architecture Overview...5
3 Blazar.. 6

3.1 Introduction.. 6
3.2 Architecture.. 6
3.3 Compute host reservation.. 7
3.4 Specific API.. 7
3.5 Hardware requirements syntax..8
3.6 Documentation... 8
3.7 Code repositories... 8

4 Kwranking...9
4.1 Installation.. 9
4.2 Configuration file.. 9
4.3 API... 9
4.4 Documentation... 10
4.5 Code repositories... 10

5 Kwstandby...11
5.1 Installation.. 11
5.2 Configuration file.. 11
5.3 API... 11
5.4 Documentation... 12
5.5 Code repositories... 12

3

Blazar Architecture

1 Introduction

1.1 Purpose

This software design specification provides an overview of design and architecture of the proposed resource
management framework for XLcloud project.

1.2 Scope

OpenStack virtual machines scheduling doesn't take into account the energy efficiency criteria. We created a
resource reservation service with a scheduling algorithm taking into account the efficiency of each host and
managing their standby modes.

4

Blazar Architecture

2 Architecture Overview

Global Architecture

The proposed architecture includes Blazar, Kwranking and Kwstandby. It depends on Kwapi, Ceilometer and
Nova, which have been described in the previous specification.

Roles of the modules:

• Kwapi: takes the power measurements

• Ceilometer: stores the power measurements

• Blazar: manages the resources

• Kwranking: benchmarks the machines

• Kwstandby: wakes up and turns of the machines

5

Blazar Architecture

3 Blazar

3.1 Introduction

Blazar allows the reservation of physical and virtual resources (physical hosts, instances, network and
volumes).

In terms of benefits added, it will:

• improve visibility of cloud resources consumption (current and planned for future);
• enable cloud resource planning based on current and future demand from end users;
• automate the processes of resource allocation and reclaiming;
• provide energy efficiency for physical hosts (both compute and storage ones);
• potentially provide leases as billable items for which customers can be charged a flat fee or a

premium price depending on amount of reserved cloud resources and their usage

3.2 Architecture

Is is composed of the following modules:

• Climate-client: provides the opportunity to communicate with Blazar via REST API (climate-api
service).

• Climate-api: waits for the REST calls from the outside world to redirect them to the manager.
climate-api communicates with climate-manager via RPC. Runs as a separated process.

• Climate-manager: implements all logic and operations with leases, reservations and events.
Communicates with Blazar DB and stores there data structure of connected leases, reservations
(both physical and virtual) and events. climate-manager service is responsible for running events
created for lease and process all actions that should be done this moment. Manager uses resource-
plugins to work with concrete resources (instances, volumes, compute hosts). climate-manager uses
Keystone trusts to commit actions on behalf of user who has created lease before.

• Resource-plugin: responsible for exact actions to do with reserved resources (VMs, volumes, etc.)
When working knows only about resource ID and token to use. All resource plugins work in the same
process as climate-manager.

Blazar Architecture

6

Blazar Architecture

3.3 Compute host reservation

Compute hosts reserving contains two steps:

• Admin marks hosts from common pool as possible to be reserved. That is implemented by moving
these hosts to special aggregate named freepool.

• User asks for reserving of host with specified characteristics like:
• the region
• the availability zone
• the host capabilities extra specs (scoped and non-scoped format should be accepted)
• the number of CPU cores
• the amount of free RAM
• the amount of free disk space
• the number of hosts

Resource here will be new aggregate containing reserved hosts. The time lease starts, user may use
reserved compute capacity to run his/her instances on it passing special scheduler hint to Nova. When host
is reserved, it’s not used for usual instance running, it might be used only when lease starts and only by
passing reservation ID to Nova.

Blazar supports immediate reservation and in advance reservation.

The eligible hosts are sorted by efficiency, by contacting Kwranking. The reservations are regularly optimized
to use always the most efficient hosts and save energy without performance loss. The unused hosts are put
in standby modes if there is no new leases on them in the next minutes.

3.4 Installation

Clone the Blazar git repository to the management server:

git clone https://github.com/stackforge/blazar

As a user with root permissions or sudo privileges, run the Kwranking installer and copy the configuration
files:

$ pip install blazar
$ cp -r blazar/etc/ blazar /etc/

Start the Blazar services:

$ blazar-api
$ blazar-manager

3.5 Configuration file

The configuration file is located in /etc/blazar/blazar.conf.

The manager section defines the supported reservation plugins:

Option Default value Note

plugins physical.host.plugin Enable physical host reservation

The physical:host section defines the specific options for physical host reservation:

Option Default value Note

on_start on_start Method to trigger when a lease starts

on_end on_end Method to trigger when a lease ends

climate_username climate
Used for contacting Kwranking and
Kwstandby

7

Blazar Architecture

climate_password password
Used for contacting Kwranking and
Kwstandby

climate_tenant_name service
Used for contacting Kwranking and
Kwstandby

3.6 Specific API

Host management:

Verb URL Parameters Expected result

GET /v1/os-hosts/ Returns all hosts details

GET /v1/os-hosts/<host> host Returns the host details

PUT /v1/os-hosts/<host>
 host
 {"values": { "foo": "bar"}}

Update the host values

POST /v1/os-hosts

 {
 "name": "compute",
 "values": {
 "foo": "bar"
 }
}

Add an host existing in Nova

DELETE /v1/os-hosts/<host> host Delete an host

Reservation management:

Verb URL Parameters Expected result

GET /v1/leases Returns all leases details

GET

/v1/leases/<id>

 Lease id Returns the lease details

POST /v1/leases

{
 "name": a,
 "start_date": b,
 "end_date": c,
 "reservations": [

 {
 "min": d,
 "max": e,
 "resource_type": "physical:host",
 "resource_properties": f,
 "hypervisor_properties": ""
 }
]
}

a = lease name
b = start date "AAAA-MM-JJ HH:MM"
c = end date "AAAA-MM-JJ HH:MM"
d = min host requested
e = max host requested
f = resource properties using the
Nova JsonFilter syntax

Creates a physical lease

POST /v1/leases

{
 "name": a
}

a = lease name

Update the lease name

8

Blazar Architecture

DELETE

/v1/leases/<id>

Lease id Delete the lease if it is not yet started

3.7 Hardware requirements syntax

The hardware requirements syntax is similar to the Nova JsonFilter syntax.

It provides the opportunity to write complicated queries for the hosts capabilities filtering, based on simple
JSON-like syntax. There can be used the following operations for the host states properties: =, <, >, in, <=,
>=, that can be combined with logical operations. For example, there is a query:

['and',
 ['=', '$vcpus', 4],
 ['>=', '$memory_mb', 4096]
]

The keys can be found by doing a request to /v1/os-hosts/.

3.8 Documentation

Documentation can be found at:

https://wiki.openstack.org/wiki/Blazar

3.9 Code repositories

https://github.com/stackforge/blazar

https://github.com/stackforge/python-blazarclient

9

https://github.com/stackforge/blazar
https://wiki.openstack.org/wiki/Blazar

Blazar Architecture

4 Kwranking
Kwranking provides information about host efficiency.

It deploys UnixBench on remote hosts using SSH with public key authentication and runs arithmetic tests.
The returned value is stored in the DB (it never changes over time). During the tests, the max power
consumption is reached and stored in Ceilometer, so the flop/w metric is build using the max power value
stored in Ceilometer and the flop value returned by the benchmark. The flop/w metric is updated periodically,
because the max power consumption may vary over the machine lifetime. An API allows the user to find the
most efficient hosts from a list of hosts passed as parameter.

4.1 Installation

Clone the Kwranking git repository to the management server:

git clone https://github.com/frossigneux/kwranking

As a user with root permissions or sudo privileges, run the Kwranking installer and copy the configuration
files:

$ pip install kwranking
$ cp -r kwranking/etc/kwranking /etc/

Start the Kwranking API:

$ kwranking-api

Now add new hosts in kwranking using the API request /v1/hosts/set/. These hosts must be accessible using
SSH with public key authenfication.

4.2 Configuration file

The configuration file is located in /etc/kwranking/kwranking.conf.

Option Default value Note

api_port 5001 API port

acl_enabled true Keystone authentication

policy_file /etc/kwstandby/policy.json Access rules

log_file /var/log/kwranking.log Log file

refresh_interval 5184000
Interval between two requests to
Ceilometer to retrieve the max value

sql_type mysql SQL type

sql_server localhost SQL server

sql_port 3306 SQL port

sql_user root SQL user

sql_password password SQL password

sql_database kwranking SQL database

4.3 API

Verb URL Parameters Expected result

GET /v1/hosts/get-id/ Returns all hosts IDs

GET /v1/hosts/get/ Returns all hosts details

GET /v1/hosts/get/<host>/ host Returns the host details

10

Blazar Architecture

POST /v1/hosts/get-rank/

{
 "hosts": a,
 "method": b,
 "number": c
}

a = host list separated by “;”
b = ranking method
(Efficiency or Flop or Wmax
or Wmin)
c = number of hosts to return

Ranks the hosts passed as parameter

PUT /v1/hosts/set/

{
 "host": a
}

a = the host to benchmark
and add in the database

Returns the probe meter value

4.4 Documentation

Documentation can be found at:

http://kwranking.readthedocs.org

4.5 Code repositories

https://github.com/frossigneux/kwranking

https://github.com/frossigneux/python-kwrankingclient

11

https://github.com/frossigneux/python-kwrankingclient
https://github.com/frossigneux/Kwranking

Blazar Architecture

5 Kwstandby
Kwstandby provides a REST API to shutdown and wakeup the hosts using their IPMI cards.

5.1 Installation

Clone the Kwstandby git repository to the management server:

git clone https://github.com/frossigneux/kwstandby

As a user with root permissions or sudo privileges, run the Kwranking installer and copy the configuration
files:

$ pip install kwstandby
$ cp -r kwstandby/etc/kwstandby /etc/

Start the Kwranking API:

$ kwstandby-api

5.2 Configuration file

The configuration file is located in /etc/kwstandby/kwstandby.conf.

Option Default value Note

api_port 5002 API port

acl_enabled true Keystone authentication

policy_file /etc/kwstandby/policy.json Access rules

log_file /var/log/kwstandby.log Log file

ipmi_node
 {'interface':'lanplus', 'host':'192.168.0.2',
'username':'user1', 'password':'secret1'}

IPMI card information
Multiple lines are allowed

Keystone authtoken section :

Option Default value Note

auth_node localhost Auth node

auth_protocol http Protocol

admin_user kwstandby User

admin_password password Password

admin_tenant_name service Tenant

5.3 API

Verb URL Parameters Expected result

GET /v1/status/<host> host Returns the host status

GET /v1/status/ Returns all the host status

PUT /v1/status/<host>

 host
 {
 "status": “standby” or
“wakeup”
 }

Update the node status

12

Blazar Architecture

5.4 Documentation

Documentation can be found at:

http://kwstandby.readthedocs.org

5.5 Code repositories

https://github.com/frossigneux/kwstandby

https://github.com/frossigneux/python-kwstandbyclient

13

https://github.com/frossigneux/python-kwrankingclient
https://github.com/frossigneux/python-kwrankingclient
https://github.com/frossigneux/Kwranking

	1 Introduction
	1.1 Purpose
	1.2 Scope

	2 Architecture Overview
	3 Blazar
	3.1 Introduction
	3.2 Architecture
	3.3 Compute host reservation
	3.4 Installation
	3.5 Configuration file
	3.6 Specific API
	3.7 Hardware requirements syntax
	3.8 Documentation
	3.9 Code repositories

	4 Kwranking
	4.1 Installation
	4.2 Configuration file
	4.3 API
	4.4 Documentation
	4.5 Code repositories

	5 Kwstandby
	5.1 Installation
	5.2 Configuration file
	5.3 API
	5.4 Documentation
	5.5 Code repositories

