|
1 |
__author__ = 'Marcos Assuncao'
|
|
2 |
|
|
3 |
import pytz
|
|
4 |
import sys
|
|
5 |
from argparse import ArgumentParser
|
|
6 |
import matplotlib.pyplot as plt; plt.rcdefaults()
|
|
7 |
import numpy as np
|
|
8 |
from matplotlib import rc
|
|
9 |
from pylab import *
|
|
10 |
from scipy.stats import gaussian_kde
|
|
11 |
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
|
|
12 |
rc('text', usetex=True)
|
|
13 |
plt.rcParams.update({'font.size': 14})
|
|
14 |
from datetime import datetime
|
|
15 |
|
|
16 |
TZINFO = pytz.timezone("Europe/Paris")
|
|
17 |
|
|
18 |
class DeploymentStat:
|
|
19 |
|
|
20 |
def __init__(self, host, start, step1_dur, step2_dur, step3_dur, success):
|
|
21 |
self._host = host
|
|
22 |
self._start = start
|
|
23 |
self._step1_dur = step1_dur
|
|
24 |
self._step2_dur = step2_dur
|
|
25 |
self._step3_dur = step3_dur
|
|
26 |
self._success = success
|
|
27 |
self._retry_1 = 0
|
|
28 |
self._retry_2 = 0
|
|
29 |
self._retry_3 = 0
|
|
30 |
|
|
31 |
@property
|
|
32 |
def hostname(self):
|
|
33 |
return self._host
|
|
34 |
|
|
35 |
@property
|
|
36 |
def start(self):
|
|
37 |
return self._start
|
|
38 |
|
|
39 |
@property
|
|
40 |
def step_1_duration(self):
|
|
41 |
return self._step1_dur
|
|
42 |
|
|
43 |
@property
|
|
44 |
def step_2_duration(self):
|
|
45 |
return self._step2_dur
|
|
46 |
|
|
47 |
@property
|
|
48 |
def step_3_duration(self):
|
|
49 |
return self._step3_dur
|
|
50 |
|
|
51 |
@property
|
|
52 |
def success(self):
|
|
53 |
return self._success
|
|
54 |
|
|
55 |
@property
|
|
56 |
def num_retries_step_1(self):
|
|
57 |
return self._retry_1
|
|
58 |
|
|
59 |
@num_retries_step_1.setter
|
|
60 |
def num_retries_step_1(self, r):
|
|
61 |
self._retry_1 = r
|
|
62 |
|
|
63 |
@property
|
|
64 |
def num_retries_step_2(self):
|
|
65 |
return self._retry_2
|
|
66 |
|
|
67 |
@num_retries_step_2.setter
|
|
68 |
def num_retries_step_2(self, r):
|
|
69 |
self._retry_2 = r
|
|
70 |
|
|
71 |
@property
|
|
72 |
def num_retries_step_3(self):
|
|
73 |
return self._retry_3
|
|
74 |
|
|
75 |
@num_retries_step_3.setter
|
|
76 |
def num_retries_step_3(self, r):
|
|
77 |
self._retry_3 = r
|
|
78 |
|
|
79 |
@property
|
|
80 |
def has_retries(self):
|
|
81 |
return (self.num_retries_step_1 > 0 or
|
|
82 |
self.num_retries_step_3 > 0 or
|
|
83 |
self.num_retries_step_3 > 0)
|
|
84 |
|
|
85 |
def parse_date(str_date):
|
|
86 |
d = datetime.strptime(str_date, "%Y-%m-%d %H:%M:%S")
|
|
87 |
d = TZINFO.localize(d)
|
|
88 |
return d
|
|
89 |
|
|
90 |
def parse_kdeploy_opt():
|
|
91 |
parser = ArgumentParser(description='Plot Kadeploy deployment graphs.')
|
|
92 |
parser.add_argument('--input', dest='input', type=str, required=True,
|
|
93 |
help='the input request trace file')
|
|
94 |
parser.add_argument('--output', dest='output', type=str, required=True,
|
|
95 |
help='the output directory')
|
|
96 |
parser.add_argument('--start-date', dest='start_date', type=parse_date, required=True,
|
|
97 |
help='the start date of the log (i.e. YYYY-MM-DD HH:mm:ss)')
|
|
98 |
parser.add_argument('--cluster', dest='cluster', type=str, required=True,
|
|
99 |
help='the name of the cluster')
|
|
100 |
|
|
101 |
args = parser.parse_args()
|
|
102 |
return args
|
|
103 |
|
|
104 |
def parse_log(log, cluster):
|
|
105 |
f = open(log, 'r')
|
|
106 |
|
|
107 |
deployments = []
|
|
108 |
for line in f:
|
|
109 |
fields = line.split(',')
|
|
110 |
hostname = fields[2]
|
|
111 |
|
|
112 |
if cluster in hostname:
|
|
113 |
hostname = hostname.split('.')[0]
|
|
114 |
start = datetime.fromtimestamp(int(fields[3]), TZINFO)
|
|
115 |
step1_dur = int(fields[4])
|
|
116 |
step2_dur = int(fields[5])
|
|
117 |
step3_dur = int(fields[6])
|
|
118 |
success = "true" in fields[10]
|
|
119 |
dep = DeploymentStat(hostname, start, step1_dur, step2_dur, step3_dur, success)
|
|
120 |
retry_1 = int(fields[7])
|
|
121 |
retry_2 = int(fields[8])
|
|
122 |
retry_3 = int(fields[9])
|
|
123 |
dep.num_retries_step_1 = retry_1
|
|
124 |
dep.num_retries_step_2 = retry_2
|
|
125 |
dep.num_retries_step_3 = retry_3
|
|
126 |
deployments.append(dep)
|
|
127 |
|
|
128 |
f.close()
|
|
129 |
return deployments
|
|
130 |
|
|
131 |
|
|
132 |
def plot_deployment_time(deployments, cluster, year, out_dir):
|
|
133 |
values = []
|
|
134 |
for d in deployments:
|
|
135 |
if d.success and not d.has_retries:
|
|
136 |
values.append(int(d.step_1_duration + d.step_2_duration + d.step_3_duration))
|
|
137 |
# values.append(int(d.step_3_duration))
|
|
138 |
# values.append(int(d.step_1_duration))
|
|
139 |
|
|
140 |
title = 'Deployment on Cluster %s (%d)' % (cluster, year)
|
|
141 |
out_file = out_dir + ("/deployment_%s_%d.pdf" % (cluster, year))
|
|
142 |
hist_graph(values, title, 'Deployment Time (seconds)', '', out_file)
|
|
143 |
|
|
144 |
|
|
145 |
def hist_graph(values, title, x_label, y_label, out_file):
|
|
146 |
ar1 = np.array(values)
|
|
147 |
fig, ax = plt.subplots()
|
|
148 |
|
|
149 |
num_bins = 20
|
|
150 |
n, bins, patches = plt.hist(ar1, bins=num_bins, histtype='bar',
|
|
151 |
normed=True, facecolor='#708090', alpha=0.5, rwidth=0.8)
|
|
152 |
plt.subplots_adjust(left=0.15)
|
|
153 |
|
|
154 |
max = round(bins[len(bins) - 1])
|
|
155 |
density = gaussian_kde(ar1)
|
|
156 |
xs = np.linspace(0,max,300)
|
|
157 |
density.covariance_factor = lambda : .25
|
|
158 |
density._compute_covariance()
|
|
159 |
plt.plot(xs,density(xs), 'r--')
|
|
160 |
|
|
161 |
ax.set_xlabel(x_label)
|
|
162 |
ax.set_ylabel(y_label)
|
|
163 |
ax.set_title(title)
|
|
164 |
|
|
165 |
ax.get_xaxis().tick_bottom()
|
|
166 |
ax.get_yaxis().tick_left()
|
|
167 |
|
|
168 |
plt.show()
|
|
169 |
# plt.savefig(out_file)
|
|
170 |
|
|
171 |
def plot_graphs():
|
|
172 |
opts = parse_kdeploy_opt()
|
|
173 |
deployments = parse_log(opts.input, opts.cluster)
|
|
174 |
plot_deployment_time(deployments, opts.cluster, opts.start_date.year, opts.output)
|