root / tmp / org.txm.analec.rcp / src / JamaPlus / EigenvalueDecomposition.java @ 948
Historique | Voir | Annoter | Télécharger (27,12 ko)
1 | 481 | mdecorde | package JamaPlus; |
---|---|---|---|
2 | 481 | mdecorde | import JamaPlus.util.*; |
3 | 481 | mdecorde | |
4 | 481 | mdecorde | /** Eigenvalues and eigenvectors of a real matrix.
|
5 | 481 | mdecorde | <P>
|
6 | 481 | mdecorde | If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
|
7 | 481 | mdecorde | diagonal and the eigenvector matrix V is orthogonal.
|
8 | 481 | mdecorde | I.e. A = V.times(D.times(V.transpose())) and
|
9 | 481 | mdecorde | V.times(V.transpose()) equals the identity matrix.
|
10 | 481 | mdecorde | <P>
|
11 | 481 | mdecorde | If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
12 | 481 | mdecorde | with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
13 | 481 | mdecorde | lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
14 | 481 | mdecorde | columns of V represent the eigenvectors in the sense that A*V = V*D,
|
15 | 481 | mdecorde | i.e. A.times(V) equals V.times(D). The matrix V may be badly
|
16 | 481 | mdecorde | conditioned, or even singular, so the validity of the equation
|
17 | 481 | mdecorde | A = V*D*inverse(V) depends upon V.cond().
|
18 | 481 | mdecorde | **/
|
19 | 481 | mdecorde | |
20 | 481 | mdecorde | public class EigenvalueDecomposition implements java.io.Serializable { |
21 | 481 | mdecorde | |
22 | 481 | mdecorde | /* ------------------------
|
23 | 481 | mdecorde | Class variables
|
24 | 481 | mdecorde | * ------------------------ */
|
25 | 481 | mdecorde | |
26 | 481 | mdecorde | /** Row and column dimension (square matrix).
|
27 | 481 | mdecorde | @serial matrix dimension.
|
28 | 481 | mdecorde | */
|
29 | 481 | mdecorde | private int n; |
30 | 481 | mdecorde | |
31 | 481 | mdecorde | /** Symmetry flag.
|
32 | 481 | mdecorde | @serial internal symmetry flag.
|
33 | 481 | mdecorde | */
|
34 | 481 | mdecorde | private boolean issymmetric; |
35 | 481 | mdecorde | |
36 | 481 | mdecorde | /** Arrays for internal storage of eigenvalues.
|
37 | 481 | mdecorde | @serial internal storage of eigenvalues.
|
38 | 481 | mdecorde | */
|
39 | 481 | mdecorde | private double[] d, e; |
40 | 481 | mdecorde | |
41 | 481 | mdecorde | /** Array for internal storage of eigenvectors.
|
42 | 481 | mdecorde | @serial internal storage of eigenvectors.
|
43 | 481 | mdecorde | */
|
44 | 481 | mdecorde | private double[][] V; |
45 | 481 | mdecorde | |
46 | 481 | mdecorde | /** Array for internal storage of nonsymmetric Hessenberg form.
|
47 | 481 | mdecorde | @serial internal storage of nonsymmetric Hessenberg form.
|
48 | 481 | mdecorde | */
|
49 | 481 | mdecorde | private double[][] H; |
50 | 481 | mdecorde | |
51 | 481 | mdecorde | /** Working storage for nonsymmetric algorithm.
|
52 | 481 | mdecorde | @serial working storage for nonsymmetric algorithm.
|
53 | 481 | mdecorde | */
|
54 | 481 | mdecorde | private double[] ort; |
55 | 481 | mdecorde | |
56 | 481 | mdecorde | /* ------------------------
|
57 | 481 | mdecorde | Private Methods
|
58 | 481 | mdecorde | * ------------------------ */
|
59 | 481 | mdecorde | |
60 | 481 | mdecorde | // Symmetric Householder reduction to tridiagonal form.
|
61 | 481 | mdecorde | |
62 | 481 | mdecorde | private void tred2 () { |
63 | 481 | mdecorde | |
64 | 481 | mdecorde | // This is derived from the Algol procedures tred2 by
|
65 | 481 | mdecorde | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
66 | 481 | mdecorde | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
67 | 481 | mdecorde | // Fortran subroutine in EISPACK.
|
68 | 481 | mdecorde | |
69 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
70 | 481 | mdecorde | d[j] = V[n-1][j];
|
71 | 481 | mdecorde | } |
72 | 481 | mdecorde | |
73 | 481 | mdecorde | // Householder reduction to tridiagonal form.
|
74 | 481 | mdecorde | |
75 | 481 | mdecorde | for (int i = n-1; i > 0; i--) { |
76 | 481 | mdecorde | |
77 | 481 | mdecorde | // Scale to avoid under/overflow.
|
78 | 481 | mdecorde | |
79 | 481 | mdecorde | double scale = 0.0; |
80 | 481 | mdecorde | double h = 0.0; |
81 | 481 | mdecorde | for (int k = 0; k < i; k++) { |
82 | 481 | mdecorde | scale = scale + Math.abs(d[k]);
|
83 | 481 | mdecorde | } |
84 | 481 | mdecorde | if (scale == 0.0) { |
85 | 481 | mdecorde | e[i] = d[i-1];
|
86 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
87 | 481 | mdecorde | d[j] = V[i-1][j];
|
88 | 481 | mdecorde | V[i][j] = 0.0;
|
89 | 481 | mdecorde | V[j][i] = 0.0;
|
90 | 481 | mdecorde | } |
91 | 481 | mdecorde | } else {
|
92 | 481 | mdecorde | |
93 | 481 | mdecorde | // Generate Householder vector.
|
94 | 481 | mdecorde | |
95 | 481 | mdecorde | for (int k = 0; k < i; k++) { |
96 | 481 | mdecorde | d[k] /= scale; |
97 | 481 | mdecorde | h += d[k] * d[k]; |
98 | 481 | mdecorde | } |
99 | 481 | mdecorde | double f = d[i-1]; |
100 | 481 | mdecorde | double g = Math.sqrt(h); |
101 | 481 | mdecorde | if (f > 0) { |
102 | 481 | mdecorde | g = -g; |
103 | 481 | mdecorde | } |
104 | 481 | mdecorde | e[i] = scale * g; |
105 | 481 | mdecorde | h = h - f * g; |
106 | 481 | mdecorde | d[i-1] = f - g;
|
107 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
108 | 481 | mdecorde | e[j] = 0.0;
|
109 | 481 | mdecorde | } |
110 | 481 | mdecorde | |
111 | 481 | mdecorde | // Apply similarity transformation to remaining columns.
|
112 | 481 | mdecorde | |
113 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
114 | 481 | mdecorde | f = d[j]; |
115 | 481 | mdecorde | V[j][i] = f; |
116 | 481 | mdecorde | g = e[j] + V[j][j] * f; |
117 | 481 | mdecorde | for (int k = j+1; k <= i-1; k++) { |
118 | 481 | mdecorde | g += V[k][j] * d[k]; |
119 | 481 | mdecorde | e[k] += V[k][j] * f; |
120 | 481 | mdecorde | } |
121 | 481 | mdecorde | e[j] = g; |
122 | 481 | mdecorde | } |
123 | 481 | mdecorde | f = 0.0;
|
124 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
125 | 481 | mdecorde | e[j] /= h; |
126 | 481 | mdecorde | f += e[j] * d[j]; |
127 | 481 | mdecorde | } |
128 | 481 | mdecorde | double hh = f / (h + h);
|
129 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
130 | 481 | mdecorde | e[j] -= hh * d[j]; |
131 | 481 | mdecorde | } |
132 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
133 | 481 | mdecorde | f = d[j]; |
134 | 481 | mdecorde | g = e[j]; |
135 | 481 | mdecorde | for (int k = j; k <= i-1; k++) { |
136 | 481 | mdecorde | V[k][j] -= (f * e[k] + g * d[k]); |
137 | 481 | mdecorde | } |
138 | 481 | mdecorde | d[j] = V[i-1][j];
|
139 | 481 | mdecorde | V[i][j] = 0.0;
|
140 | 481 | mdecorde | } |
141 | 481 | mdecorde | } |
142 | 481 | mdecorde | d[i] = h; |
143 | 481 | mdecorde | } |
144 | 481 | mdecorde | |
145 | 481 | mdecorde | // Accumulate transformations.
|
146 | 481 | mdecorde | |
147 | 481 | mdecorde | for (int i = 0; i < n-1; i++) { |
148 | 481 | mdecorde | V[n-1][i] = V[i][i];
|
149 | 481 | mdecorde | V[i][i] = 1.0;
|
150 | 481 | mdecorde | double h = d[i+1]; |
151 | 481 | mdecorde | if (h != 0.0) { |
152 | 481 | mdecorde | for (int k = 0; k <= i; k++) { |
153 | 481 | mdecorde | d[k] = V[k][i+1] / h;
|
154 | 481 | mdecorde | } |
155 | 481 | mdecorde | for (int j = 0; j <= i; j++) { |
156 | 481 | mdecorde | double g = 0.0; |
157 | 481 | mdecorde | for (int k = 0; k <= i; k++) { |
158 | 481 | mdecorde | g += V[k][i+1] * V[k][j];
|
159 | 481 | mdecorde | } |
160 | 481 | mdecorde | for (int k = 0; k <= i; k++) { |
161 | 481 | mdecorde | V[k][j] -= g * d[k]; |
162 | 481 | mdecorde | } |
163 | 481 | mdecorde | } |
164 | 481 | mdecorde | } |
165 | 481 | mdecorde | for (int k = 0; k <= i; k++) { |
166 | 481 | mdecorde | V[k][i+1] = 0.0; |
167 | 481 | mdecorde | } |
168 | 481 | mdecorde | } |
169 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
170 | 481 | mdecorde | d[j] = V[n-1][j];
|
171 | 481 | mdecorde | V[n-1][j] = 0.0; |
172 | 481 | mdecorde | } |
173 | 481 | mdecorde | V[n-1][n-1] = 1.0; |
174 | 481 | mdecorde | e[0] = 0.0; |
175 | 481 | mdecorde | } |
176 | 481 | mdecorde | |
177 | 481 | mdecorde | // Symmetric tridiagonal QL algorithm.
|
178 | 481 | mdecorde | |
179 | 481 | mdecorde | private void tql2 () { |
180 | 481 | mdecorde | |
181 | 481 | mdecorde | // This is derived from the Algol procedures tql2, by
|
182 | 481 | mdecorde | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
183 | 481 | mdecorde | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
184 | 481 | mdecorde | // Fortran subroutine in EISPACK.
|
185 | 481 | mdecorde | |
186 | 481 | mdecorde | for (int i = 1; i < n; i++) { |
187 | 481 | mdecorde | e[i-1] = e[i];
|
188 | 481 | mdecorde | } |
189 | 481 | mdecorde | e[n-1] = 0.0; |
190 | 481 | mdecorde | |
191 | 481 | mdecorde | double f = 0.0; |
192 | 481 | mdecorde | double tst1 = 0.0; |
193 | 481 | mdecorde | double eps = Math.pow(2.0,-52.0); |
194 | 481 | mdecorde | for (int l = 0; l < n; l++) { |
195 | 481 | mdecorde | |
196 | 481 | mdecorde | // Find small subdiagonal element
|
197 | 481 | mdecorde | |
198 | 481 | mdecorde | tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l])); |
199 | 481 | mdecorde | int m = l;
|
200 | 481 | mdecorde | while (m < n) {
|
201 | 481 | mdecorde | if (Math.abs(e[m]) <= eps*tst1) { |
202 | 481 | mdecorde | break;
|
203 | 481 | mdecorde | } |
204 | 481 | mdecorde | m++; |
205 | 481 | mdecorde | } |
206 | 481 | mdecorde | |
207 | 481 | mdecorde | // If m == l, d[l] is an eigenvalue,
|
208 | 481 | mdecorde | // otherwise, iterate.
|
209 | 481 | mdecorde | |
210 | 481 | mdecorde | if (m > l) {
|
211 | 481 | mdecorde | int iter = 0; |
212 | 481 | mdecorde | do {
|
213 | 481 | mdecorde | iter = iter + 1; // (Could check iteration count here.) |
214 | 481 | mdecorde | |
215 | 481 | mdecorde | // Compute implicit shift
|
216 | 481 | mdecorde | |
217 | 481 | mdecorde | double g = d[l];
|
218 | 481 | mdecorde | double p = (d[l+1] - g) / (2.0 * e[l]); |
219 | 481 | mdecorde | double r = Math.hypot(p,1.0); |
220 | 481 | mdecorde | if (p < 0) { |
221 | 481 | mdecorde | r = -r; |
222 | 481 | mdecorde | } |
223 | 481 | mdecorde | d[l] = e[l] / (p + r); |
224 | 481 | mdecorde | d[l+1] = e[l] * (p + r);
|
225 | 481 | mdecorde | double dl1 = d[l+1]; |
226 | 481 | mdecorde | double h = g - d[l];
|
227 | 481 | mdecorde | for (int i = l+2; i < n; i++) { |
228 | 481 | mdecorde | d[i] -= h; |
229 | 481 | mdecorde | } |
230 | 481 | mdecorde | f = f + h; |
231 | 481 | mdecorde | |
232 | 481 | mdecorde | // Implicit QL transformation.
|
233 | 481 | mdecorde | |
234 | 481 | mdecorde | p = d[m]; |
235 | 481 | mdecorde | double c = 1.0; |
236 | 481 | mdecorde | double c2 = c;
|
237 | 481 | mdecorde | double c3 = c;
|
238 | 481 | mdecorde | double el1 = e[l+1]; |
239 | 481 | mdecorde | double s = 0.0; |
240 | 481 | mdecorde | double s2 = 0.0; |
241 | 481 | mdecorde | for (int i = m-1; i >= l; i--) { |
242 | 481 | mdecorde | c3 = c2; |
243 | 481 | mdecorde | c2 = c; |
244 | 481 | mdecorde | s2 = s; |
245 | 481 | mdecorde | g = c * e[i]; |
246 | 481 | mdecorde | h = c * p; |
247 | 481 | mdecorde | r = Math.hypot(p,e[i]);
|
248 | 481 | mdecorde | e[i+1] = s * r;
|
249 | 481 | mdecorde | s = e[i] / r; |
250 | 481 | mdecorde | c = p / r; |
251 | 481 | mdecorde | p = c * d[i] - s * g; |
252 | 481 | mdecorde | d[i+1] = h + s * (c * g + s * d[i]);
|
253 | 481 | mdecorde | |
254 | 481 | mdecorde | // Accumulate transformation.
|
255 | 481 | mdecorde | |
256 | 481 | mdecorde | for (int k = 0; k < n; k++) { |
257 | 481 | mdecorde | h = V[k][i+1];
|
258 | 481 | mdecorde | V[k][i+1] = s * V[k][i] + c * h;
|
259 | 481 | mdecorde | V[k][i] = c * V[k][i] - s * h; |
260 | 481 | mdecorde | } |
261 | 481 | mdecorde | } |
262 | 481 | mdecorde | p = -s * s2 * c3 * el1 * e[l] / dl1; |
263 | 481 | mdecorde | e[l] = s * p; |
264 | 481 | mdecorde | d[l] = c * p; |
265 | 481 | mdecorde | |
266 | 481 | mdecorde | // Check for convergence.
|
267 | 481 | mdecorde | |
268 | 481 | mdecorde | } while (Math.abs(e[l]) > eps*tst1); |
269 | 481 | mdecorde | } |
270 | 481 | mdecorde | d[l] = d[l] + f; |
271 | 481 | mdecorde | e[l] = 0.0;
|
272 | 481 | mdecorde | } |
273 | 481 | mdecorde | |
274 | 481 | mdecorde | // Sort eigenvalues and corresponding vectors.
|
275 | 481 | mdecorde | |
276 | 481 | mdecorde | for (int i = 0; i < n-1; i++) { |
277 | 481 | mdecorde | int k = i;
|
278 | 481 | mdecorde | double p = d[i];
|
279 | 481 | mdecorde | for (int j = i+1; j < n; j++) { |
280 | 481 | mdecorde | if (d[j] < p) {
|
281 | 481 | mdecorde | k = j; |
282 | 481 | mdecorde | p = d[j]; |
283 | 481 | mdecorde | } |
284 | 481 | mdecorde | } |
285 | 481 | mdecorde | if (k != i) {
|
286 | 481 | mdecorde | d[k] = d[i]; |
287 | 481 | mdecorde | d[i] = p; |
288 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
289 | 481 | mdecorde | p = V[j][i]; |
290 | 481 | mdecorde | V[j][i] = V[j][k]; |
291 | 481 | mdecorde | V[j][k] = p; |
292 | 481 | mdecorde | } |
293 | 481 | mdecorde | } |
294 | 481 | mdecorde | } |
295 | 481 | mdecorde | } |
296 | 481 | mdecorde | |
297 | 481 | mdecorde | // Nonsymmetric reduction to Hessenberg form.
|
298 | 481 | mdecorde | |
299 | 481 | mdecorde | private void orthes () { |
300 | 481 | mdecorde | |
301 | 481 | mdecorde | // This is derived from the Algol procedures orthes and ortran,
|
302 | 481 | mdecorde | // by Martin and Wilkinson, Handbook for Auto. Comp.,
|
303 | 481 | mdecorde | // Vol.ii-Linear Algebra, and the corresponding
|
304 | 481 | mdecorde | // Fortran subroutines in EISPACK.
|
305 | 481 | mdecorde | |
306 | 481 | mdecorde | int low = 0; |
307 | 481 | mdecorde | int high = n-1; |
308 | 481 | mdecorde | |
309 | 481 | mdecorde | for (int m = low+1; m <= high-1; m++) { |
310 | 481 | mdecorde | |
311 | 481 | mdecorde | // Scale column.
|
312 | 481 | mdecorde | |
313 | 481 | mdecorde | double scale = 0.0; |
314 | 481 | mdecorde | for (int i = m; i <= high; i++) { |
315 | 481 | mdecorde | scale = scale + Math.abs(H[i][m-1]); |
316 | 481 | mdecorde | } |
317 | 481 | mdecorde | if (scale != 0.0) { |
318 | 481 | mdecorde | |
319 | 481 | mdecorde | // Compute Householder transformation.
|
320 | 481 | mdecorde | |
321 | 481 | mdecorde | double h = 0.0; |
322 | 481 | mdecorde | for (int i = high; i >= m; i--) { |
323 | 481 | mdecorde | ort[i] = H[i][m-1]/scale;
|
324 | 481 | mdecorde | h += ort[i] * ort[i]; |
325 | 481 | mdecorde | } |
326 | 481 | mdecorde | double g = Math.sqrt(h); |
327 | 481 | mdecorde | if (ort[m] > 0) { |
328 | 481 | mdecorde | g = -g; |
329 | 481 | mdecorde | } |
330 | 481 | mdecorde | h = h - ort[m] * g; |
331 | 481 | mdecorde | ort[m] = ort[m] - g; |
332 | 481 | mdecorde | |
333 | 481 | mdecorde | // Apply Householder similarity transformation
|
334 | 481 | mdecorde | // H = (I-u*u'/h)*H*(I-u*u')/h)
|
335 | 481 | mdecorde | |
336 | 481 | mdecorde | for (int j = m; j < n; j++) { |
337 | 481 | mdecorde | double f = 0.0; |
338 | 481 | mdecorde | for (int i = high; i >= m; i--) { |
339 | 481 | mdecorde | f += ort[i]*H[i][j]; |
340 | 481 | mdecorde | } |
341 | 481 | mdecorde | f = f/h; |
342 | 481 | mdecorde | for (int i = m; i <= high; i++) { |
343 | 481 | mdecorde | H[i][j] -= f*ort[i]; |
344 | 481 | mdecorde | } |
345 | 481 | mdecorde | } |
346 | 481 | mdecorde | |
347 | 481 | mdecorde | for (int i = 0; i <= high; i++) { |
348 | 481 | mdecorde | double f = 0.0; |
349 | 481 | mdecorde | for (int j = high; j >= m; j--) { |
350 | 481 | mdecorde | f += ort[j]*H[i][j]; |
351 | 481 | mdecorde | } |
352 | 481 | mdecorde | f = f/h; |
353 | 481 | mdecorde | for (int j = m; j <= high; j++) { |
354 | 481 | mdecorde | H[i][j] -= f*ort[j]; |
355 | 481 | mdecorde | } |
356 | 481 | mdecorde | } |
357 | 481 | mdecorde | ort[m] = scale*ort[m]; |
358 | 481 | mdecorde | H[m][m-1] = scale*g;
|
359 | 481 | mdecorde | } |
360 | 481 | mdecorde | } |
361 | 481 | mdecorde | |
362 | 481 | mdecorde | // Accumulate transformations (Algol's ortran).
|
363 | 481 | mdecorde | |
364 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
365 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
366 | 481 | mdecorde | V[i][j] = (i == j ? 1.0 : 0.0); |
367 | 481 | mdecorde | } |
368 | 481 | mdecorde | } |
369 | 481 | mdecorde | |
370 | 481 | mdecorde | for (int m = high-1; m >= low+1; m--) { |
371 | 481 | mdecorde | if (H[m][m-1] != 0.0) { |
372 | 481 | mdecorde | for (int i = m+1; i <= high; i++) { |
373 | 481 | mdecorde | ort[i] = H[i][m-1];
|
374 | 481 | mdecorde | } |
375 | 481 | mdecorde | for (int j = m; j <= high; j++) { |
376 | 481 | mdecorde | double g = 0.0; |
377 | 481 | mdecorde | for (int i = m; i <= high; i++) { |
378 | 481 | mdecorde | g += ort[i] * V[i][j]; |
379 | 481 | mdecorde | } |
380 | 481 | mdecorde | // Double division avoids possible underflow
|
381 | 481 | mdecorde | g = (g / ort[m]) / H[m][m-1];
|
382 | 481 | mdecorde | for (int i = m; i <= high; i++) { |
383 | 481 | mdecorde | V[i][j] += g * ort[i]; |
384 | 481 | mdecorde | } |
385 | 481 | mdecorde | } |
386 | 481 | mdecorde | } |
387 | 481 | mdecorde | } |
388 | 481 | mdecorde | } |
389 | 481 | mdecorde | |
390 | 481 | mdecorde | |
391 | 481 | mdecorde | // Complex scalar division.
|
392 | 481 | mdecorde | |
393 | 481 | mdecorde | private transient double cdivr, cdivi; |
394 | 481 | mdecorde | private void cdiv(double xr, double xi, double yr, double yi) { |
395 | 481 | mdecorde | double r,d;
|
396 | 481 | mdecorde | if (Math.abs(yr) > Math.abs(yi)) { |
397 | 481 | mdecorde | r = yi/yr; |
398 | 481 | mdecorde | d = yr + r*yi; |
399 | 481 | mdecorde | cdivr = (xr + r*xi)/d; |
400 | 481 | mdecorde | cdivi = (xi - r*xr)/d; |
401 | 481 | mdecorde | } else {
|
402 | 481 | mdecorde | r = yr/yi; |
403 | 481 | mdecorde | d = yi + r*yr; |
404 | 481 | mdecorde | cdivr = (r*xr + xi)/d; |
405 | 481 | mdecorde | cdivi = (r*xi - xr)/d; |
406 | 481 | mdecorde | } |
407 | 481 | mdecorde | } |
408 | 481 | mdecorde | |
409 | 481 | mdecorde | |
410 | 481 | mdecorde | // Nonsymmetric reduction from Hessenberg to real Schur form.
|
411 | 481 | mdecorde | |
412 | 481 | mdecorde | private void hqr2 () { |
413 | 481 | mdecorde | |
414 | 481 | mdecorde | // This is derived from the Algol procedure hqr2,
|
415 | 481 | mdecorde | // by Martin and Wilkinson, Handbook for Auto. Comp.,
|
416 | 481 | mdecorde | // Vol.ii-Linear Algebra, and the corresponding
|
417 | 481 | mdecorde | // Fortran subroutine in EISPACK.
|
418 | 481 | mdecorde | |
419 | 481 | mdecorde | // Initialize
|
420 | 481 | mdecorde | |
421 | 481 | mdecorde | int nn = this.n; |
422 | 481 | mdecorde | int n = nn-1; |
423 | 481 | mdecorde | int low = 0; |
424 | 481 | mdecorde | int high = nn-1; |
425 | 481 | mdecorde | double eps = Math.pow(2.0,-52.0); |
426 | 481 | mdecorde | double exshift = 0.0; |
427 | 481 | mdecorde | double p=0,q=0,r=0,s=0,z=0,t,w,x,y; |
428 | 481 | mdecorde | |
429 | 481 | mdecorde | // Store roots isolated by balanc and compute matrix norm
|
430 | 481 | mdecorde | |
431 | 481 | mdecorde | double norm = 0.0; |
432 | 481 | mdecorde | for (int i = 0; i < nn; i++) { |
433 | 481 | mdecorde | if (i < low | i > high) {
|
434 | 481 | mdecorde | d[i] = H[i][i]; |
435 | 481 | mdecorde | e[i] = 0.0;
|
436 | 481 | mdecorde | } |
437 | 481 | mdecorde | for (int j = Math.max(i-1,0); j < nn; j++) { |
438 | 481 | mdecorde | norm = norm + Math.abs(H[i][j]);
|
439 | 481 | mdecorde | } |
440 | 481 | mdecorde | } |
441 | 481 | mdecorde | |
442 | 481 | mdecorde | // Outer loop over eigenvalue index
|
443 | 481 | mdecorde | |
444 | 481 | mdecorde | int iter = 0; |
445 | 481 | mdecorde | while (n >= low) {
|
446 | 481 | mdecorde | |
447 | 481 | mdecorde | // Look for single small sub-diagonal element
|
448 | 481 | mdecorde | |
449 | 481 | mdecorde | int l = n;
|
450 | 481 | mdecorde | while (l > low) {
|
451 | 481 | mdecorde | s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]); |
452 | 481 | mdecorde | if (s == 0.0) { |
453 | 481 | mdecorde | s = norm; |
454 | 481 | mdecorde | } |
455 | 481 | mdecorde | if (Math.abs(H[l][l-1]) < eps * s) { |
456 | 481 | mdecorde | break;
|
457 | 481 | mdecorde | } |
458 | 481 | mdecorde | l--; |
459 | 481 | mdecorde | } |
460 | 481 | mdecorde | |
461 | 481 | mdecorde | // Check for convergence
|
462 | 481 | mdecorde | // One root found
|
463 | 481 | mdecorde | |
464 | 481 | mdecorde | if (l == n) {
|
465 | 481 | mdecorde | H[n][n] = H[n][n] + exshift; |
466 | 481 | mdecorde | d[n] = H[n][n]; |
467 | 481 | mdecorde | e[n] = 0.0;
|
468 | 481 | mdecorde | n--; |
469 | 481 | mdecorde | iter = 0;
|
470 | 481 | mdecorde | |
471 | 481 | mdecorde | // Two roots found
|
472 | 481 | mdecorde | |
473 | 481 | mdecorde | } else if (l == n-1) { |
474 | 481 | mdecorde | w = H[n][n-1] * H[n-1][n]; |
475 | 481 | mdecorde | p = (H[n-1][n-1] - H[n][n]) / 2.0; |
476 | 481 | mdecorde | q = p * p + w; |
477 | 481 | mdecorde | z = Math.sqrt(Math.abs(q)); |
478 | 481 | mdecorde | H[n][n] = H[n][n] + exshift; |
479 | 481 | mdecorde | H[n-1][n-1] = H[n-1][n-1] + exshift; |
480 | 481 | mdecorde | x = H[n][n]; |
481 | 481 | mdecorde | |
482 | 481 | mdecorde | // Real pair
|
483 | 481 | mdecorde | |
484 | 481 | mdecorde | if (q >= 0) { |
485 | 481 | mdecorde | if (p >= 0) { |
486 | 481 | mdecorde | z = p + z; |
487 | 481 | mdecorde | } else {
|
488 | 481 | mdecorde | z = p - z; |
489 | 481 | mdecorde | } |
490 | 481 | mdecorde | d[n-1] = x + z;
|
491 | 481 | mdecorde | d[n] = d[n-1];
|
492 | 481 | mdecorde | if (z != 0.0) { |
493 | 481 | mdecorde | d[n] = x - w / z; |
494 | 481 | mdecorde | } |
495 | 481 | mdecorde | e[n-1] = 0.0; |
496 | 481 | mdecorde | e[n] = 0.0;
|
497 | 481 | mdecorde | x = H[n][n-1];
|
498 | 481 | mdecorde | s = Math.abs(x) + Math.abs(z); |
499 | 481 | mdecorde | p = x / s; |
500 | 481 | mdecorde | q = z / s; |
501 | 481 | mdecorde | r = Math.sqrt(p * p+q * q);
|
502 | 481 | mdecorde | p = p / r; |
503 | 481 | mdecorde | q = q / r; |
504 | 481 | mdecorde | |
505 | 481 | mdecorde | // Row modification
|
506 | 481 | mdecorde | |
507 | 481 | mdecorde | for (int j = n-1; j < nn; j++) { |
508 | 481 | mdecorde | z = H[n-1][j];
|
509 | 481 | mdecorde | H[n-1][j] = q * z + p * H[n][j];
|
510 | 481 | mdecorde | H[n][j] = q * H[n][j] - p * z; |
511 | 481 | mdecorde | } |
512 | 481 | mdecorde | |
513 | 481 | mdecorde | // Column modification
|
514 | 481 | mdecorde | |
515 | 481 | mdecorde | for (int i = 0; i <= n; i++) { |
516 | 481 | mdecorde | z = H[i][n-1];
|
517 | 481 | mdecorde | H[i][n-1] = q * z + p * H[i][n];
|
518 | 481 | mdecorde | H[i][n] = q * H[i][n] - p * z; |
519 | 481 | mdecorde | } |
520 | 481 | mdecorde | |
521 | 481 | mdecorde | // Accumulate transformations
|
522 | 481 | mdecorde | |
523 | 481 | mdecorde | for (int i = low; i <= high; i++) { |
524 | 481 | mdecorde | z = V[i][n-1];
|
525 | 481 | mdecorde | V[i][n-1] = q * z + p * V[i][n];
|
526 | 481 | mdecorde | V[i][n] = q * V[i][n] - p * z; |
527 | 481 | mdecorde | } |
528 | 481 | mdecorde | |
529 | 481 | mdecorde | // Complex pair
|
530 | 481 | mdecorde | |
531 | 481 | mdecorde | } else {
|
532 | 481 | mdecorde | d[n-1] = x + p;
|
533 | 481 | mdecorde | d[n] = x + p; |
534 | 481 | mdecorde | e[n-1] = z;
|
535 | 481 | mdecorde | e[n] = -z; |
536 | 481 | mdecorde | } |
537 | 481 | mdecorde | n = n - 2;
|
538 | 481 | mdecorde | iter = 0;
|
539 | 481 | mdecorde | |
540 | 481 | mdecorde | // No convergence yet
|
541 | 481 | mdecorde | |
542 | 481 | mdecorde | } else {
|
543 | 481 | mdecorde | |
544 | 481 | mdecorde | // Form shift
|
545 | 481 | mdecorde | |
546 | 481 | mdecorde | x = H[n][n]; |
547 | 481 | mdecorde | y = 0.0;
|
548 | 481 | mdecorde | w = 0.0;
|
549 | 481 | mdecorde | if (l < n) {
|
550 | 481 | mdecorde | y = H[n-1][n-1]; |
551 | 481 | mdecorde | w = H[n][n-1] * H[n-1][n]; |
552 | 481 | mdecorde | } |
553 | 481 | mdecorde | |
554 | 481 | mdecorde | // Wilkinson's original ad hoc shift
|
555 | 481 | mdecorde | |
556 | 481 | mdecorde | if (iter == 10) { |
557 | 481 | mdecorde | exshift += x; |
558 | 481 | mdecorde | for (int i = low; i <= n; i++) { |
559 | 481 | mdecorde | H[i][i] -= x; |
560 | 481 | mdecorde | } |
561 | 481 | mdecorde | s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]); |
562 | 481 | mdecorde | x = y = 0.75 * s;
|
563 | 481 | mdecorde | w = -0.4375 * s * s;
|
564 | 481 | mdecorde | } |
565 | 481 | mdecorde | |
566 | 481 | mdecorde | // MATLAB's new ad hoc shift
|
567 | 481 | mdecorde | |
568 | 481 | mdecorde | if (iter == 30) { |
569 | 481 | mdecorde | s = (y - x) / 2.0;
|
570 | 481 | mdecorde | s = s * s + w; |
571 | 481 | mdecorde | if (s > 0) { |
572 | 481 | mdecorde | s = Math.sqrt(s);
|
573 | 481 | mdecorde | if (y < x) {
|
574 | 481 | mdecorde | s = -s; |
575 | 481 | mdecorde | } |
576 | 481 | mdecorde | s = x - w / ((y - x) / 2.0 + s);
|
577 | 481 | mdecorde | for (int i = low; i <= n; i++) { |
578 | 481 | mdecorde | H[i][i] -= s; |
579 | 481 | mdecorde | } |
580 | 481 | mdecorde | exshift += s; |
581 | 481 | mdecorde | x = y = w = 0.964;
|
582 | 481 | mdecorde | } |
583 | 481 | mdecorde | } |
584 | 481 | mdecorde | |
585 | 481 | mdecorde | iter = iter + 1; // (Could check iteration count here.) |
586 | 481 | mdecorde | |
587 | 481 | mdecorde | // Look for two consecutive small sub-diagonal elements
|
588 | 481 | mdecorde | |
589 | 481 | mdecorde | int m = n-2; |
590 | 481 | mdecorde | while (m >= l) {
|
591 | 481 | mdecorde | z = H[m][m]; |
592 | 481 | mdecorde | r = x - z; |
593 | 481 | mdecorde | s = y - z; |
594 | 481 | mdecorde | p = (r * s - w) / H[m+1][m] + H[m][m+1]; |
595 | 481 | mdecorde | q = H[m+1][m+1] - z - r - s; |
596 | 481 | mdecorde | r = H[m+2][m+1]; |
597 | 481 | mdecorde | s = Math.abs(p) + Math.abs(q) + Math.abs(r); |
598 | 481 | mdecorde | p = p / s; |
599 | 481 | mdecorde | q = q / s; |
600 | 481 | mdecorde | r = r / s; |
601 | 481 | mdecorde | if (m == l) {
|
602 | 481 | mdecorde | break;
|
603 | 481 | mdecorde | } |
604 | 481 | mdecorde | if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) < |
605 | 481 | mdecorde | eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) + |
606 | 481 | mdecorde | Math.abs(H[m+1][m+1])))) { |
607 | 481 | mdecorde | break;
|
608 | 481 | mdecorde | } |
609 | 481 | mdecorde | m--; |
610 | 481 | mdecorde | } |
611 | 481 | mdecorde | |
612 | 481 | mdecorde | for (int i = m+2; i <= n; i++) { |
613 | 481 | mdecorde | H[i][i-2] = 0.0; |
614 | 481 | mdecorde | if (i > m+2) { |
615 | 481 | mdecorde | H[i][i-3] = 0.0; |
616 | 481 | mdecorde | } |
617 | 481 | mdecorde | } |
618 | 481 | mdecorde | |
619 | 481 | mdecorde | // Double QR step involving rows l:n and columns m:n
|
620 | 481 | mdecorde | |
621 | 481 | mdecorde | for (int k = m; k <= n-1; k++) { |
622 | 481 | mdecorde | boolean notlast = (k != n-1); |
623 | 481 | mdecorde | if (k != m) {
|
624 | 481 | mdecorde | p = H[k][k-1];
|
625 | 481 | mdecorde | q = H[k+1][k-1]; |
626 | 481 | mdecorde | r = (notlast ? H[k+2][k-1] : 0.0); |
627 | 481 | mdecorde | x = Math.abs(p) + Math.abs(q) + Math.abs(r); |
628 | 481 | mdecorde | if (x != 0.0) { |
629 | 481 | mdecorde | p = p / x; |
630 | 481 | mdecorde | q = q / x; |
631 | 481 | mdecorde | r = r / x; |
632 | 481 | mdecorde | } |
633 | 481 | mdecorde | } |
634 | 481 | mdecorde | if (x == 0.0) { |
635 | 481 | mdecorde | break;
|
636 | 481 | mdecorde | } |
637 | 481 | mdecorde | s = Math.sqrt(p * p + q * q + r * r);
|
638 | 481 | mdecorde | if (p < 0) { |
639 | 481 | mdecorde | s = -s; |
640 | 481 | mdecorde | } |
641 | 481 | mdecorde | if (s != 0) { |
642 | 481 | mdecorde | if (k != m) {
|
643 | 481 | mdecorde | H[k][k-1] = -s * x;
|
644 | 481 | mdecorde | } else if (l != m) { |
645 | 481 | mdecorde | H[k][k-1] = -H[k][k-1]; |
646 | 481 | mdecorde | } |
647 | 481 | mdecorde | p = p + s; |
648 | 481 | mdecorde | x = p / s; |
649 | 481 | mdecorde | y = q / s; |
650 | 481 | mdecorde | z = r / s; |
651 | 481 | mdecorde | q = q / p; |
652 | 481 | mdecorde | r = r / p; |
653 | 481 | mdecorde | |
654 | 481 | mdecorde | // Row modification
|
655 | 481 | mdecorde | |
656 | 481 | mdecorde | for (int j = k; j < nn; j++) { |
657 | 481 | mdecorde | p = H[k][j] + q * H[k+1][j];
|
658 | 481 | mdecorde | if (notlast) {
|
659 | 481 | mdecorde | p = p + r * H[k+2][j];
|
660 | 481 | mdecorde | H[k+2][j] = H[k+2][j] - p * z; |
661 | 481 | mdecorde | } |
662 | 481 | mdecorde | H[k][j] = H[k][j] - p * x; |
663 | 481 | mdecorde | H[k+1][j] = H[k+1][j] - p * y; |
664 | 481 | mdecorde | } |
665 | 481 | mdecorde | |
666 | 481 | mdecorde | // Column modification
|
667 | 481 | mdecorde | |
668 | 481 | mdecorde | for (int i = 0; i <= Math.min(n,k+3); i++) { |
669 | 481 | mdecorde | p = x * H[i][k] + y * H[i][k+1];
|
670 | 481 | mdecorde | if (notlast) {
|
671 | 481 | mdecorde | p = p + z * H[i][k+2];
|
672 | 481 | mdecorde | H[i][k+2] = H[i][k+2] - p * r; |
673 | 481 | mdecorde | } |
674 | 481 | mdecorde | H[i][k] = H[i][k] - p; |
675 | 481 | mdecorde | H[i][k+1] = H[i][k+1] - p * q; |
676 | 481 | mdecorde | } |
677 | 481 | mdecorde | |
678 | 481 | mdecorde | // Accumulate transformations
|
679 | 481 | mdecorde | |
680 | 481 | mdecorde | for (int i = low; i <= high; i++) { |
681 | 481 | mdecorde | p = x * V[i][k] + y * V[i][k+1];
|
682 | 481 | mdecorde | if (notlast) {
|
683 | 481 | mdecorde | p = p + z * V[i][k+2];
|
684 | 481 | mdecorde | V[i][k+2] = V[i][k+2] - p * r; |
685 | 481 | mdecorde | } |
686 | 481 | mdecorde | V[i][k] = V[i][k] - p; |
687 | 481 | mdecorde | V[i][k+1] = V[i][k+1] - p * q; |
688 | 481 | mdecorde | } |
689 | 481 | mdecorde | } // (s != 0)
|
690 | 481 | mdecorde | } // k loop
|
691 | 481 | mdecorde | } // check convergence
|
692 | 481 | mdecorde | } // while (n >= low)
|
693 | 481 | mdecorde | |
694 | 481 | mdecorde | // Backsubstitute to find vectors of upper triangular form
|
695 | 481 | mdecorde | |
696 | 481 | mdecorde | if (norm == 0.0) { |
697 | 481 | mdecorde | return;
|
698 | 481 | mdecorde | } |
699 | 481 | mdecorde | |
700 | 481 | mdecorde | for (n = nn-1; n >= 0; n--) { |
701 | 481 | mdecorde | p = d[n]; |
702 | 481 | mdecorde | q = e[n]; |
703 | 481 | mdecorde | |
704 | 481 | mdecorde | // Real vector
|
705 | 481 | mdecorde | |
706 | 481 | mdecorde | if (q == 0) { |
707 | 481 | mdecorde | int l = n;
|
708 | 481 | mdecorde | H[n][n] = 1.0;
|
709 | 481 | mdecorde | for (int i = n-1; i >= 0; i--) { |
710 | 481 | mdecorde | w = H[i][i] - p; |
711 | 481 | mdecorde | r = 0.0;
|
712 | 481 | mdecorde | for (int j = l; j <= n; j++) { |
713 | 481 | mdecorde | r = r + H[i][j] * H[j][n]; |
714 | 481 | mdecorde | } |
715 | 481 | mdecorde | if (e[i] < 0.0) { |
716 | 481 | mdecorde | z = w; |
717 | 481 | mdecorde | s = r; |
718 | 481 | mdecorde | } else {
|
719 | 481 | mdecorde | l = i; |
720 | 481 | mdecorde | if (e[i] == 0.0) { |
721 | 481 | mdecorde | if (w != 0.0) { |
722 | 481 | mdecorde | H[i][n] = -r / w; |
723 | 481 | mdecorde | } else {
|
724 | 481 | mdecorde | H[i][n] = -r / (eps * norm); |
725 | 481 | mdecorde | } |
726 | 481 | mdecorde | |
727 | 481 | mdecorde | // Solve real equations
|
728 | 481 | mdecorde | |
729 | 481 | mdecorde | } else {
|
730 | 481 | mdecorde | x = H[i][i+1];
|
731 | 481 | mdecorde | y = H[i+1][i];
|
732 | 481 | mdecorde | q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
733 | 481 | mdecorde | t = (x * s - z * r) / q; |
734 | 481 | mdecorde | H[i][n] = t; |
735 | 481 | mdecorde | if (Math.abs(x) > Math.abs(z)) { |
736 | 481 | mdecorde | H[i+1][n] = (-r - w * t) / x;
|
737 | 481 | mdecorde | } else {
|
738 | 481 | mdecorde | H[i+1][n] = (-s - y * t) / z;
|
739 | 481 | mdecorde | } |
740 | 481 | mdecorde | } |
741 | 481 | mdecorde | |
742 | 481 | mdecorde | // Overflow control
|
743 | 481 | mdecorde | |
744 | 481 | mdecorde | t = Math.abs(H[i][n]);
|
745 | 481 | mdecorde | if ((eps * t) * t > 1) { |
746 | 481 | mdecorde | for (int j = i; j <= n; j++) { |
747 | 481 | mdecorde | H[j][n] = H[j][n] / t; |
748 | 481 | mdecorde | } |
749 | 481 | mdecorde | } |
750 | 481 | mdecorde | } |
751 | 481 | mdecorde | } |
752 | 481 | mdecorde | |
753 | 481 | mdecorde | // Complex vector
|
754 | 481 | mdecorde | |
755 | 481 | mdecorde | } else if (q < 0) { |
756 | 481 | mdecorde | int l = n-1; |
757 | 481 | mdecorde | |
758 | 481 | mdecorde | // Last vector component imaginary so matrix is triangular
|
759 | 481 | mdecorde | |
760 | 481 | mdecorde | if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) { |
761 | 481 | mdecorde | H[n-1][n-1] = q / H[n][n-1]; |
762 | 481 | mdecorde | H[n-1][n] = -(H[n][n] - p) / H[n][n-1]; |
763 | 481 | mdecorde | } else {
|
764 | 481 | mdecorde | cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q); |
765 | 481 | mdecorde | H[n-1][n-1] = cdivr; |
766 | 481 | mdecorde | H[n-1][n] = cdivi;
|
767 | 481 | mdecorde | } |
768 | 481 | mdecorde | H[n][n-1] = 0.0; |
769 | 481 | mdecorde | H[n][n] = 1.0;
|
770 | 481 | mdecorde | for (int i = n-2; i >= 0; i--) { |
771 | 481 | mdecorde | double ra,sa,vr,vi;
|
772 | 481 | mdecorde | ra = 0.0;
|
773 | 481 | mdecorde | sa = 0.0;
|
774 | 481 | mdecorde | for (int j = l; j <= n; j++) { |
775 | 481 | mdecorde | ra = ra + H[i][j] * H[j][n-1];
|
776 | 481 | mdecorde | sa = sa + H[i][j] * H[j][n]; |
777 | 481 | mdecorde | } |
778 | 481 | mdecorde | w = H[i][i] - p; |
779 | 481 | mdecorde | |
780 | 481 | mdecorde | if (e[i] < 0.0) { |
781 | 481 | mdecorde | z = w; |
782 | 481 | mdecorde | r = ra; |
783 | 481 | mdecorde | s = sa; |
784 | 481 | mdecorde | } else {
|
785 | 481 | mdecorde | l = i; |
786 | 481 | mdecorde | if (e[i] == 0) { |
787 | 481 | mdecorde | cdiv(-ra,-sa,w,q); |
788 | 481 | mdecorde | H[i][n-1] = cdivr;
|
789 | 481 | mdecorde | H[i][n] = cdivi; |
790 | 481 | mdecorde | } else {
|
791 | 481 | mdecorde | |
792 | 481 | mdecorde | // Solve complex equations
|
793 | 481 | mdecorde | |
794 | 481 | mdecorde | x = H[i][i+1];
|
795 | 481 | mdecorde | y = H[i+1][i];
|
796 | 481 | mdecorde | vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
797 | 481 | mdecorde | vi = (d[i] - p) * 2.0 * q;
|
798 | 481 | mdecorde | if (vr == 0.0 & vi == 0.0) { |
799 | 481 | mdecorde | vr = eps * norm * (Math.abs(w) + Math.abs(q) + |
800 | 481 | mdecorde | Math.abs(x) + Math.abs(y) + Math.abs(z)); |
801 | 481 | mdecorde | } |
802 | 481 | mdecorde | cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); |
803 | 481 | mdecorde | H[i][n-1] = cdivr;
|
804 | 481 | mdecorde | H[i][n] = cdivi; |
805 | 481 | mdecorde | if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) { |
806 | 481 | mdecorde | H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x; |
807 | 481 | mdecorde | H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x; |
808 | 481 | mdecorde | } else {
|
809 | 481 | mdecorde | cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
|
810 | 481 | mdecorde | H[i+1][n-1] = cdivr; |
811 | 481 | mdecorde | H[i+1][n] = cdivi;
|
812 | 481 | mdecorde | } |
813 | 481 | mdecorde | } |
814 | 481 | mdecorde | |
815 | 481 | mdecorde | // Overflow control
|
816 | 481 | mdecorde | |
817 | 481 | mdecorde | t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n])); |
818 | 481 | mdecorde | if ((eps * t) * t > 1) { |
819 | 481 | mdecorde | for (int j = i; j <= n; j++) { |
820 | 481 | mdecorde | H[j][n-1] = H[j][n-1] / t; |
821 | 481 | mdecorde | H[j][n] = H[j][n] / t; |
822 | 481 | mdecorde | } |
823 | 481 | mdecorde | } |
824 | 481 | mdecorde | } |
825 | 481 | mdecorde | } |
826 | 481 | mdecorde | } |
827 | 481 | mdecorde | } |
828 | 481 | mdecorde | |
829 | 481 | mdecorde | // Vectors of isolated roots
|
830 | 481 | mdecorde | |
831 | 481 | mdecorde | for (int i = 0; i < nn; i++) { |
832 | 481 | mdecorde | if (i < low | i > high) {
|
833 | 481 | mdecorde | for (int j = i; j < nn; j++) { |
834 | 481 | mdecorde | V[i][j] = H[i][j]; |
835 | 481 | mdecorde | } |
836 | 481 | mdecorde | } |
837 | 481 | mdecorde | } |
838 | 481 | mdecorde | |
839 | 481 | mdecorde | // Back transformation to get eigenvectors of original matrix
|
840 | 481 | mdecorde | |
841 | 481 | mdecorde | for (int j = nn-1; j >= low; j--) { |
842 | 481 | mdecorde | for (int i = low; i <= high; i++) { |
843 | 481 | mdecorde | z = 0.0;
|
844 | 481 | mdecorde | for (int k = low; k <= Math.min(j,high); k++) { |
845 | 481 | mdecorde | z = z + V[i][k] * H[k][j]; |
846 | 481 | mdecorde | } |
847 | 481 | mdecorde | V[i][j] = z; |
848 | 481 | mdecorde | } |
849 | 481 | mdecorde | } |
850 | 481 | mdecorde | } |
851 | 481 | mdecorde | |
852 | 481 | mdecorde | |
853 | 481 | mdecorde | /* ------------------------
|
854 | 481 | mdecorde | Constructor
|
855 | 481 | mdecorde | * ------------------------ */
|
856 | 481 | mdecorde | |
857 | 481 | mdecorde | /** Check for symmetry, then construct the eigenvalue decomposition
|
858 | 481 | mdecorde | @param A Square matrix
|
859 | 481 | mdecorde | @return Structure to access D and V.
|
860 | 481 | mdecorde | */
|
861 | 481 | mdecorde | |
862 | 481 | mdecorde | public EigenvalueDecomposition (Matrix Arg) {
|
863 | 481 | mdecorde | double[][] A = Arg.getArray(); |
864 | 481 | mdecorde | n = Arg.getColumnDimension(); |
865 | 481 | mdecorde | V = new double[n][n]; |
866 | 481 | mdecorde | d = new double[n]; |
867 | 481 | mdecorde | e = new double[n]; |
868 | 481 | mdecorde | |
869 | 481 | mdecorde | issymmetric = true;
|
870 | 481 | mdecorde | for (int j = 0; (j < n) & issymmetric; j++) { |
871 | 481 | mdecorde | for (int i = 0; (i < n) & issymmetric; i++) { |
872 | 481 | mdecorde | issymmetric = (A[i][j] == A[j][i]); |
873 | 481 | mdecorde | } |
874 | 481 | mdecorde | } |
875 | 481 | mdecorde | |
876 | 481 | mdecorde | if (issymmetric) {
|
877 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
878 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
879 | 481 | mdecorde | V[i][j] = A[i][j]; |
880 | 481 | mdecorde | } |
881 | 481 | mdecorde | } |
882 | 481 | mdecorde | |
883 | 481 | mdecorde | // Tridiagonalize.
|
884 | 481 | mdecorde | tred2(); |
885 | 481 | mdecorde | |
886 | 481 | mdecorde | // Diagonalize.
|
887 | 481 | mdecorde | tql2(); |
888 | 481 | mdecorde | |
889 | 481 | mdecorde | } else {
|
890 | 481 | mdecorde | H = new double[n][n]; |
891 | 481 | mdecorde | ort = new double[n]; |
892 | 481 | mdecorde | |
893 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
894 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
895 | 481 | mdecorde | H[i][j] = A[i][j]; |
896 | 481 | mdecorde | } |
897 | 481 | mdecorde | } |
898 | 481 | mdecorde | |
899 | 481 | mdecorde | // Reduce to Hessenberg form.
|
900 | 481 | mdecorde | orthes(); |
901 | 481 | mdecorde | |
902 | 481 | mdecorde | // Reduce Hessenberg to real Schur form.
|
903 | 481 | mdecorde | hqr2(); |
904 | 481 | mdecorde | } |
905 | 481 | mdecorde | } |
906 | 481 | mdecorde | |
907 | 481 | mdecorde | /* ------------------------
|
908 | 481 | mdecorde | Public Methods
|
909 | 481 | mdecorde | * ------------------------ */
|
910 | 481 | mdecorde | |
911 | 481 | mdecorde | /** Return the eigenvector matrix
|
912 | 481 | mdecorde | @return V
|
913 | 481 | mdecorde | */
|
914 | 481 | mdecorde | |
915 | 481 | mdecorde | public Matrix getV () {
|
916 | 481 | mdecorde | return new Matrix(V,n,n); |
917 | 481 | mdecorde | } |
918 | 481 | mdecorde | |
919 | 481 | mdecorde | /** Return the real parts of the eigenvalues
|
920 | 481 | mdecorde | @return real(diag(D))
|
921 | 481 | mdecorde | */
|
922 | 481 | mdecorde | |
923 | 481 | mdecorde | public double[] getRealEigenvalues () { |
924 | 481 | mdecorde | return d;
|
925 | 481 | mdecorde | } |
926 | 481 | mdecorde | |
927 | 481 | mdecorde | /** Return the imaginary parts of the eigenvalues
|
928 | 481 | mdecorde | @return imag(diag(D))
|
929 | 481 | mdecorde | */
|
930 | 481 | mdecorde | |
931 | 481 | mdecorde | public double[] getImagEigenvalues () { |
932 | 481 | mdecorde | return e;
|
933 | 481 | mdecorde | } |
934 | 481 | mdecorde | |
935 | 481 | mdecorde | /** Return the block diagonal eigenvalue matrix
|
936 | 481 | mdecorde | @return D
|
937 | 481 | mdecorde | */
|
938 | 481 | mdecorde | |
939 | 481 | mdecorde | public Matrix getD () {
|
940 | 481 | mdecorde | Matrix X = new Matrix(n,n);
|
941 | 481 | mdecorde | double[][] D = X.getArray(); |
942 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
943 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
944 | 481 | mdecorde | D[i][j] = 0.0;
|
945 | 481 | mdecorde | } |
946 | 481 | mdecorde | D[i][i] = d[i]; |
947 | 481 | mdecorde | if (e[i] > 0) { |
948 | 481 | mdecorde | D[i][i+1] = e[i];
|
949 | 481 | mdecorde | } else if (e[i] < 0) { |
950 | 481 | mdecorde | D[i][i-1] = e[i];
|
951 | 481 | mdecorde | } |
952 | 481 | mdecorde | } |
953 | 481 | mdecorde | return X;
|
954 | 481 | mdecorde | } |
955 | 481 | mdecorde | } |