root / tmp / org.txm.analec.rcp / src / JamaPlus / LUDecomposition.java @ 736
Historique | Voir | Annoter | Télécharger (8,29 ko)
| 1 |
package JamaPlus; |
|---|---|
| 2 |
|
| 3 |
/** LU Decomposition.
|
| 4 |
<P>
|
| 5 |
For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
| 6 |
unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
| 7 |
and a permutation vector piv of length m so that A(piv,:) = L*U.
|
| 8 |
If m < n, then L is m-by-m and U is m-by-n.
|
| 9 |
<P>
|
| 10 |
The LU decompostion with pivoting always exists, even if the matrix is
|
| 11 |
singular, so the constructor will never fail. The primary use of the
|
| 12 |
LU decomposition is in the solution of square systems of simultaneous
|
| 13 |
linear equations. This will fail if isNonsingular() returns false.
|
| 14 |
*/
|
| 15 |
|
| 16 |
public class LUDecomposition implements java.io.Serializable { |
| 17 |
|
| 18 |
/* ------------------------
|
| 19 |
Class variables
|
| 20 |
* ------------------------ */
|
| 21 |
|
| 22 |
/** Array for internal storage of decomposition.
|
| 23 |
@serial internal array storage.
|
| 24 |
*/
|
| 25 |
private double[][] LU; |
| 26 |
|
| 27 |
/** Row and column dimensions, and pivot sign.
|
| 28 |
@serial column dimension.
|
| 29 |
@serial row dimension.
|
| 30 |
@serial pivot sign.
|
| 31 |
*/
|
| 32 |
private int m, n, pivsign; |
| 33 |
|
| 34 |
/** Internal storage of pivot vector.
|
| 35 |
@serial pivot vector.
|
| 36 |
*/
|
| 37 |
private int[] piv; |
| 38 |
|
| 39 |
/* ------------------------
|
| 40 |
Constructor
|
| 41 |
* ------------------------ */
|
| 42 |
|
| 43 |
/** LU Decomposition
|
| 44 |
@param A Rectangular matrix
|
| 45 |
@return Structure to access L, U and piv.
|
| 46 |
*/
|
| 47 |
|
| 48 |
public LUDecomposition (Matrix A) {
|
| 49 |
|
| 50 |
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
| 51 |
|
| 52 |
LU = A.getArrayCopy(); |
| 53 |
m = A.getRowDimension(); |
| 54 |
n = A.getColumnDimension(); |
| 55 |
piv = new int[m]; |
| 56 |
for (int i = 0; i < m; i++) { |
| 57 |
piv[i] = i; |
| 58 |
} |
| 59 |
pivsign = 1;
|
| 60 |
double[] LUrowi; |
| 61 |
double[] LUcolj = new double[m]; |
| 62 |
|
| 63 |
// Outer loop.
|
| 64 |
|
| 65 |
for (int j = 0; j < n; j++) { |
| 66 |
|
| 67 |
// Make a copy of the j-th column to localize references.
|
| 68 |
|
| 69 |
for (int i = 0; i < m; i++) { |
| 70 |
LUcolj[i] = LU[i][j]; |
| 71 |
} |
| 72 |
|
| 73 |
// Apply previous transformations.
|
| 74 |
|
| 75 |
for (int i = 0; i < m; i++) { |
| 76 |
LUrowi = LU[i]; |
| 77 |
|
| 78 |
// Most of the time is spent in the following dot product.
|
| 79 |
|
| 80 |
int kmax = Math.min(i,j); |
| 81 |
double s = 0.0; |
| 82 |
for (int k = 0; k < kmax; k++) { |
| 83 |
s += LUrowi[k]*LUcolj[k]; |
| 84 |
} |
| 85 |
|
| 86 |
LUrowi[j] = LUcolj[i] -= s; |
| 87 |
} |
| 88 |
|
| 89 |
// Find pivot and exchange if necessary.
|
| 90 |
|
| 91 |
int p = j;
|
| 92 |
for (int i = j+1; i < m; i++) { |
| 93 |
if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { |
| 94 |
p = i; |
| 95 |
} |
| 96 |
} |
| 97 |
if (p != j) {
|
| 98 |
for (int k = 0; k < n; k++) { |
| 99 |
double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
|
| 100 |
} |
| 101 |
int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
|
| 102 |
pivsign = -pivsign; |
| 103 |
} |
| 104 |
|
| 105 |
// Compute multipliers.
|
| 106 |
|
| 107 |
if (j < m & LU[j][j] != 0.0) { |
| 108 |
for (int i = j+1; i < m; i++) { |
| 109 |
LU[i][j] /= LU[j][j]; |
| 110 |
} |
| 111 |
} |
| 112 |
} |
| 113 |
} |
| 114 |
|
| 115 |
/* ------------------------
|
| 116 |
Temporary, experimental code.
|
| 117 |
------------------------ *\
|
| 118 |
|
| 119 |
\** LU Decomposition, computed by Gaussian elimination.
|
| 120 |
<P>
|
| 121 |
This constructor computes L and U with the "daxpy"-based elimination
|
| 122 |
algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,
|
| 123 |
Crout algorithm will be faster. We have temporarily included this
|
| 124 |
constructor until timing experiments confirm this suspicion.
|
| 125 |
<P>
|
| 126 |
@param A Rectangular matrix
|
| 127 |
@param linpackflag Use Gaussian elimination. Actual value ignored.
|
| 128 |
@return Structure to access L, U and piv.
|
| 129 |
*\
|
| 130 |
|
| 131 |
public LUDecomposition (Matrix A, int linpackflag) {
|
| 132 |
// Initialize.
|
| 133 |
LU = A.getArrayCopy();
|
| 134 |
m = A.getRowDimension();
|
| 135 |
n = A.getColumnDimension();
|
| 136 |
piv = new int[m];
|
| 137 |
for (int i = 0; i < m; i++) {
|
| 138 |
piv[i] = i;
|
| 139 |
}
|
| 140 |
pivsign = 1;
|
| 141 |
// Main loop.
|
| 142 |
for (int k = 0; k < n; k++) {
|
| 143 |
// Find pivot.
|
| 144 |
int p = k;
|
| 145 |
for (int i = k+1; i < m; i++) {
|
| 146 |
if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {
|
| 147 |
p = i;
|
| 148 |
}
|
| 149 |
}
|
| 150 |
// Exchange if necessary.
|
| 151 |
if (p != k) {
|
| 152 |
for (int j = 0; j < n; j++) {
|
| 153 |
double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
|
| 154 |
}
|
| 155 |
int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
|
| 156 |
pivsign = -pivsign;
|
| 157 |
}
|
| 158 |
// Compute multipliers and eliminate k-th column.
|
| 159 |
if (LU[k][k] != 0.0) {
|
| 160 |
for (int i = k+1; i < m; i++) {
|
| 161 |
LU[i][k] /= LU[k][k];
|
| 162 |
for (int j = k+1; j < n; j++) {
|
| 163 |
LU[i][j] -= LU[i][k]*LU[k][j];
|
| 164 |
}
|
| 165 |
}
|
| 166 |
}
|
| 167 |
}
|
| 168 |
}
|
| 169 |
|
| 170 |
\* ------------------------
|
| 171 |
End of temporary code.
|
| 172 |
* ------------------------ */
|
| 173 |
|
| 174 |
/* ------------------------
|
| 175 |
Public Methods
|
| 176 |
* ------------------------ */
|
| 177 |
|
| 178 |
/** Is the matrix nonsingular?
|
| 179 |
@return true if U, and hence A, is nonsingular.
|
| 180 |
*/
|
| 181 |
|
| 182 |
public boolean isNonsingular () { |
| 183 |
for (int j = 0; j < n; j++) { |
| 184 |
if (LU[j][j] == 0) |
| 185 |
return false; |
| 186 |
} |
| 187 |
return true; |
| 188 |
} |
| 189 |
|
| 190 |
/** Return lower triangular factor
|
| 191 |
@return L
|
| 192 |
*/
|
| 193 |
|
| 194 |
public Matrix getL () {
|
| 195 |
Matrix X = new Matrix(m,n);
|
| 196 |
double[][] L = X.getArray(); |
| 197 |
for (int i = 0; i < m; i++) { |
| 198 |
for (int j = 0; j < n; j++) { |
| 199 |
if (i > j) {
|
| 200 |
L[i][j] = LU[i][j]; |
| 201 |
} else if (i == j) { |
| 202 |
L[i][j] = 1.0;
|
| 203 |
} else {
|
| 204 |
L[i][j] = 0.0;
|
| 205 |
} |
| 206 |
} |
| 207 |
} |
| 208 |
return X;
|
| 209 |
} |
| 210 |
|
| 211 |
/** Return upper triangular factor
|
| 212 |
@return U
|
| 213 |
*/
|
| 214 |
|
| 215 |
public Matrix getU () {
|
| 216 |
Matrix X = new Matrix(n,n);
|
| 217 |
double[][] U = X.getArray(); |
| 218 |
for (int i = 0; i < n; i++) { |
| 219 |
for (int j = 0; j < n; j++) { |
| 220 |
if (i <= j) {
|
| 221 |
U[i][j] = LU[i][j]; |
| 222 |
} else {
|
| 223 |
U[i][j] = 0.0;
|
| 224 |
} |
| 225 |
} |
| 226 |
} |
| 227 |
return X;
|
| 228 |
} |
| 229 |
|
| 230 |
/** Return pivot permutation vector
|
| 231 |
@return piv
|
| 232 |
*/
|
| 233 |
|
| 234 |
public int[] getPivot () { |
| 235 |
int[] p = new int[m]; |
| 236 |
for (int i = 0; i < m; i++) { |
| 237 |
p[i] = piv[i]; |
| 238 |
} |
| 239 |
return p;
|
| 240 |
} |
| 241 |
|
| 242 |
/** Return pivot permutation vector as a one-dimensional double array
|
| 243 |
@return (double) piv
|
| 244 |
*/
|
| 245 |
|
| 246 |
public double[] getDoublePivot () { |
| 247 |
double[] vals = new double[m]; |
| 248 |
for (int i = 0; i < m; i++) { |
| 249 |
vals[i] = (double) piv[i];
|
| 250 |
} |
| 251 |
return vals;
|
| 252 |
} |
| 253 |
|
| 254 |
/** Determinant
|
| 255 |
@return det(A)
|
| 256 |
@exception IllegalArgumentException Matrix must be square
|
| 257 |
*/
|
| 258 |
|
| 259 |
public double det () { |
| 260 |
if (m != n) {
|
| 261 |
throw new IllegalArgumentException("Matrix must be square."); |
| 262 |
} |
| 263 |
double d = (double) pivsign; |
| 264 |
for (int j = 0; j < n; j++) { |
| 265 |
d *= LU[j][j]; |
| 266 |
} |
| 267 |
return d;
|
| 268 |
} |
| 269 |
|
| 270 |
/** Solve A*X = B
|
| 271 |
@param B A Matrix with as many rows as A and any number of columns.
|
| 272 |
@return X so that L*U*X = B(piv,:)
|
| 273 |
@exception IllegalArgumentException Matrix row dimensions must agree.
|
| 274 |
@exception RuntimeException Matrix is singular.
|
| 275 |
*/
|
| 276 |
|
| 277 |
public Matrix solve (Matrix B) {
|
| 278 |
if (B.getRowDimension() != m) {
|
| 279 |
throw new IllegalArgumentException("Matrix row dimensions must agree."); |
| 280 |
} |
| 281 |
if (!this.isNonsingular()) { |
| 282 |
throw new RuntimeException("Matrix is singular."); |
| 283 |
} |
| 284 |
|
| 285 |
// Copy right hand side with pivoting
|
| 286 |
int nx = B.getColumnDimension();
|
| 287 |
Matrix Xmat = B.getMatrix(piv,0,nx-1); |
| 288 |
double[][] X = Xmat.getArray(); |
| 289 |
|
| 290 |
// Solve L*Y = B(piv,:)
|
| 291 |
for (int k = 0; k < n; k++) { |
| 292 |
for (int i = k+1; i < n; i++) { |
| 293 |
for (int j = 0; j < nx; j++) { |
| 294 |
X[i][j] -= X[k][j]*LU[i][k]; |
| 295 |
} |
| 296 |
} |
| 297 |
} |
| 298 |
// Solve U*X = Y;
|
| 299 |
for (int k = n-1; k >= 0; k--) { |
| 300 |
for (int j = 0; j < nx; j++) { |
| 301 |
X[k][j] /= LU[k][k]; |
| 302 |
} |
| 303 |
for (int i = 0; i < k; i++) { |
| 304 |
for (int j = 0; j < nx; j++) { |
| 305 |
X[i][j] -= X[k][j]*LU[i][k]; |
| 306 |
} |
| 307 |
} |
| 308 |
} |
| 309 |
return Xmat;
|
| 310 |
} |
| 311 |
} |