root / tmp / org.txm.analec.rcp / src / JamaPlus / LUDecomposition.java @ 673
Historique | Voir | Annoter | Télécharger (8,29 ko)
| 1 | package JamaPlus; | 
|---|---|
| 2 |  | 
| 3 |    /** LU Decomposition.
 | 
| 4 |    <P>
 | 
| 5 |    For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
 | 
| 6 |    unit lower triangular matrix L, an n-by-n upper triangular matrix U,
 | 
| 7 |    and a permutation vector piv of length m so that A(piv,:) = L*U.
 | 
| 8 |    If m < n, then L is m-by-m and U is m-by-n.
 | 
| 9 |    <P>
 | 
| 10 |    The LU decompostion with pivoting always exists, even if the matrix is
 | 
| 11 |    singular, so the constructor will never fail.  The primary use of the
 | 
| 12 |    LU decomposition is in the solution of square systems of simultaneous
 | 
| 13 |    linear equations.  This will fail if isNonsingular() returns false.
 | 
| 14 |    */
 | 
| 15 |  | 
| 16 | public class LUDecomposition implements java.io.Serializable { | 
| 17 |  | 
| 18 | /* ------------------------
 | 
| 19 |    Class variables
 | 
| 20 |  * ------------------------ */
 | 
| 21 |  | 
| 22 |    /** Array for internal storage of decomposition.
 | 
| 23 |    @serial internal array storage.
 | 
| 24 |    */
 | 
| 25 | private double[][] LU; | 
| 26 |  | 
| 27 |    /** Row and column dimensions, and pivot sign.
 | 
| 28 |    @serial column dimension.
 | 
| 29 |    @serial row dimension.
 | 
| 30 |    @serial pivot sign.
 | 
| 31 |    */
 | 
| 32 | private int m, n, pivsign; | 
| 33 |  | 
| 34 |    /** Internal storage of pivot vector.
 | 
| 35 |    @serial pivot vector.
 | 
| 36 |    */
 | 
| 37 | private int[] piv; | 
| 38 |  | 
| 39 | /* ------------------------
 | 
| 40 |    Constructor
 | 
| 41 |  * ------------------------ */
 | 
| 42 |  | 
| 43 |    /** LU Decomposition
 | 
| 44 |    @param  A   Rectangular matrix
 | 
| 45 |    @return     Structure to access L, U and piv.
 | 
| 46 |    */
 | 
| 47 |  | 
| 48 |    public LUDecomposition (Matrix A) {
 | 
| 49 |  | 
| 50 |    // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
 | 
| 51 |  | 
| 52 | LU = A.getArrayCopy(); | 
| 53 | m = A.getRowDimension(); | 
| 54 | n = A.getColumnDimension(); | 
| 55 | piv = new int[m]; | 
| 56 | for (int i = 0; i < m; i++) { | 
| 57 | piv[i] = i; | 
| 58 | } | 
| 59 |       pivsign = 1;
 | 
| 60 | double[] LUrowi; | 
| 61 | double[] LUcolj = new double[m]; | 
| 62 |  | 
| 63 |       // Outer loop.
 | 
| 64 |  | 
| 65 | for (int j = 0; j < n; j++) { | 
| 66 |  | 
| 67 |          // Make a copy of the j-th column to localize references.
 | 
| 68 |  | 
| 69 | for (int i = 0; i < m; i++) { | 
| 70 | LUcolj[i] = LU[i][j]; | 
| 71 | } | 
| 72 |  | 
| 73 |          // Apply previous transformations.
 | 
| 74 |  | 
| 75 | for (int i = 0; i < m; i++) { | 
| 76 | LUrowi = LU[i]; | 
| 77 |  | 
| 78 |             // Most of the time is spent in the following dot product.
 | 
| 79 |  | 
| 80 | int kmax = Math.min(i,j); | 
| 81 | double s = 0.0; | 
| 82 | for (int k = 0; k < kmax; k++) { | 
| 83 | s += LUrowi[k]*LUcolj[k]; | 
| 84 | } | 
| 85 |  | 
| 86 | LUrowi[j] = LUcolj[i] -= s; | 
| 87 | } | 
| 88 |  | 
| 89 |          // Find pivot and exchange if necessary.
 | 
| 90 |  | 
| 91 |          int p = j;
 | 
| 92 | for (int i = j+1; i < m; i++) { | 
| 93 | if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { | 
| 94 | p = i; | 
| 95 | } | 
| 96 | } | 
| 97 |          if (p != j) {
 | 
| 98 | for (int k = 0; k < n; k++) { | 
| 99 |                double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
 | 
| 100 | } | 
| 101 |             int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
 | 
| 102 | pivsign = -pivsign; | 
| 103 | } | 
| 104 |  | 
| 105 |          // Compute multipliers.
 | 
| 106 |  | 
| 107 | if (j < m & LU[j][j] != 0.0) { | 
| 108 | for (int i = j+1; i < m; i++) { | 
| 109 | LU[i][j] /= LU[j][j]; | 
| 110 | } | 
| 111 | } | 
| 112 | } | 
| 113 | } | 
| 114 |  | 
| 115 | /* ------------------------
 | 
| 116 |    Temporary, experimental code.
 | 
| 117 |    ------------------------ *\
 | 
| 118 |  | 
| 119 |    \** LU Decomposition, computed by Gaussian elimination.
 | 
| 120 |    <P>
 | 
| 121 |    This constructor computes L and U with the "daxpy"-based elimination
 | 
| 122 |    algorithm used in LINPACK and MATLAB.  In Java, we suspect the dot-product,
 | 
| 123 |    Crout algorithm will be faster.  We have temporarily included this
 | 
| 124 |    constructor until timing experiments confirm this suspicion.
 | 
| 125 |    <P>
 | 
| 126 |    @param  A             Rectangular matrix
 | 
| 127 |    @param  linpackflag   Use Gaussian elimination.  Actual value ignored.
 | 
| 128 |    @return               Structure to access L, U and piv.
 | 
| 129 |    *\
 | 
| 130 |  | 
| 131 |    public LUDecomposition (Matrix A, int linpackflag) {
 | 
| 132 |       // Initialize.
 | 
| 133 |       LU = A.getArrayCopy();
 | 
| 134 |       m = A.getRowDimension();
 | 
| 135 |       n = A.getColumnDimension();
 | 
| 136 |       piv = new int[m];
 | 
| 137 |       for (int i = 0; i < m; i++) {
 | 
| 138 |          piv[i] = i;
 | 
| 139 |       }
 | 
| 140 |       pivsign = 1;
 | 
| 141 |       // Main loop.
 | 
| 142 |       for (int k = 0; k < n; k++) {
 | 
| 143 |          // Find pivot.
 | 
| 144 |          int p = k;
 | 
| 145 |          for (int i = k+1; i < m; i++) {
 | 
| 146 |             if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {
 | 
| 147 |                p = i;
 | 
| 148 |             }
 | 
| 149 |          }
 | 
| 150 |          // Exchange if necessary.
 | 
| 151 |          if (p != k) {
 | 
| 152 |             for (int j = 0; j < n; j++) {
 | 
| 153 |                double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
 | 
| 154 |             }
 | 
| 155 |             int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
 | 
| 156 |             pivsign = -pivsign;
 | 
| 157 |          }
 | 
| 158 |          // Compute multipliers and eliminate k-th column.
 | 
| 159 |          if (LU[k][k] != 0.0) {
 | 
| 160 |             for (int i = k+1; i < m; i++) {
 | 
| 161 |                LU[i][k] /= LU[k][k];
 | 
| 162 |                for (int j = k+1; j < n; j++) {
 | 
| 163 |                   LU[i][j] -= LU[i][k]*LU[k][j];
 | 
| 164 |                }
 | 
| 165 |             }
 | 
| 166 |          }
 | 
| 167 |       }
 | 
| 168 |    }
 | 
| 169 |  | 
| 170 | \* ------------------------
 | 
| 171 |    End of temporary code.
 | 
| 172 |  * ------------------------ */
 | 
| 173 |  | 
| 174 | /* ------------------------
 | 
| 175 |    Public Methods
 | 
| 176 |  * ------------------------ */
 | 
| 177 |  | 
| 178 |    /** Is the matrix nonsingular?
 | 
| 179 |    @return     true if U, and hence A, is nonsingular.
 | 
| 180 |    */
 | 
| 181 |  | 
| 182 | public boolean isNonsingular () { | 
| 183 | for (int j = 0; j < n; j++) { | 
| 184 | if (LU[j][j] == 0) | 
| 185 | return false; | 
| 186 | } | 
| 187 | return true; | 
| 188 | } | 
| 189 |  | 
| 190 |    /** Return lower triangular factor
 | 
| 191 |    @return     L
 | 
| 192 |    */
 | 
| 193 |  | 
| 194 |    public Matrix getL () {
 | 
| 195 |       Matrix X = new Matrix(m,n);
 | 
| 196 | double[][] L = X.getArray(); | 
| 197 | for (int i = 0; i < m; i++) { | 
| 198 | for (int j = 0; j < n; j++) { | 
| 199 |             if (i > j) {
 | 
| 200 | L[i][j] = LU[i][j]; | 
| 201 | } else if (i == j) { | 
| 202 |                L[i][j] = 1.0;
 | 
| 203 |             } else {
 | 
| 204 |                L[i][j] = 0.0;
 | 
| 205 | } | 
| 206 | } | 
| 207 | } | 
| 208 |       return X;
 | 
| 209 | } | 
| 210 |  | 
| 211 |    /** Return upper triangular factor
 | 
| 212 |    @return     U
 | 
| 213 |    */
 | 
| 214 |  | 
| 215 |    public Matrix getU () {
 | 
| 216 |       Matrix X = new Matrix(n,n);
 | 
| 217 | double[][] U = X.getArray(); | 
| 218 | for (int i = 0; i < n; i++) { | 
| 219 | for (int j = 0; j < n; j++) { | 
| 220 |             if (i <= j) {
 | 
| 221 | U[i][j] = LU[i][j]; | 
| 222 |             } else {
 | 
| 223 |                U[i][j] = 0.0;
 | 
| 224 | } | 
| 225 | } | 
| 226 | } | 
| 227 |       return X;
 | 
| 228 | } | 
| 229 |  | 
| 230 |    /** Return pivot permutation vector
 | 
| 231 |    @return     piv
 | 
| 232 |    */
 | 
| 233 |  | 
| 234 | public int[] getPivot () { | 
| 235 | int[] p = new int[m]; | 
| 236 | for (int i = 0; i < m; i++) { | 
| 237 | p[i] = piv[i]; | 
| 238 | } | 
| 239 |       return p;
 | 
| 240 | } | 
| 241 |  | 
| 242 |    /** Return pivot permutation vector as a one-dimensional double array
 | 
| 243 |    @return     (double) piv
 | 
| 244 |    */
 | 
| 245 |  | 
| 246 | public double[] getDoublePivot () { | 
| 247 | double[] vals = new double[m]; | 
| 248 | for (int i = 0; i < m; i++) { | 
| 249 |          vals[i] = (double) piv[i];
 | 
| 250 | } | 
| 251 |       return vals;
 | 
| 252 | } | 
| 253 |  | 
| 254 |    /** Determinant
 | 
| 255 |    @return     det(A)
 | 
| 256 |    @exception  IllegalArgumentException  Matrix must be square
 | 
| 257 |    */
 | 
| 258 |  | 
| 259 | public double det () { | 
| 260 |       if (m != n) {
 | 
| 261 | throw new IllegalArgumentException("Matrix must be square."); | 
| 262 | } | 
| 263 | double d = (double) pivsign; | 
| 264 | for (int j = 0; j < n; j++) { | 
| 265 | d *= LU[j][j]; | 
| 266 | } | 
| 267 |       return d;
 | 
| 268 | } | 
| 269 |  | 
| 270 |    /** Solve A*X = B
 | 
| 271 |    @param  B   A Matrix with as many rows as A and any number of columns.
 | 
| 272 |    @return     X so that L*U*X = B(piv,:)
 | 
| 273 |    @exception  IllegalArgumentException Matrix row dimensions must agree.
 | 
| 274 |    @exception  RuntimeException  Matrix is singular.
 | 
| 275 |    */
 | 
| 276 |  | 
| 277 |    public Matrix solve (Matrix B) {
 | 
| 278 |       if (B.getRowDimension() != m) {
 | 
| 279 | throw new IllegalArgumentException("Matrix row dimensions must agree."); | 
| 280 | } | 
| 281 | if (!this.isNonsingular()) { | 
| 282 | throw new RuntimeException("Matrix is singular."); | 
| 283 | } | 
| 284 |  | 
| 285 |       // Copy right hand side with pivoting
 | 
| 286 |       int nx = B.getColumnDimension();
 | 
| 287 | Matrix Xmat = B.getMatrix(piv,0,nx-1); | 
| 288 | double[][] X = Xmat.getArray(); | 
| 289 |  | 
| 290 |       // Solve L*Y = B(piv,:)
 | 
| 291 | for (int k = 0; k < n; k++) { | 
| 292 | for (int i = k+1; i < n; i++) { | 
| 293 | for (int j = 0; j < nx; j++) { | 
| 294 | X[i][j] -= X[k][j]*LU[i][k]; | 
| 295 | } | 
| 296 | } | 
| 297 | } | 
| 298 |       // Solve U*X = Y;
 | 
| 299 | for (int k = n-1; k >= 0; k--) { | 
| 300 | for (int j = 0; j < nx; j++) { | 
| 301 | X[k][j] /= LU[k][k]; | 
| 302 | } | 
| 303 | for (int i = 0; i < k; i++) { | 
| 304 | for (int j = 0; j < nx; j++) { | 
| 305 | X[i][j] -= X[k][j]*LU[i][k]; | 
| 306 | } | 
| 307 | } | 
| 308 | } | 
| 309 |       return Xmat;
 | 
| 310 | } | 
| 311 | } |