Révision 3763
TXM/trunk/bundles/org.txm.statsengine.r.core.linux/res/linux64/library/RcppEigen/include/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h (revision 3763) | ||
---|---|---|
1 |
// This file is part of Eigen, a lightweight C++ template library |
|
2 |
// for linear algebra. |
|
3 |
// |
|
4 |
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> |
|
5 |
// |
|
6 |
// This Source Code Form is subject to the terms of the Mozilla |
|
7 |
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
8 |
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
|
9 |
|
|
10 |
#ifndef EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H |
|
11 |
#define EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H |
|
12 |
|
|
13 |
namespace Eigen { |
|
14 |
|
|
15 |
namespace internal { |
|
16 |
|
|
17 |
namespace group_theory { |
|
18 |
|
|
19 |
/** \internal |
|
20 |
* \file CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h |
|
21 |
* This file contains C++ templates that implement group theory algorithms. |
|
22 |
* |
|
23 |
* The algorithms allow for a compile-time analysis of finite groups. |
|
24 |
* |
|
25 |
* Currently only Dimino's algorithm is implemented, which returns a list |
|
26 |
* of all elements in a group given a set of (possibly redundant) generators. |
|
27 |
* (One could also do that with the so-called orbital algorithm, but that |
|
28 |
* is much more expensive and usually has no advantages.) |
|
29 |
*/ |
|
30 |
|
|
31 |
/********************************************************************** |
|
32 |
* "Ok kid, here is where it gets complicated." |
|
33 |
* - Amelia Pond in the "Doctor Who" episode |
|
34 |
* "The Big Bang" |
|
35 |
* |
|
36 |
* Dimino's algorithm |
|
37 |
* ================== |
|
38 |
* |
|
39 |
* The following is Dimino's algorithm in sequential form: |
|
40 |
* |
|
41 |
* Input: identity element, list of generators, equality check, |
|
42 |
* multiplication operation |
|
43 |
* Output: list of group elements |
|
44 |
* |
|
45 |
* 1. add identity element |
|
46 |
* 2. remove identities from list of generators |
|
47 |
* 3. add all powers of first generator that aren't the |
|
48 |
* identity element |
|
49 |
* 4. go through all remaining generators: |
|
50 |
* a. if generator is already in the list of elements |
|
51 |
* -> do nothing |
|
52 |
* b. otherwise |
|
53 |
* i. remember current # of elements |
|
54 |
* (i.e. the size of the current subgroup) |
|
55 |
* ii. add all current elements (which includes |
|
56 |
* the identity) each multiplied from right |
|
57 |
* with the current generator to the group |
|
58 |
* iii. add all remaining cosets that are generated |
|
59 |
* by products of the new generator with itself |
|
60 |
* and all other generators seen so far |
|
61 |
* |
|
62 |
* In functional form, this is implemented as a long set of recursive |
|
63 |
* templates that have a complicated relationship. |
|
64 |
* |
|
65 |
* The main interface for Dimino's algorithm is the template |
|
66 |
* enumerate_group_elements. All lists are implemented as variadic |
|
67 |
* type_list<typename...> and numeric_list<typename = int, int...> |
|
68 |
* templates. |
|
69 |
* |
|
70 |
* 'Calling' templates is usually done via typedefs. |
|
71 |
* |
|
72 |
* This algorithm is an extended version of the basic version. The |
|
73 |
* extension consists in the fact that each group element has a set |
|
74 |
* of flags associated with it. Multiplication of two group elements |
|
75 |
* with each other results in a group element whose flags are the |
|
76 |
* XOR of the flags of the previous elements. Each time the algorithm |
|
77 |
* notices that a group element it just calculated is already in the |
|
78 |
* list of current elements, the flags of both will be compared and |
|
79 |
* added to the so-called 'global flags' of the group. |
|
80 |
* |
|
81 |
* The rationale behind this extension is that this allows not only |
|
82 |
* for the description of symmetries between tensor indices, but |
|
83 |
* also allows for the description of hermiticity, antisymmetry and |
|
84 |
* antihermiticity. Negation and conjugation each are specific bit |
|
85 |
* in the flags value and if two different ways to reach a group |
|
86 |
* element lead to two different flags, this poses a constraint on |
|
87 |
* the allowed values of the resulting tensor. For example, if a |
|
88 |
* group element is reach both with and without the conjugation |
|
89 |
* flags, it is clear that the resulting tensor has to be real. |
|
90 |
* |
|
91 |
* Note that this flag mechanism is quite generic and may have other |
|
92 |
* uses beyond tensor properties. |
|
93 |
* |
|
94 |
* IMPORTANT: |
|
95 |
* This algorithm assumes the group to be finite. If you try to |
|
96 |
* run it with a group that's infinite, the algorithm will only |
|
97 |
* terminate once you hit a compiler limit (max template depth). |
|
98 |
* Also note that trying to use this implementation to create a |
|
99 |
* very large group will probably either make you hit the same |
|
100 |
* limit, cause the compiler to segfault or at the very least |
|
101 |
* take a *really* long time (hours, days, weeks - sic!) to |
|
102 |
* compile. It is not recommended to plug in more than 4 |
|
103 |
* generators, unless they are independent of each other. |
|
104 |
*/ |
|
105 |
|
|
106 |
/** \internal |
|
107 |
* |
|
108 |
* \class strip_identities |
|
109 |
* \ingroup CXX11_TensorSymmetry_Module |
|
110 |
* |
|
111 |
* \brief Cleanse a list of group elements of the identity element |
|
112 |
* |
|
113 |
* This template is used to make a first pass through all initial |
|
114 |
* generators of Dimino's algorithm and remove the identity |
|
115 |
* elements. |
|
116 |
* |
|
117 |
* \sa enumerate_group_elements |
|
118 |
*/ |
|
119 |
template<template<typename, typename> class Equality, typename id, typename L> struct strip_identities; |
|
120 |
|
|
121 |
template< |
|
122 |
template<typename, typename> class Equality, |
|
123 |
typename id, |
|
124 |
typename t, |
|
125 |
typename... ts |
|
126 |
> |
|
127 |
struct strip_identities<Equality, id, type_list<t, ts...>> |
|
128 |
{ |
|
129 |
typedef typename conditional< |
|
130 |
Equality<id, t>::value, |
|
131 |
typename strip_identities<Equality, id, type_list<ts...>>::type, |
|
132 |
typename concat<type_list<t>, typename strip_identities<Equality, id, type_list<ts...>>::type>::type |
|
133 |
>::type type; |
|
134 |
constexpr static int global_flags = Equality<id, t>::global_flags | strip_identities<Equality, id, type_list<ts...>>::global_flags; |
|
135 |
}; |
|
136 |
|
|
137 |
template< |
|
138 |
template<typename, typename> class Equality, |
|
139 |
typename id |
|
140 |
EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, ts) |
|
141 |
> |
|
142 |
struct strip_identities<Equality, id, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(ts)>> |
|
143 |
{ |
|
144 |
typedef type_list<> type; |
|
145 |
constexpr static int global_flags = 0; |
|
146 |
}; |
|
147 |
|
|
148 |
/** \internal |
|
149 |
* |
|
150 |
* \class dimino_first_step_elements_helper |
|
151 |
* \ingroup CXX11_TensorSymmetry_Module |
|
152 |
* |
|
153 |
* \brief Recursive template that adds powers of the first generator to the list of group elements |
|
154 |
* |
|
155 |
* This template calls itself recursively to add powers of the first |
|
156 |
* generator to the list of group elements. It stops if it reaches |
|
157 |
* the identity element again. |
|
158 |
* |
|
159 |
* \sa enumerate_group_elements, dimino_first_step_elements |
|
160 |
*/ |
|
161 |
template< |
|
162 |
template<typename, typename> class Multiply, |
|
163 |
template<typename, typename> class Equality, |
|
164 |
typename id, |
|
165 |
typename g, |
|
166 |
typename current_element, |
|
167 |
typename elements, |
|
168 |
bool dont_add_current_element // = false |
|
169 |
> |
|
170 |
struct dimino_first_step_elements_helper |
|
171 |
#ifndef EIGEN_PARSED_BY_DOXYGEN |
|
172 |
: // recursive inheritance is too difficult for Doxygen |
|
173 |
public dimino_first_step_elements_helper< |
|
174 |
Multiply, |
|
175 |
Equality, |
|
176 |
id, |
|
177 |
g, |
|
178 |
typename Multiply<current_element, g>::type, |
|
179 |
typename concat<elements, type_list<current_element>>::type, |
|
180 |
Equality<typename Multiply<current_element, g>::type, id>::value |
|
181 |
> {}; |
|
182 |
|
|
183 |
template< |
|
184 |
template<typename, typename> class Multiply, |
|
185 |
template<typename, typename> class Equality, |
|
186 |
typename id, |
|
187 |
typename g, |
|
188 |
typename current_element, |
|
189 |
typename elements |
|
190 |
> |
|
191 |
struct dimino_first_step_elements_helper<Multiply, Equality, id, g, current_element, elements, true> |
|
192 |
#endif // EIGEN_PARSED_BY_DOXYGEN |
|
193 |
{ |
|
194 |
typedef elements type; |
|
195 |
constexpr static int global_flags = Equality<current_element, id>::global_flags; |
|
196 |
}; |
|
197 |
|
|
198 |
/** \internal |
|
199 |
* |
|
200 |
* \class dimino_first_step_elements |
|
201 |
* \ingroup CXX11_TensorSymmetry_Module |
|
202 |
* |
|
203 |
* \brief Add all powers of the first generator to the list of group elements |
|
204 |
* |
|
205 |
* This template takes the first non-identity generator and generates the initial |
|
206 |
* list of elements which consists of all powers of that generator. For a group |
|
207 |
* with just one generated, it would be enumerated after this. |
|
208 |
* |
|
209 |
* \sa enumerate_group_elements |
|
210 |
*/ |
|
211 |
template< |
|
212 |
template<typename, typename> class Multiply, |
|
213 |
template<typename, typename> class Equality, |
|
214 |
typename id, |
|
215 |
typename generators |
|
216 |
> |
|
217 |
struct dimino_first_step_elements |
|
218 |
{ |
|
219 |
typedef typename get<0, generators>::type first_generator; |
|
220 |
typedef typename skip<1, generators>::type next_generators; |
|
221 |
typedef type_list<first_generator> generators_done; |
|
222 |
|
|
223 |
typedef dimino_first_step_elements_helper< |
|
224 |
Multiply, |
|
225 |
Equality, |
|
226 |
id, |
|
227 |
first_generator, |
|
228 |
first_generator, |
|
229 |
type_list<id>, |
|
230 |
false |
|
231 |
> helper; |
|
232 |
typedef typename helper::type type; |
|
233 |
constexpr static int global_flags = helper::global_flags; |
|
234 |
}; |
|
235 |
|
|
236 |
/** \internal |
|
237 |
* |
|
238 |
* \class dimino_get_coset_elements |
|
239 |
* \ingroup CXX11_TensorSymmetry_Module |
|
240 |
* |
|
241 |
* \brief Generate all elements of a specific coset |
|
242 |
* |
|
243 |
* This template generates all the elements of a specific coset by |
|
244 |
* multiplying all elements in the given subgroup with the new |
|
245 |
* coset representative. Note that the first element of the |
|
246 |
* subgroup is always the identity element, so the first element of |
|
247 |
* ther result of this template is going to be the coset |
|
248 |
* representative itself. |
|
249 |
* |
|
250 |
* Note that this template accepts an additional boolean parameter |
|
251 |
* that specifies whether to actually generate the coset (true) or |
|
252 |
* just return an empty list (false). |
|
253 |
* |
|
254 |
* \sa enumerate_group_elements, dimino_add_cosets_for_rep |
|
255 |
*/ |
|
256 |
template< |
|
257 |
template<typename, typename> class Multiply, |
|
258 |
typename sub_group_elements, |
|
259 |
typename new_coset_rep, |
|
260 |
bool generate_coset // = true |
|
261 |
> |
|
262 |
struct dimino_get_coset_elements |
|
263 |
{ |
|
264 |
typedef typename apply_op_from_right<Multiply, new_coset_rep, sub_group_elements>::type type; |
|
265 |
}; |
|
266 |
|
|
267 |
template< |
|
268 |
template<typename, typename> class Multiply, |
|
269 |
typename sub_group_elements, |
|
270 |
typename new_coset_rep |
|
271 |
> |
|
272 |
struct dimino_get_coset_elements<Multiply, sub_group_elements, new_coset_rep, false> |
|
273 |
{ |
|
274 |
typedef type_list<> type; |
|
275 |
}; |
|
276 |
|
|
277 |
/** \internal |
|
278 |
* |
|
279 |
* \class dimino_add_cosets_for_rep |
|
280 |
* \ingroup CXX11_TensorSymmetry_Module |
|
281 |
* |
|
282 |
* \brief Recursive template for adding coset spaces |
|
283 |
* |
|
284 |
* This template multiplies the coset representative with a generator |
|
285 |
* from the list of previous generators. If the new element is not in |
|
286 |
* the group already, it adds the corresponding coset. Finally it |
|
287 |
* proceeds to call itself with the next generator from the list. |
|
288 |
* |
|
289 |
* \sa enumerate_group_elements, dimino_add_all_coset_spaces |
|
290 |
*/ |
|
291 |
template< |
|
292 |
template<typename, typename> class Multiply, |
|
293 |
template<typename, typename> class Equality, |
|
294 |
typename id, |
|
295 |
typename sub_group_elements, |
|
296 |
typename elements, |
|
297 |
typename generators, |
|
298 |
typename rep_element, |
|
299 |
int sub_group_size |
|
300 |
> |
|
301 |
struct dimino_add_cosets_for_rep; |
|
302 |
|
|
303 |
template< |
|
304 |
template<typename, typename> class Multiply, |
|
305 |
template<typename, typename> class Equality, |
|
306 |
typename id, |
|
307 |
typename sub_group_elements, |
|
308 |
typename elements, |
|
309 |
typename g, |
|
310 |
typename... gs, |
|
311 |
typename rep_element, |
|
312 |
int sub_group_size |
|
313 |
> |
|
314 |
struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<g, gs...>, rep_element, sub_group_size> |
|
315 |
{ |
|
316 |
typedef typename Multiply<rep_element, g>::type new_coset_rep; |
|
317 |
typedef contained_in_list_gf<Equality, new_coset_rep, elements> _cil; |
|
318 |
constexpr static bool add_coset = !_cil::value; |
|
319 |
|
|
320 |
typedef typename dimino_get_coset_elements< |
|
321 |
Multiply, |
|
322 |
sub_group_elements, |
|
323 |
new_coset_rep, |
|
324 |
add_coset |
|
325 |
>::type coset_elements; |
|
326 |
|
|
327 |
typedef dimino_add_cosets_for_rep< |
|
328 |
Multiply, |
|
329 |
Equality, |
|
330 |
id, |
|
331 |
sub_group_elements, |
|
332 |
typename concat<elements, coset_elements>::type, |
|
333 |
type_list<gs...>, |
|
334 |
rep_element, |
|
335 |
sub_group_size |
|
336 |
> _helper; |
|
337 |
|
|
338 |
typedef typename _helper::type type; |
|
339 |
constexpr static int global_flags = _cil::global_flags | _helper::global_flags; |
|
340 |
|
|
341 |
/* Note that we don't have to update global flags here, since |
|
342 |
* we will only add these elements if they are not part of |
|
343 |
* the group already. But that only happens if the coset rep |
|
344 |
* is not already in the group, so the check for the coset rep |
|
345 |
* will catch this. |
|
346 |
*/ |
|
347 |
}; |
|
348 |
|
|
349 |
template< |
|
350 |
template<typename, typename> class Multiply, |
|
351 |
template<typename, typename> class Equality, |
|
352 |
typename id, |
|
353 |
typename sub_group_elements, |
|
354 |
typename elements |
|
355 |
EIGEN_TPL_PP_SPEC_HACK_DEFC(typename, empty), |
|
356 |
typename rep_element, |
|
357 |
int sub_group_size |
|
358 |
> |
|
359 |
struct dimino_add_cosets_for_rep<Multiply, Equality, id, sub_group_elements, elements, type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>, rep_element, sub_group_size> |
|
360 |
{ |
|
361 |
typedef elements type; |
|
362 |
constexpr static int global_flags = 0; |
|
363 |
}; |
|
364 |
|
|
365 |
/** \internal |
|
366 |
* |
|
367 |
* \class dimino_add_all_coset_spaces |
|
368 |
* \ingroup CXX11_TensorSymmetry_Module |
|
369 |
* |
|
370 |
* \brief Recursive template for adding all coset spaces for a new generator |
|
371 |
* |
|
372 |
* This template tries to go through the list of generators (with |
|
373 |
* the help of the dimino_add_cosets_for_rep template) as long as |
|
374 |
* it still finds elements that are not part of the group and add |
|
375 |
* the corresponding cosets. |
|
376 |
* |
|
377 |
* \sa enumerate_group_elements, dimino_add_cosets_for_rep |
|
378 |
*/ |
|
379 |
template< |
|
380 |
template<typename, typename> class Multiply, |
|
381 |
template<typename, typename> class Equality, |
|
382 |
typename id, |
|
383 |
typename sub_group_elements, |
|
384 |
typename elements, |
|
385 |
typename generators, |
|
386 |
int sub_group_size, |
|
387 |
int rep_pos, |
|
388 |
bool stop_condition // = false |
|
389 |
> |
|
390 |
struct dimino_add_all_coset_spaces |
|
391 |
{ |
|
392 |
typedef typename get<rep_pos, elements>::type rep_element; |
|
393 |
typedef dimino_add_cosets_for_rep< |
|
394 |
Multiply, |
|
395 |
Equality, |
|
396 |
id, |
|
397 |
sub_group_elements, |
|
398 |
elements, |
|
399 |
generators, |
|
400 |
rep_element, |
|
401 |
sub_group_elements::count |
|
402 |
> _ac4r; |
|
403 |
typedef typename _ac4r::type new_elements; |
|
404 |
|
|
405 |
constexpr static int new_rep_pos = rep_pos + sub_group_elements::count; |
|
406 |
constexpr static bool new_stop_condition = new_rep_pos >= new_elements::count; |
|
407 |
|
|
408 |
typedef dimino_add_all_coset_spaces< |
|
409 |
Multiply, |
|
410 |
Equality, |
|
411 |
id, |
|
412 |
sub_group_elements, |
|
413 |
new_elements, |
|
414 |
generators, |
|
415 |
sub_group_size, |
|
416 |
new_rep_pos, |
|
417 |
new_stop_condition |
|
418 |
> _helper; |
|
419 |
|
|
420 |
typedef typename _helper::type type; |
|
421 |
constexpr static int global_flags = _helper::global_flags | _ac4r::global_flags; |
|
422 |
}; |
|
423 |
|
|
424 |
template< |
|
425 |
template<typename, typename> class Multiply, |
|
426 |
template<typename, typename> class Equality, |
|
427 |
typename id, |
|
428 |
typename sub_group_elements, |
|
429 |
typename elements, |
|
430 |
typename generators, |
|
431 |
int sub_group_size, |
|
432 |
int rep_pos |
|
433 |
> |
|
434 |
struct dimino_add_all_coset_spaces<Multiply, Equality, id, sub_group_elements, elements, generators, sub_group_size, rep_pos, true> |
|
435 |
{ |
|
436 |
typedef elements type; |
|
437 |
constexpr static int global_flags = 0; |
|
438 |
}; |
|
439 |
|
|
440 |
/** \internal |
|
441 |
* |
|
442 |
* \class dimino_add_generator |
|
443 |
* \ingroup CXX11_TensorSymmetry_Module |
|
444 |
* |
|
445 |
* \brief Enlarge the group by adding a new generator. |
|
446 |
* |
|
447 |
* It accepts a boolean parameter that determines if the generator is redundant, |
|
448 |
* i.e. was already seen in the group. In that case, it reduces to a no-op. |
|
449 |
* |
|
450 |
* \sa enumerate_group_elements, dimino_add_all_coset_spaces |
|
451 |
*/ |
|
452 |
template< |
|
453 |
template<typename, typename> class Multiply, |
|
454 |
template<typename, typename> class Equality, |
|
455 |
typename id, |
|
456 |
typename elements, |
|
457 |
typename generators_done, |
|
458 |
typename current_generator, |
|
459 |
bool redundant // = false |
|
460 |
> |
|
461 |
struct dimino_add_generator |
|
462 |
{ |
|
463 |
/* this template is only called if the generator is not redundant |
|
464 |
* => all elements of the group multiplied with the new generator |
|
465 |
* are going to be new elements of the most trivial coset space |
|
466 |
*/ |
|
467 |
typedef typename apply_op_from_right<Multiply, current_generator, elements>::type multiplied_elements; |
|
468 |
typedef typename concat<elements, multiplied_elements>::type new_elements; |
|
469 |
|
|
470 |
constexpr static int rep_pos = elements::count; |
|
471 |
|
|
472 |
typedef dimino_add_all_coset_spaces< |
|
473 |
Multiply, |
|
474 |
Equality, |
|
475 |
id, |
|
476 |
elements, // elements of previous subgroup |
|
477 |
new_elements, |
|
478 |
typename concat<generators_done, type_list<current_generator>>::type, |
|
479 |
elements::count, // size of previous subgroup |
|
480 |
rep_pos, |
|
481 |
false // don't stop (because rep_pos >= new_elements::count is always false at this point) |
|
482 |
> _helper; |
|
483 |
typedef typename _helper::type type; |
|
484 |
constexpr static int global_flags = _helper::global_flags; |
|
485 |
}; |
|
486 |
|
|
487 |
template< |
|
488 |
template<typename, typename> class Multiply, |
|
489 |
template<typename, typename> class Equality, |
|
490 |
typename id, |
|
491 |
typename elements, |
|
492 |
typename generators_done, |
|
493 |
typename current_generator |
|
494 |
> |
|
495 |
struct dimino_add_generator<Multiply, Equality, id, elements, generators_done, current_generator, true> |
|
496 |
{ |
|
497 |
// redundant case |
|
498 |
typedef elements type; |
|
499 |
constexpr static int global_flags = 0; |
|
500 |
}; |
|
501 |
|
|
502 |
/** \internal |
|
503 |
* |
|
504 |
* \class dimino_add_remaining_generators |
|
505 |
* \ingroup CXX11_TensorSymmetry_Module |
|
506 |
* |
|
507 |
* \brief Recursive template that adds all remaining generators to a group |
|
508 |
* |
|
509 |
* Loop through the list of generators that remain and successively |
|
510 |
* add them to the group. |
|
511 |
* |
|
512 |
* \sa enumerate_group_elements, dimino_add_generator |
|
513 |
*/ |
|
514 |
template< |
|
515 |
template<typename, typename> class Multiply, |
|
516 |
template<typename, typename> class Equality, |
|
517 |
typename id, |
|
518 |
typename generators_done, |
|
519 |
typename remaining_generators, |
|
520 |
typename elements |
|
521 |
> |
|
522 |
struct dimino_add_remaining_generators |
|
523 |
{ |
|
524 |
typedef typename get<0, remaining_generators>::type first_generator; |
|
525 |
typedef typename skip<1, remaining_generators>::type next_generators; |
|
526 |
|
|
527 |
typedef contained_in_list_gf<Equality, first_generator, elements> _cil; |
|
528 |
|
|
529 |
typedef dimino_add_generator< |
|
530 |
Multiply, |
|
531 |
Equality, |
|
532 |
id, |
|
533 |
elements, |
|
534 |
generators_done, |
|
535 |
first_generator, |
|
536 |
_cil::value |
|
537 |
> _helper; |
|
538 |
|
|
539 |
typedef typename _helper::type new_elements; |
|
540 |
|
|
541 |
typedef dimino_add_remaining_generators< |
|
542 |
Multiply, |
|
543 |
Equality, |
|
544 |
id, |
|
545 |
typename concat<generators_done, type_list<first_generator>>::type, |
|
546 |
next_generators, |
|
547 |
new_elements |
|
548 |
> _next_iter; |
|
549 |
|
|
550 |
typedef typename _next_iter::type type; |
|
551 |
constexpr static int global_flags = |
|
552 |
_cil::global_flags | |
|
553 |
_helper::global_flags | |
|
554 |
_next_iter::global_flags; |
|
555 |
}; |
|
556 |
|
|
557 |
template< |
|
558 |
template<typename, typename> class Multiply, |
|
559 |
template<typename, typename> class Equality, |
|
560 |
typename id, |
|
561 |
typename generators_done, |
|
562 |
typename elements |
|
563 |
> |
|
564 |
struct dimino_add_remaining_generators<Multiply, Equality, id, generators_done, type_list<>, elements> |
|
565 |
{ |
|
566 |
typedef elements type; |
|
567 |
constexpr static int global_flags = 0; |
|
568 |
}; |
|
569 |
|
|
570 |
/** \internal |
|
571 |
* |
|
572 |
* \class enumerate_group_elements_noid |
|
573 |
* \ingroup CXX11_TensorSymmetry_Module |
|
574 |
* |
|
575 |
* \brief Helper template that implements group element enumeration |
|
576 |
* |
|
577 |
* This is a helper template that implements the actual enumeration |
|
578 |
* of group elements. This has been split so that the list of |
|
579 |
* generators can be cleansed of the identity element before |
|
580 |
* performing the actual operation. |
|
581 |
* |
|
582 |
* \sa enumerate_group_elements |
|
583 |
*/ |
|
584 |
template< |
|
585 |
template<typename, typename> class Multiply, |
|
586 |
template<typename, typename> class Equality, |
|
587 |
typename id, |
|
588 |
typename generators, |
|
589 |
int initial_global_flags = 0 |
|
590 |
> |
|
591 |
struct enumerate_group_elements_noid |
|
592 |
{ |
|
593 |
typedef dimino_first_step_elements<Multiply, Equality, id, generators> first_step; |
|
594 |
typedef typename first_step::type first_step_elements; |
|
595 |
|
|
596 |
typedef dimino_add_remaining_generators< |
|
597 |
Multiply, |
|
598 |
Equality, |
|
599 |
id, |
|
600 |
typename first_step::generators_done, |
|
601 |
typename first_step::next_generators, // remaining_generators |
|
602 |
typename first_step::type // first_step elements |
|
603 |
> _helper; |
|
604 |
|
|
605 |
typedef typename _helper::type type; |
|
606 |
constexpr static int global_flags = |
|
607 |
initial_global_flags | |
|
608 |
first_step::global_flags | |
|
609 |
_helper::global_flags; |
|
610 |
}; |
|
611 |
|
|
612 |
// in case when no generators are specified |
|
613 |
template< |
|
614 |
template<typename, typename> class Multiply, |
|
615 |
template<typename, typename> class Equality, |
|
616 |
typename id, |
|
617 |
int initial_global_flags |
|
618 |
> |
|
619 |
struct enumerate_group_elements_noid<Multiply, Equality, id, type_list<>, initial_global_flags> |
|
620 |
{ |
|
621 |
typedef type_list<id> type; |
|
622 |
constexpr static int global_flags = initial_global_flags; |
|
623 |
}; |
|
624 |
|
|
625 |
/** \internal |
|
626 |
* |
|
627 |
* \class enumerate_group_elements |
|
628 |
* \ingroup CXX11_TensorSymmetry_Module |
|
629 |
* |
|
630 |
* \brief Enumerate all elements in a finite group |
|
631 |
* |
|
632 |
* This template enumerates all elements in a finite group. It accepts |
|
633 |
* the following template parameters: |
|
634 |
* |
|
635 |
* \tparam Multiply The multiplication operation that multiplies two group elements |
|
636 |
* with each other. |
|
637 |
* \tparam Equality The equality check operation that checks if two group elements |
|
638 |
* are equal to another. |
|
639 |
* \tparam id The identity element |
|
640 |
* \tparam _generators A list of (possibly redundant) generators of the group |
|
641 |
*/ |
|
642 |
template< |
|
643 |
template<typename, typename> class Multiply, |
|
644 |
template<typename, typename> class Equality, |
|
645 |
typename id, |
|
646 |
typename _generators |
|
647 |
> |
|
648 |
struct enumerate_group_elements |
|
649 |
: public enumerate_group_elements_noid< |
|
650 |
Multiply, |
|
651 |
Equality, |
|
652 |
id, |
|
653 |
typename strip_identities<Equality, id, _generators>::type, |
|
654 |
strip_identities<Equality, id, _generators>::global_flags |
|
655 |
> |
|
656 |
{ |
|
657 |
}; |
|
658 |
|
|
659 |
} // end namespace group_theory |
|
660 |
|
|
661 |
} // end namespace internal |
|
662 |
|
|
663 |
} // end namespace Eigen |
|
664 |
|
|
665 |
#endif // EIGEN_CXX11_TENSORSYMMETRY_TEMPLATEGROUPTHEORY_H |
|
666 |
|
|
667 |
/* |
|
668 |
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; |
|
669 |
*/ |
TXM/trunk/bundles/org.txm.statsengine.r.core.linux/res/linux64/library/RcppEigen/include/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h (revision 3763) | ||
---|---|---|
1 |
// This file is part of Eigen, a lightweight C++ template library |
|
2 |
// for linear algebra. |
|
3 |
// |
|
4 |
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> |
|
5 |
// |
|
6 |
// This Source Code Form is subject to the terms of the Mozilla |
|
7 |
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
8 |
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
|
9 |
|
|
10 |
#ifndef EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H |
|
11 |
#define EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H |
|
12 |
|
|
13 |
namespace Eigen { |
|
14 |
|
|
15 |
enum { |
|
16 |
NegationFlag = 0x01, |
|
17 |
ConjugationFlag = 0x02 |
|
18 |
}; |
|
19 |
|
|
20 |
enum { |
|
21 |
GlobalRealFlag = 0x01, |
|
22 |
GlobalImagFlag = 0x02, |
|
23 |
GlobalZeroFlag = 0x03 |
|
24 |
}; |
|
25 |
|
|
26 |
namespace internal { |
|
27 |
|
|
28 |
template<std::size_t NumIndices, typename... Sym> struct tensor_symmetry_pre_analysis; |
|
29 |
template<std::size_t NumIndices, typename... Sym> struct tensor_static_symgroup; |
|
30 |
template<bool instantiate, std::size_t NumIndices, typename... Sym> struct tensor_static_symgroup_if; |
|
31 |
template<typename Tensor_> struct tensor_symmetry_calculate_flags; |
|
32 |
template<typename Tensor_> struct tensor_symmetry_assign_value; |
|
33 |
template<typename... Sym> struct tensor_symmetry_num_indices; |
|
34 |
|
|
35 |
} // end namespace internal |
|
36 |
|
|
37 |
template<int One_, int Two_> |
|
38 |
struct Symmetry |
|
39 |
{ |
|
40 |
static_assert(One_ != Two_, "Symmetries must cover distinct indices."); |
|
41 |
constexpr static int One = One_; |
|
42 |
constexpr static int Two = Two_; |
|
43 |
constexpr static int Flags = 0; |
|
44 |
}; |
|
45 |
|
|
46 |
template<int One_, int Two_> |
|
47 |
struct AntiSymmetry |
|
48 |
{ |
|
49 |
static_assert(One_ != Two_, "Symmetries must cover distinct indices."); |
|
50 |
constexpr static int One = One_; |
|
51 |
constexpr static int Two = Two_; |
|
52 |
constexpr static int Flags = NegationFlag; |
|
53 |
}; |
|
54 |
|
|
55 |
template<int One_, int Two_> |
|
56 |
struct Hermiticity |
|
57 |
{ |
|
58 |
static_assert(One_ != Two_, "Symmetries must cover distinct indices."); |
|
59 |
constexpr static int One = One_; |
|
60 |
constexpr static int Two = Two_; |
|
61 |
constexpr static int Flags = ConjugationFlag; |
|
62 |
}; |
|
63 |
|
|
64 |
template<int One_, int Two_> |
|
65 |
struct AntiHermiticity |
|
66 |
{ |
|
67 |
static_assert(One_ != Two_, "Symmetries must cover distinct indices."); |
|
68 |
constexpr static int One = One_; |
|
69 |
constexpr static int Two = Two_; |
|
70 |
constexpr static int Flags = ConjugationFlag | NegationFlag; |
|
71 |
}; |
|
72 |
|
|
73 |
/** \class DynamicSGroup |
|
74 |
* \ingroup TensorSymmetry_Module |
|
75 |
* |
|
76 |
* \brief Dynamic symmetry group |
|
77 |
* |
|
78 |
* The %DynamicSGroup class represents a symmetry group that need not be known at |
|
79 |
* compile time. It is useful if one wants to support arbitrary run-time defineable |
|
80 |
* symmetries for tensors, but it is also instantiated if a symmetry group is defined |
|
81 |
* at compile time that would be either too large for the compiler to reasonably |
|
82 |
* generate (using templates to calculate this at compile time is very inefficient) |
|
83 |
* or that the compiler could generate the group but that it wouldn't make sense to |
|
84 |
* unroll the loop for setting coefficients anymore. |
|
85 |
*/ |
|
86 |
class DynamicSGroup; |
|
87 |
|
|
88 |
/** \internal |
|
89 |
* |
|
90 |
* \class DynamicSGroupFromTemplateArgs |
|
91 |
* \ingroup TensorSymmetry_Module |
|
92 |
* |
|
93 |
* \brief Dynamic symmetry group, initialized from template arguments |
|
94 |
* |
|
95 |
* This class is a child class of DynamicSGroup. It uses the template arguments |
|
96 |
* specified to initialize itself. |
|
97 |
*/ |
|
98 |
template<typename... Gen> |
|
99 |
class DynamicSGroupFromTemplateArgs; |
|
100 |
|
|
101 |
/** \class StaticSGroup |
|
102 |
* \ingroup TensorSymmetry_Module |
|
103 |
* |
|
104 |
* \brief Static symmetry group |
|
105 |
* |
|
106 |
* This class represents a symmetry group that is known and resolved completely |
|
107 |
* at compile time. Ideally, no run-time penalty is incurred compared to the |
|
108 |
* manual unrolling of the symmetry. |
|
109 |
* |
|
110 |
* <b><i>CAUTION:</i></b> |
|
111 |
* |
|
112 |
* Do not use this class directly for large symmetry groups. The compiler |
|
113 |
* may run into a limit, or segfault or in the very least will take a very, |
|
114 |
* very, very long time to compile the code. Use the SGroup class instead |
|
115 |
* if you want a static group. That class contains logic that will |
|
116 |
* automatically select the DynamicSGroup class instead if the symmetry |
|
117 |
* group becomes too large. (In that case, unrolling may not even be |
|
118 |
* beneficial.) |
|
119 |
*/ |
|
120 |
template<typename... Gen> |
|
121 |
class StaticSGroup; |
|
122 |
|
|
123 |
/** \class SGroup |
|
124 |
* \ingroup TensorSymmetry_Module |
|
125 |
* |
|
126 |
* \brief Symmetry group, initialized from template arguments |
|
127 |
* |
|
128 |
* This class represents a symmetry group whose generators are already |
|
129 |
* known at compile time. It may or may not be resolved at compile time, |
|
130 |
* depending on the estimated size of the group. |
|
131 |
* |
|
132 |
* \sa StaticSGroup |
|
133 |
* \sa DynamicSGroup |
|
134 |
*/ |
|
135 |
template<typename... Gen> |
|
136 |
class SGroup : public internal::tensor_symmetry_pre_analysis<internal::tensor_symmetry_num_indices<Gen...>::value, Gen...>::root_type |
|
137 |
{ |
|
138 |
public: |
|
139 |
constexpr static std::size_t NumIndices = internal::tensor_symmetry_num_indices<Gen...>::value; |
|
140 |
typedef typename internal::tensor_symmetry_pre_analysis<NumIndices, Gen...>::root_type Base; |
|
141 |
|
|
142 |
// make standard constructors + assignment operators public |
|
143 |
inline SGroup() : Base() { } |
|
144 |
inline SGroup(const SGroup<Gen...>& other) : Base(other) { } |
|
145 |
inline SGroup(SGroup<Gen...>&& other) : Base(other) { } |
|
146 |
inline SGroup<Gen...>& operator=(const SGroup<Gen...>& other) { Base::operator=(other); return *this; } |
|
147 |
inline SGroup<Gen...>& operator=(SGroup<Gen...>&& other) { Base::operator=(other); return *this; } |
|
148 |
|
|
149 |
// all else is defined in the base class |
|
150 |
}; |
|
151 |
|
|
152 |
namespace internal { |
|
153 |
|
|
154 |
template<typename... Sym> struct tensor_symmetry_num_indices |
|
155 |
{ |
|
156 |
constexpr static std::size_t value = 1; |
|
157 |
}; |
|
158 |
|
|
159 |
template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> |
|
160 |
{ |
|
161 |
private: |
|
162 |
constexpr static std::size_t One = static_cast<std::size_t>(One_); |
|
163 |
constexpr static std::size_t Two = static_cast<std::size_t>(Two_); |
|
164 |
constexpr static std::size_t Three = tensor_symmetry_num_indices<Sym...>::value; |
|
165 |
|
|
166 |
// don't use std::max, since it's not constexpr until C++14... |
|
167 |
constexpr static std::size_t maxOneTwoPlusOne = ((One > Two) ? One : Two) + 1; |
|
168 |
public: |
|
169 |
constexpr static std::size_t value = (maxOneTwoPlusOne > Three) ? maxOneTwoPlusOne : Three; |
|
170 |
}; |
|
171 |
|
|
172 |
template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<AntiSymmetry<One_, Two_>, Sym...> |
|
173 |
: public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; |
|
174 |
template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<Hermiticity<One_, Two_>, Sym...> |
|
175 |
: public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; |
|
176 |
template<int One_, int Two_, typename... Sym> struct tensor_symmetry_num_indices<AntiHermiticity<One_, Two_>, Sym...> |
|
177 |
: public tensor_symmetry_num_indices<Symmetry<One_, Two_>, Sym...> {}; |
|
178 |
|
|
179 |
/** \internal |
|
180 |
* |
|
181 |
* \class tensor_symmetry_pre_analysis |
|
182 |
* \ingroup TensorSymmetry_Module |
|
183 |
* |
|
184 |
* \brief Pre-select whether to use a static or dynamic symmetry group |
|
185 |
* |
|
186 |
* When a symmetry group could in principle be determined at compile time, |
|
187 |
* this template implements the logic whether to actually do that or whether |
|
188 |
* to rather defer that to runtime. |
|
189 |
* |
|
190 |
* The logic is as follows: |
|
191 |
* <dl> |
|
192 |
* <dt><b>No generators (trivial symmetry):</b></dt> |
|
193 |
* <dd>Use a trivial static group. Ideally, this has no performance impact |
|
194 |
* compared to not using symmetry at all. In practice, this might not |
|
195 |
* be the case.</dd> |
|
196 |
* <dt><b>More than 4 generators:</b></dt> |
|
197 |
* <dd>Calculate the group at run time, it is likely far too large for the |
|
198 |
* compiler to be able to properly generate it in a realistic time.</dd> |
|
199 |
* <dt><b>Up to and including 4 generators:</b></dt> |
|
200 |
* <dd>Actually enumerate all group elements, but then check how many there |
|
201 |
* are. If there are more than 16, it is unlikely that unrolling the |
|
202 |
* loop (as is done in the static compile-time case) is sensible, so |
|
203 |
* use a dynamic group instead. If there are at most 16 elements, actually |
|
204 |
* use that static group. Note that the largest group with 4 generators |
|
205 |
* still compiles with reasonable resources.</dd> |
|
206 |
* </dl> |
|
207 |
* |
|
208 |
* Note: Example compile time performance with g++-4.6 on an Intenl Core i5-3470 |
|
209 |
* with 16 GiB RAM (all generators non-redundant and the subgroups don't |
|
210 |
* factorize): |
|
211 |
* |
|
212 |
* # Generators -O0 -ggdb -O2 |
|
213 |
* ------------------------------------------------------------------- |
|
214 |
* 1 0.5 s / 250 MiB 0.45s / 230 MiB |
|
215 |
* 2 0.5 s / 260 MiB 0.5 s / 250 MiB |
|
216 |
* 3 0.65s / 310 MiB 0.62s / 310 MiB |
|
217 |
* 4 2.2 s / 860 MiB 1.7 s / 770 MiB |
|
218 |
* 5 130 s / 13000 MiB 120 s / 11000 MiB |
|
219 |
* |
|
220 |
* It is clear that everything is still very efficient up to 4 generators, then |
|
221 |
* the memory and CPU requirements become unreasonable. Thus we only instantiate |
|
222 |
* the template group theory logic if the number of generators supplied is 4 or |
|
223 |
* lower, otherwise this will be forced to be done during runtime, where the |
|
224 |
* algorithm is reasonably fast. |
|
225 |
*/ |
|
226 |
template<std::size_t NumIndices> |
|
227 |
struct tensor_symmetry_pre_analysis<NumIndices> |
|
228 |
{ |
|
229 |
typedef StaticSGroup<> root_type; |
|
230 |
}; |
|
231 |
|
|
232 |
template<std::size_t NumIndices, typename Gen_, typename... Gens_> |
|
233 |
struct tensor_symmetry_pre_analysis<NumIndices, Gen_, Gens_...> |
|
234 |
{ |
|
235 |
constexpr static std::size_t max_static_generators = 4; |
|
236 |
constexpr static std::size_t max_static_elements = 16; |
|
237 |
typedef tensor_static_symgroup_if<(sizeof...(Gens_) + 1 <= max_static_generators), NumIndices, Gen_, Gens_...> helper; |
|
238 |
constexpr static std::size_t possible_size = helper::size; |
|
239 |
|
|
240 |
typedef typename conditional< |
|
241 |
possible_size == 0 || possible_size >= max_static_elements, |
|
242 |
DynamicSGroupFromTemplateArgs<Gen_, Gens_...>, |
|
243 |
typename helper::type |
|
244 |
>::type root_type; |
|
245 |
}; |
|
246 |
|
|
247 |
template<bool instantiate, std::size_t NumIndices, typename... Gens> |
|
248 |
struct tensor_static_symgroup_if |
|
249 |
{ |
|
250 |
constexpr static std::size_t size = 0; |
|
251 |
typedef void type; |
|
252 |
}; |
|
253 |
|
|
254 |
template<std::size_t NumIndices, typename... Gens> |
|
255 |
struct tensor_static_symgroup_if<true, NumIndices, Gens...> : tensor_static_symgroup<NumIndices, Gens...> {}; |
|
256 |
|
|
257 |
template<typename Tensor_> |
|
258 |
struct tensor_symmetry_assign_value |
|
259 |
{ |
|
260 |
typedef typename Tensor_::Index Index; |
|
261 |
typedef typename Tensor_::Scalar Scalar; |
|
262 |
constexpr static std::size_t NumIndices = Tensor_::NumIndices; |
|
263 |
|
|
264 |
static inline int run(const std::array<Index, NumIndices>& transformed_indices, int transformation_flags, int dummy, Tensor_& tensor, const Scalar& value_) |
|
265 |
{ |
|
266 |
Scalar value(value_); |
|
267 |
if (transformation_flags & ConjugationFlag) |
|
268 |
value = numext::conj(value); |
|
269 |
if (transformation_flags & NegationFlag) |
|
270 |
value = -value; |
|
271 |
tensor.coeffRef(transformed_indices) = value; |
|
272 |
return dummy; |
|
273 |
} |
|
274 |
}; |
|
275 |
|
|
276 |
template<typename Tensor_> |
|
277 |
struct tensor_symmetry_calculate_flags |
|
278 |
{ |
|
279 |
typedef typename Tensor_::Index Index; |
|
280 |
constexpr static std::size_t NumIndices = Tensor_::NumIndices; |
|
281 |
|
|
282 |
static inline int run(const std::array<Index, NumIndices>& transformed_indices, int transform_flags, int current_flags, const std::array<Index, NumIndices>& orig_indices) |
|
283 |
{ |
|
284 |
if (transformed_indices == orig_indices) { |
|
285 |
if (transform_flags & (ConjugationFlag | NegationFlag)) |
|
286 |
return current_flags | GlobalImagFlag; // anti-hermitian diagonal |
|
287 |
else if (transform_flags & ConjugationFlag) |
|
288 |
return current_flags | GlobalRealFlag; // hermitian diagonal |
|
289 |
else if (transform_flags & NegationFlag) |
|
290 |
return current_flags | GlobalZeroFlag; // anti-symmetric diagonal |
|
291 |
} |
|
292 |
return current_flags; |
|
293 |
} |
|
294 |
}; |
|
295 |
|
|
296 |
template<typename Tensor_, typename Symmetry_, int Flags = 0> |
|
297 |
class tensor_symmetry_value_setter |
|
298 |
{ |
|
299 |
public: |
|
300 |
typedef typename Tensor_::Index Index; |
|
301 |
typedef typename Tensor_::Scalar Scalar; |
|
302 |
constexpr static std::size_t NumIndices = Tensor_::NumIndices; |
|
303 |
|
|
304 |
inline tensor_symmetry_value_setter(Tensor_& tensor, Symmetry_ const& symmetry, std::array<Index, NumIndices> const& indices) |
|
305 |
: m_tensor(tensor), m_symmetry(symmetry), m_indices(indices) { } |
|
306 |
|
|
307 |
inline tensor_symmetry_value_setter<Tensor_, Symmetry_, Flags>& operator=(Scalar const& value) |
|
308 |
{ |
|
309 |
doAssign(value); |
|
310 |
return *this; |
|
311 |
} |
|
312 |
private: |
|
313 |
Tensor_& m_tensor; |
|
314 |
Symmetry_ m_symmetry; |
|
315 |
std::array<Index, NumIndices> m_indices; |
|
316 |
|
|
317 |
inline void doAssign(Scalar const& value) |
|
318 |
{ |
|
319 |
#ifdef EIGEN_TENSOR_SYMMETRY_CHECK_VALUES |
|
320 |
int value_flags = m_symmetry.template apply<internal::tensor_symmetry_calculate_flags<Tensor_>, int>(m_indices, m_symmetry.globalFlags(), m_indices); |
|
321 |
if (value_flags & GlobalRealFlag) |
|
322 |
eigen_assert(numext::imag(value) == 0); |
|
323 |
if (value_flags & GlobalImagFlag) |
|
324 |
eigen_assert(numext::real(value) == 0); |
|
325 |
#endif |
|
326 |
m_symmetry.template apply<internal::tensor_symmetry_assign_value<Tensor_>, int>(m_indices, 0, m_tensor, value); |
|
327 |
} |
|
328 |
}; |
|
329 |
|
|
330 |
} // end namespace internal |
|
331 |
|
|
332 |
} // end namespace Eigen |
|
333 |
|
|
334 |
#endif // EIGEN_CXX11_TENSORSYMMETRY_SYMMETRY_H |
|
335 |
|
|
336 |
/* |
|
337 |
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; |
|
338 |
*/ |
TXM/trunk/bundles/org.txm.statsengine.r.core.linux/res/linux64/library/RcppEigen/include/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h (revision 3763) | ||
---|---|---|
1 |
// This file is part of Eigen, a lightweight C++ template library |
|
2 |
// for linear algebra. |
|
3 |
// |
|
4 |
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> |
|
5 |
// |
|
6 |
// This Source Code Form is subject to the terms of the Mozilla |
|
7 |
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
8 |
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
|
9 |
|
|
10 |
#ifndef EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H |
|
11 |
#define EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H |
|
12 |
|
|
13 |
namespace Eigen { |
|
14 |
|
|
15 |
class DynamicSGroup |
|
16 |
{ |
|
17 |
public: |
|
18 |
inline explicit DynamicSGroup() : m_numIndices(1), m_elements(), m_generators(), m_globalFlags(0) { m_elements.push_back(ge(Generator(0, 0, 0))); } |
|
19 |
inline DynamicSGroup(const DynamicSGroup& o) : m_numIndices(o.m_numIndices), m_elements(o.m_elements), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { } |
|
20 |
inline DynamicSGroup(DynamicSGroup&& o) : m_numIndices(o.m_numIndices), m_elements(), m_generators(o.m_generators), m_globalFlags(o.m_globalFlags) { std::swap(m_elements, o.m_elements); } |
|
21 |
inline DynamicSGroup& operator=(const DynamicSGroup& o) { m_numIndices = o.m_numIndices; m_elements = o.m_elements; m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; } |
|
22 |
inline DynamicSGroup& operator=(DynamicSGroup&& o) { m_numIndices = o.m_numIndices; std::swap(m_elements, o.m_elements); m_generators = o.m_generators; m_globalFlags = o.m_globalFlags; return *this; } |
|
23 |
|
|
24 |
void add(int one, int two, int flags = 0); |
|
25 |
|
|
26 |
template<typename Gen_> |
|
27 |
inline void add(Gen_) { add(Gen_::One, Gen_::Two, Gen_::Flags); } |
|
28 |
inline void addSymmetry(int one, int two) { add(one, two, 0); } |
|
29 |
inline void addAntiSymmetry(int one, int two) { add(one, two, NegationFlag); } |
|
30 |
inline void addHermiticity(int one, int two) { add(one, two, ConjugationFlag); } |
|
31 |
inline void addAntiHermiticity(int one, int two) { add(one, two, NegationFlag | ConjugationFlag); } |
|
32 |
|
|
33 |
template<typename Op, typename RV, typename Index, std::size_t N, typename... Args> |
|
34 |
inline RV apply(const std::array<Index, N>& idx, RV initial, Args&&... args) const |
|
35 |
{ |
|
36 |
eigen_assert(N >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); |
|
37 |
for (std::size_t i = 0; i < size(); i++) |
|
38 |
initial = Op::run(h_permute(i, idx, typename internal::gen_numeric_list<int, N>::type()), m_elements[i].flags, initial, std::forward<Args>(args)...); |
|
39 |
return initial; |
|
40 |
} |
|
41 |
|
|
42 |
template<typename Op, typename RV, typename Index, typename... Args> |
|
43 |
inline RV apply(const std::vector<Index>& idx, RV initial, Args&&... args) const |
|
44 |
{ |
|
45 |
eigen_assert(idx.size() >= m_numIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); |
|
46 |
for (std::size_t i = 0; i < size(); i++) |
|
47 |
initial = Op::run(h_permute(i, idx), m_elements[i].flags, initial, std::forward<Args>(args)...); |
|
48 |
return initial; |
|
49 |
} |
|
50 |
|
|
51 |
inline int globalFlags() const { return m_globalFlags; } |
|
52 |
inline std::size_t size() const { return m_elements.size(); } |
|
53 |
|
|
54 |
template<typename Tensor_, typename... IndexTypes> |
|
55 |
inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, typename Tensor_::Index firstIndex, IndexTypes... otherIndices) const |
|
56 |
{ |
|
57 |
static_assert(sizeof...(otherIndices) + 1 == Tensor_::NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor."); |
|
58 |
return operator()(tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices>{{firstIndex, otherIndices...}}); |
|
59 |
} |
|
60 |
|
|
61 |
template<typename Tensor_> |
|
62 |
inline internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup> operator()(Tensor_& tensor, std::array<typename Tensor_::Index, Tensor_::NumIndices> const& indices) const |
|
63 |
{ |
|
64 |
return internal::tensor_symmetry_value_setter<Tensor_, DynamicSGroup>(tensor, *this, indices); |
|
65 |
} |
|
66 |
private: |
|
67 |
struct GroupElement { |
|
68 |
std::vector<int> representation; |
|
69 |
int flags; |
|
70 |
bool isId() const |
|
71 |
{ |
|
72 |
for (std::size_t i = 0; i < representation.size(); i++) |
|
73 |
if (i != (size_t)representation[i]) |
|
74 |
return false; |
|
75 |
return true; |
|
76 |
} |
|
77 |
}; |
|
78 |
struct Generator { |
|
79 |
int one; |
|
80 |
int two; |
|
81 |
int flags; |
|
82 |
constexpr inline Generator(int one_, int two_, int flags_) : one(one_), two(two_), flags(flags_) {} |
|
83 |
}; |
|
84 |
|
|
85 |
std::size_t m_numIndices; |
|
86 |
std::vector<GroupElement> m_elements; |
|
87 |
std::vector<Generator> m_generators; |
|
88 |
int m_globalFlags; |
|
89 |
|
|
90 |
template<typename Index, std::size_t N, int... n> |
|
91 |
inline std::array<Index, N> h_permute(std::size_t which, const std::array<Index, N>& idx, internal::numeric_list<int, n...>) const |
|
92 |
{ |
|
93 |
return std::array<Index, N>{{ idx[n >= m_numIndices ? n : m_elements[which].representation[n]]... }}; |
|
94 |
} |
|
95 |
|
|
96 |
template<typename Index> |
|
97 |
inline std::vector<Index> h_permute(std::size_t which, std::vector<Index> idx) const |
|
98 |
{ |
|
99 |
std::vector<Index> result; |
|
100 |
result.reserve(idx.size()); |
|
101 |
for (auto k : m_elements[which].representation) |
|
102 |
result.push_back(idx[k]); |
|
103 |
for (std::size_t i = m_numIndices; i < idx.size(); i++) |
|
104 |
result.push_back(idx[i]); |
|
105 |
return result; |
|
106 |
} |
|
107 |
|
|
108 |
inline GroupElement ge(Generator const& g) const |
|
109 |
{ |
|
110 |
GroupElement result; |
|
111 |
result.representation.reserve(m_numIndices); |
|
112 |
result.flags = g.flags; |
|
113 |
for (std::size_t k = 0; k < m_numIndices; k++) { |
|
114 |
if (k == (std::size_t)g.one) |
|
115 |
result.representation.push_back(g.two); |
|
116 |
else if (k == (std::size_t)g.two) |
|
117 |
result.representation.push_back(g.one); |
|
118 |
else |
|
119 |
result.representation.push_back(int(k)); |
|
120 |
} |
|
121 |
return result; |
|
122 |
} |
|
123 |
|
|
124 |
GroupElement mul(GroupElement, GroupElement) const; |
|
125 |
inline GroupElement mul(Generator g1, GroupElement g2) const |
|
126 |
{ |
|
127 |
return mul(ge(g1), g2); |
|
128 |
} |
|
129 |
|
|
130 |
inline GroupElement mul(GroupElement g1, Generator g2) const |
|
131 |
{ |
|
132 |
return mul(g1, ge(g2)); |
|
133 |
} |
|
134 |
|
|
135 |
inline GroupElement mul(Generator g1, Generator g2) const |
|
136 |
{ |
|
137 |
return mul(ge(g1), ge(g2)); |
|
138 |
} |
|
139 |
|
|
140 |
inline int findElement(GroupElement e) const |
|
141 |
{ |
|
142 |
for (auto ee : m_elements) { |
|
143 |
if (ee.representation == e.representation) |
|
144 |
return ee.flags ^ e.flags; |
|
145 |
} |
|
146 |
return -1; |
|
147 |
} |
|
148 |
|
|
149 |
void updateGlobalFlags(int flagDiffOfSameGenerator); |
|
150 |
}; |
|
151 |
|
|
152 |
// dynamic symmetry group that auto-adds the template parameters in the constructor |
|
153 |
template<typename... Gen> |
|
154 |
class DynamicSGroupFromTemplateArgs : public DynamicSGroup |
|
155 |
{ |
|
156 |
public: |
|
157 |
inline DynamicSGroupFromTemplateArgs() : DynamicSGroup() |
|
158 |
{ |
|
159 |
add_all(internal::type_list<Gen...>()); |
|
160 |
} |
|
161 |
inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs const& other) : DynamicSGroup(other) { } |
|
162 |
inline DynamicSGroupFromTemplateArgs(DynamicSGroupFromTemplateArgs&& other) : DynamicSGroup(other) { } |
|
163 |
inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(const DynamicSGroupFromTemplateArgs<Gen...>& o) { DynamicSGroup::operator=(o); return *this; } |
|
164 |
inline DynamicSGroupFromTemplateArgs<Gen...>& operator=(DynamicSGroupFromTemplateArgs<Gen...>&& o) { DynamicSGroup::operator=(o); return *this; } |
|
165 |
|
|
166 |
private: |
|
167 |
template<typename Gen1, typename... GenNext> |
|
168 |
inline void add_all(internal::type_list<Gen1, GenNext...>) |
|
169 |
{ |
|
170 |
add(Gen1()); |
|
171 |
add_all(internal::type_list<GenNext...>()); |
|
172 |
} |
|
173 |
|
|
174 |
inline void add_all(internal::type_list<>) |
|
175 |
{ |
|
176 |
} |
|
177 |
}; |
|
178 |
|
|
179 |
inline DynamicSGroup::GroupElement DynamicSGroup::mul(GroupElement g1, GroupElement g2) const |
|
180 |
{ |
|
181 |
eigen_internal_assert(g1.representation.size() == m_numIndices); |
|
182 |
eigen_internal_assert(g2.representation.size() == m_numIndices); |
|
183 |
|
|
184 |
GroupElement result; |
|
185 |
result.representation.reserve(m_numIndices); |
|
186 |
for (std::size_t i = 0; i < m_numIndices; i++) { |
|
187 |
int v = g2.representation[g1.representation[i]]; |
|
188 |
eigen_assert(v >= 0); |
|
189 |
result.representation.push_back(v); |
|
190 |
} |
|
191 |
result.flags = g1.flags ^ g2.flags; |
|
192 |
return result; |
|
193 |
} |
|
194 |
|
|
195 |
inline void DynamicSGroup::add(int one, int two, int flags) |
|
196 |
{ |
|
197 |
eigen_assert(one >= 0); |
|
198 |
eigen_assert(two >= 0); |
|
199 |
eigen_assert(one != two); |
|
200 |
|
|
201 |
if ((std::size_t)one >= m_numIndices || (std::size_t)two >= m_numIndices) { |
|
202 |
std::size_t newNumIndices = (one > two) ? one : two + 1; |
|
203 |
for (auto& gelem : m_elements) { |
|
204 |
gelem.representation.reserve(newNumIndices); |
|
205 |
for (std::size_t i = m_numIndices; i < newNumIndices; i++) |
|
206 |
gelem.representation.push_back(i); |
|
207 |
} |
|
208 |
m_numIndices = newNumIndices; |
|
209 |
} |
|
210 |
|
|
211 |
Generator g{one, two, flags}; |
|
212 |
GroupElement e = ge(g); |
|
213 |
|
|
214 |
/* special case for first generator */ |
|
215 |
if (m_elements.size() == 1) { |
|
216 |
while (!e.isId()) { |
|
217 |
m_elements.push_back(e); |
|
218 |
e = mul(e, g); |
|
219 |
} |
|
220 |
|
|
221 |
if (e.flags > 0) |
|
222 |
updateGlobalFlags(e.flags); |
|
223 |
|
|
224 |
// only add in case we didn't have identity |
|
225 |
if (m_elements.size() > 1) |
|
226 |
m_generators.push_back(g); |
|
227 |
return; |
|
228 |
} |
|
229 |
|
|
230 |
int p = findElement(e); |
|
231 |
if (p >= 0) { |
|
232 |
updateGlobalFlags(p); |
|
233 |
return; |
|
234 |
} |
|
235 |
|
|
236 |
std::size_t coset_order = m_elements.size(); |
|
237 |
m_elements.push_back(e); |
|
238 |
for (std::size_t i = 1; i < coset_order; i++) |
|
239 |
m_elements.push_back(mul(m_elements[i], e)); |
|
240 |
m_generators.push_back(g); |
|
241 |
|
|
242 |
std::size_t coset_rep = coset_order; |
|
243 |
do { |
|
244 |
for (auto g : m_generators) { |
|
245 |
e = mul(m_elements[coset_rep], g); |
|
246 |
p = findElement(e); |
|
247 |
if (p < 0) { |
|
248 |
// element not yet in group |
|
249 |
m_elements.push_back(e); |
|
250 |
for (std::size_t i = 1; i < coset_order; i++) |
|
251 |
m_elements.push_back(mul(m_elements[i], e)); |
|
252 |
} else if (p > 0) { |
|
253 |
updateGlobalFlags(p); |
|
254 |
} |
|
255 |
} |
|
256 |
coset_rep += coset_order; |
|
257 |
} while (coset_rep < m_elements.size()); |
|
258 |
} |
|
259 |
|
|
260 |
inline void DynamicSGroup::updateGlobalFlags(int flagDiffOfSameGenerator) |
|
261 |
{ |
|
262 |
switch (flagDiffOfSameGenerator) { |
|
263 |
case 0: |
|
264 |
default: |
|
265 |
// nothing happened |
|
266 |
break; |
|
267 |
case NegationFlag: |
|
268 |
// every element is it's own negative => whole tensor is zero |
|
269 |
m_globalFlags |= GlobalZeroFlag; |
|
270 |
break; |
|
271 |
case ConjugationFlag: |
|
272 |
// every element is it's own conjugate => whole tensor is real |
|
273 |
m_globalFlags |= GlobalRealFlag; |
|
274 |
break; |
|
275 |
case (NegationFlag | ConjugationFlag): |
|
276 |
// every element is it's own negative conjugate => whole tensor is imaginary |
|
277 |
m_globalFlags |= GlobalImagFlag; |
|
278 |
break; |
|
279 |
/* NOTE: |
|
280 |
* since GlobalZeroFlag == GlobalRealFlag | GlobalImagFlag, if one generator |
|
281 |
* causes the tensor to be real and the next one to be imaginary, this will |
|
282 |
* trivially give the correct result |
|
283 |
*/ |
|
284 |
} |
|
285 |
} |
|
286 |
|
|
287 |
} // end namespace Eigen |
|
288 |
|
|
289 |
#endif // EIGEN_CXX11_TENSORSYMMETRY_DYNAMICSYMMETRY_H |
|
290 |
|
|
291 |
/* |
|
292 |
* kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle; |
|
293 |
*/ |
TXM/trunk/bundles/org.txm.statsengine.r.core.linux/res/linux64/library/RcppEigen/include/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h (revision 3763) | ||
---|---|---|
1 |
// This file is part of Eigen, a lightweight C++ template library |
|
2 |
// for linear algebra. |
|
3 |
// |
|
4 |
// Copyright (C) 2013 Christian Seiler <christian@iwakd.de> |
|
5 |
// |
|
6 |
// This Source Code Form is subject to the terms of the Mozilla |
|
7 |
// Public License v. 2.0. If a copy of the MPL was not distributed |
|
8 |
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
|
9 |
|
|
10 |
#ifndef EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H |
|
11 |
#define EIGEN_CXX11_TENSORSYMMETRY_STATICSYMMETRY_H |
|
12 |
|
|
13 |
namespace Eigen { |
|
14 |
|
|
15 |
namespace internal { |
|
16 |
|
|
17 |
template<typename list> struct tensor_static_symgroup_permutate; |
|
18 |
|
|
19 |
template<int... nn> |
|
20 |
struct tensor_static_symgroup_permutate<numeric_list<int, nn...>> |
|
21 |
{ |
|
22 |
constexpr static std::size_t N = sizeof...(nn); |
|
23 |
|
|
24 |
template<typename T> |
|
25 |
constexpr static inline std::array<T, N> run(const std::array<T, N>& indices) |
|
26 |
{ |
|
27 |
return {{indices[nn]...}}; |
|
28 |
} |
|
29 |
}; |
|
30 |
|
|
31 |
template<typename indices_, int flags_> |
|
32 |
struct tensor_static_symgroup_element |
|
33 |
{ |
|
34 |
typedef indices_ indices; |
|
35 |
constexpr static int flags = flags_; |
|
36 |
}; |
|
37 |
|
|
38 |
template<typename Gen, int N> |
|
39 |
struct tensor_static_symgroup_element_ctor |
|
40 |
{ |
|
41 |
typedef tensor_static_symgroup_element< |
|
42 |
typename gen_numeric_list_swapped_pair<int, N, Gen::One, Gen::Two>::type, |
|
43 |
Gen::Flags |
|
44 |
> type; |
|
45 |
}; |
|
46 |
|
|
47 |
template<int N> |
|
48 |
struct tensor_static_symgroup_identity_ctor |
|
49 |
{ |
|
50 |
typedef tensor_static_symgroup_element< |
|
51 |
typename gen_numeric_list<int, N>::type, |
|
52 |
0 |
|
53 |
> type; |
|
54 |
}; |
|
55 |
|
|
56 |
template<typename iib> |
|
57 |
struct tensor_static_symgroup_multiply_helper |
|
58 |
{ |
|
59 |
template<int... iia> |
|
60 |
constexpr static inline numeric_list<int, get<iia, iib>::value...> helper(numeric_list<int, iia...>) { |
|
61 |
return numeric_list<int, get<iia, iib>::value...>(); |
|
62 |
} |
|
63 |
}; |
|
64 |
|
|
65 |
template<typename A, typename B> |
|
66 |
struct tensor_static_symgroup_multiply |
|
67 |
{ |
|
68 |
private: |
|
69 |
typedef typename A::indices iia; |
|
70 |
typedef typename B::indices iib; |
|
71 |
constexpr static int ffa = A::flags; |
|
72 |
constexpr static int ffb = B::flags; |
|
73 |
|
|
74 |
public: |
|
75 |
static_assert(iia::count == iib::count, "Cannot multiply symmetry elements with different number of indices."); |
|
76 |
|
|
77 |
typedef tensor_static_symgroup_element< |
|
78 |
decltype(tensor_static_symgroup_multiply_helper<iib>::helper(iia())), |
|
79 |
ffa ^ ffb |
|
80 |
> type; |
|
81 |
}; |
|
82 |
|
|
83 |
template<typename A, typename B> |
|
84 |
struct tensor_static_symgroup_equality |
|
85 |
{ |
|
86 |
typedef typename A::indices iia; |
|
87 |
typedef typename B::indices iib; |
|
88 |
constexpr static int ffa = A::flags; |
|
89 |
constexpr static int ffb = B::flags; |
|
90 |
static_assert(iia::count == iib::count, "Cannot compare symmetry elements with different number of indices."); |
|
91 |
|
|
92 |
constexpr static bool value = is_same<iia, iib>::value; |
|
93 |
|
|
94 |
private: |
|
95 |
/* this should be zero if they are identical, or else the tensor |
|
96 |
* will be forced to be pure real, pure imaginary or even pure zero |
|
97 |
*/ |
|
98 |
constexpr static int flags_cmp_ = ffa ^ ffb; |
|
99 |
|
|
100 |
/* either they are not equal, then we don't care whether the flags |
|
101 |
* match, or they are equal, and then we have to check |
|
102 |
*/ |
|
103 |
constexpr static bool is_zero = value && flags_cmp_ == NegationFlag; |
|
104 |
constexpr static bool is_real = value && flags_cmp_ == ConjugationFlag; |
|
105 |
constexpr static bool is_imag = value && flags_cmp_ == (NegationFlag | ConjugationFlag); |
|
106 |
|
|
107 |
public: |
|
108 |
constexpr static int global_flags = |
|
109 |
(is_real ? GlobalRealFlag : 0) | |
|
110 |
(is_imag ? GlobalImagFlag : 0) | |
|
111 |
(is_zero ? GlobalZeroFlag : 0); |
|
112 |
}; |
|
113 |
|
|
114 |
template<std::size_t NumIndices, typename... Gen> |
|
115 |
struct tensor_static_symgroup |
|
116 |
{ |
|
117 |
typedef StaticSGroup<Gen...> type; |
|
118 |
constexpr static std::size_t size = type::static_size; |
|
119 |
}; |
|
120 |
|
|
121 |
template<typename Index, std::size_t N, int... ii, int... jj> |
|
122 |
constexpr static inline std::array<Index, N> tensor_static_symgroup_index_permute(std::array<Index, N> idx, internal::numeric_list<int, ii...>, internal::numeric_list<int, jj...>) |
|
123 |
{ |
|
124 |
return {{ idx[ii]..., idx[jj]... }}; |
|
125 |
} |
|
126 |
|
|
127 |
template<typename Index, int... ii> |
|
128 |
static inline std::vector<Index> tensor_static_symgroup_index_permute(std::vector<Index> idx, internal::numeric_list<int, ii...>) |
|
129 |
{ |
|
130 |
std::vector<Index> result{{ idx[ii]... }}; |
|
131 |
std::size_t target_size = idx.size(); |
|
132 |
for (std::size_t i = result.size(); i < target_size; i++) |
|
133 |
result.push_back(idx[i]); |
|
134 |
return result; |
|
135 |
} |
|
136 |
|
|
137 |
template<typename T> struct tensor_static_symgroup_do_apply; |
|
138 |
|
|
139 |
template<typename first, typename... next> |
|
140 |
struct tensor_static_symgroup_do_apply<internal::type_list<first, next...>> |
|
141 |
{ |
|
142 |
template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args> |
|
143 |
static inline RV run(const std::array<Index, NumIndices>& idx, RV initial, Args&&... args) |
|
144 |
{ |
|
145 |
static_assert(NumIndices >= SGNumIndices, "Can only apply symmetry group to objects that have at least the required amount of indices."); |
|
146 |
typedef typename internal::gen_numeric_list<int, NumIndices - SGNumIndices, SGNumIndices>::type remaining_indices; |
|
147 |
initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices(), remaining_indices()), first::flags, initial, std::forward<Args>(args)...); |
|
148 |
return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...); |
|
149 |
} |
|
150 |
|
|
151 |
template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args> |
|
152 |
static inline RV run(const std::vector<Index>& idx, RV initial, Args&&... args) |
|
153 |
{ |
|
154 |
eigen_assert(idx.size() >= SGNumIndices && "Can only apply symmetry group to objects that have at least the required amount of indices."); |
|
155 |
initial = Op::run(tensor_static_symgroup_index_permute(idx, typename first::indices()), first::flags, initial, std::forward<Args>(args)...); |
|
156 |
return tensor_static_symgroup_do_apply<internal::type_list<next...>>::template run<Op, RV, SGNumIndices>(idx, initial, args...); |
|
157 |
} |
|
158 |
}; |
|
159 |
|
|
160 |
template<EIGEN_TPL_PP_SPEC_HACK_DEF(typename, empty)> |
|
161 |
struct tensor_static_symgroup_do_apply<internal::type_list<EIGEN_TPL_PP_SPEC_HACK_USE(empty)>> |
|
162 |
{ |
|
163 |
template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, std::size_t NumIndices, typename... Args> |
|
164 |
static inline RV run(const std::array<Index, NumIndices>&, RV initial, Args&&...) |
|
165 |
{ |
|
166 |
// do nothing |
|
167 |
return initial; |
|
168 |
} |
|
169 |
|
|
170 |
template<typename Op, typename RV, std::size_t SGNumIndices, typename Index, typename... Args> |
|
171 |
static inline RV run(const std::vector<Index>&, RV initial, Args&&...) |
|
172 |
{ |
|
173 |
// do nothing |
|
174 |
return initial; |
|
175 |
} |
|
176 |
}; |
|
177 |
|
|
178 |
} // end namespace internal |
|
179 |
|
|
180 |
template<typename... Gen> |
|
181 |
class StaticSGroup |
Formats disponibles : Unified diff