root / tmp / org.txm.analec.rcp / src matt / JamaPlus / EigenvalueDecomposition.java @ 2250
Historique | Voir | Annoter | Télécharger (27,12 ko)
| 1 | 481 | mdecorde | package JamaPlus; |
|---|---|---|---|
| 2 | 481 | mdecorde | import JamaPlus.util.*; |
| 3 | 481 | mdecorde | |
| 4 | 481 | mdecorde | /** Eigenvalues and eigenvectors of a real matrix.
|
| 5 | 481 | mdecorde | <P>
|
| 6 | 481 | mdecorde | If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
|
| 7 | 481 | mdecorde | diagonal and the eigenvector matrix V is orthogonal.
|
| 8 | 481 | mdecorde | I.e. A = V.times(D.times(V.transpose())) and
|
| 9 | 481 | mdecorde | V.times(V.transpose()) equals the identity matrix.
|
| 10 | 481 | mdecorde | <P>
|
| 11 | 481 | mdecorde | If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
| 12 | 481 | mdecorde | with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
| 13 | 481 | mdecorde | lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
| 14 | 481 | mdecorde | columns of V represent the eigenvectors in the sense that A*V = V*D,
|
| 15 | 481 | mdecorde | i.e. A.times(V) equals V.times(D). The matrix V may be badly
|
| 16 | 481 | mdecorde | conditioned, or even singular, so the validity of the equation
|
| 17 | 481 | mdecorde | A = V*D*inverse(V) depends upon V.cond().
|
| 18 | 481 | mdecorde | **/
|
| 19 | 481 | mdecorde | |
| 20 | 481 | mdecorde | public class EigenvalueDecomposition implements java.io.Serializable { |
| 21 | 481 | mdecorde | |
| 22 | 481 | mdecorde | /* ------------------------
|
| 23 | 481 | mdecorde | Class variables
|
| 24 | 481 | mdecorde | * ------------------------ */
|
| 25 | 481 | mdecorde | |
| 26 | 481 | mdecorde | /** Row and column dimension (square matrix).
|
| 27 | 481 | mdecorde | @serial matrix dimension.
|
| 28 | 481 | mdecorde | */
|
| 29 | 481 | mdecorde | private int n; |
| 30 | 481 | mdecorde | |
| 31 | 481 | mdecorde | /** Symmetry flag.
|
| 32 | 481 | mdecorde | @serial internal symmetry flag.
|
| 33 | 481 | mdecorde | */
|
| 34 | 481 | mdecorde | private boolean issymmetric; |
| 35 | 481 | mdecorde | |
| 36 | 481 | mdecorde | /** Arrays for internal storage of eigenvalues.
|
| 37 | 481 | mdecorde | @serial internal storage of eigenvalues.
|
| 38 | 481 | mdecorde | */
|
| 39 | 481 | mdecorde | private double[] d, e; |
| 40 | 481 | mdecorde | |
| 41 | 481 | mdecorde | /** Array for internal storage of eigenvectors.
|
| 42 | 481 | mdecorde | @serial internal storage of eigenvectors.
|
| 43 | 481 | mdecorde | */
|
| 44 | 481 | mdecorde | private double[][] V; |
| 45 | 481 | mdecorde | |
| 46 | 481 | mdecorde | /** Array for internal storage of nonsymmetric Hessenberg form.
|
| 47 | 481 | mdecorde | @serial internal storage of nonsymmetric Hessenberg form.
|
| 48 | 481 | mdecorde | */
|
| 49 | 481 | mdecorde | private double[][] H; |
| 50 | 481 | mdecorde | |
| 51 | 481 | mdecorde | /** Working storage for nonsymmetric algorithm.
|
| 52 | 481 | mdecorde | @serial working storage for nonsymmetric algorithm.
|
| 53 | 481 | mdecorde | */
|
| 54 | 481 | mdecorde | private double[] ort; |
| 55 | 481 | mdecorde | |
| 56 | 481 | mdecorde | /* ------------------------
|
| 57 | 481 | mdecorde | Private Methods
|
| 58 | 481 | mdecorde | * ------------------------ */
|
| 59 | 481 | mdecorde | |
| 60 | 481 | mdecorde | // Symmetric Householder reduction to tridiagonal form.
|
| 61 | 481 | mdecorde | |
| 62 | 481 | mdecorde | private void tred2 () { |
| 63 | 481 | mdecorde | |
| 64 | 481 | mdecorde | // This is derived from the Algol procedures tred2 by
|
| 65 | 481 | mdecorde | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
| 66 | 481 | mdecorde | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
| 67 | 481 | mdecorde | // Fortran subroutine in EISPACK.
|
| 68 | 481 | mdecorde | |
| 69 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 70 | 481 | mdecorde | d[j] = V[n-1][j];
|
| 71 | 481 | mdecorde | } |
| 72 | 481 | mdecorde | |
| 73 | 481 | mdecorde | // Householder reduction to tridiagonal form.
|
| 74 | 481 | mdecorde | |
| 75 | 481 | mdecorde | for (int i = n-1; i > 0; i--) { |
| 76 | 481 | mdecorde | |
| 77 | 481 | mdecorde | // Scale to avoid under/overflow.
|
| 78 | 481 | mdecorde | |
| 79 | 481 | mdecorde | double scale = 0.0; |
| 80 | 481 | mdecorde | double h = 0.0; |
| 81 | 481 | mdecorde | for (int k = 0; k < i; k++) { |
| 82 | 481 | mdecorde | scale = scale + Math.abs(d[k]);
|
| 83 | 481 | mdecorde | } |
| 84 | 481 | mdecorde | if (scale == 0.0) { |
| 85 | 481 | mdecorde | e[i] = d[i-1];
|
| 86 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
| 87 | 481 | mdecorde | d[j] = V[i-1][j];
|
| 88 | 481 | mdecorde | V[i][j] = 0.0;
|
| 89 | 481 | mdecorde | V[j][i] = 0.0;
|
| 90 | 481 | mdecorde | } |
| 91 | 481 | mdecorde | } else {
|
| 92 | 481 | mdecorde | |
| 93 | 481 | mdecorde | // Generate Householder vector.
|
| 94 | 481 | mdecorde | |
| 95 | 481 | mdecorde | for (int k = 0; k < i; k++) { |
| 96 | 481 | mdecorde | d[k] /= scale; |
| 97 | 481 | mdecorde | h += d[k] * d[k]; |
| 98 | 481 | mdecorde | } |
| 99 | 481 | mdecorde | double f = d[i-1]; |
| 100 | 481 | mdecorde | double g = Math.sqrt(h); |
| 101 | 481 | mdecorde | if (f > 0) { |
| 102 | 481 | mdecorde | g = -g; |
| 103 | 481 | mdecorde | } |
| 104 | 481 | mdecorde | e[i] = scale * g; |
| 105 | 481 | mdecorde | h = h - f * g; |
| 106 | 481 | mdecorde | d[i-1] = f - g;
|
| 107 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
| 108 | 481 | mdecorde | e[j] = 0.0;
|
| 109 | 481 | mdecorde | } |
| 110 | 481 | mdecorde | |
| 111 | 481 | mdecorde | // Apply similarity transformation to remaining columns.
|
| 112 | 481 | mdecorde | |
| 113 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
| 114 | 481 | mdecorde | f = d[j]; |
| 115 | 481 | mdecorde | V[j][i] = f; |
| 116 | 481 | mdecorde | g = e[j] + V[j][j] * f; |
| 117 | 481 | mdecorde | for (int k = j+1; k <= i-1; k++) { |
| 118 | 481 | mdecorde | g += V[k][j] * d[k]; |
| 119 | 481 | mdecorde | e[k] += V[k][j] * f; |
| 120 | 481 | mdecorde | } |
| 121 | 481 | mdecorde | e[j] = g; |
| 122 | 481 | mdecorde | } |
| 123 | 481 | mdecorde | f = 0.0;
|
| 124 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
| 125 | 481 | mdecorde | e[j] /= h; |
| 126 | 481 | mdecorde | f += e[j] * d[j]; |
| 127 | 481 | mdecorde | } |
| 128 | 481 | mdecorde | double hh = f / (h + h);
|
| 129 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
| 130 | 481 | mdecorde | e[j] -= hh * d[j]; |
| 131 | 481 | mdecorde | } |
| 132 | 481 | mdecorde | for (int j = 0; j < i; j++) { |
| 133 | 481 | mdecorde | f = d[j]; |
| 134 | 481 | mdecorde | g = e[j]; |
| 135 | 481 | mdecorde | for (int k = j; k <= i-1; k++) { |
| 136 | 481 | mdecorde | V[k][j] -= (f * e[k] + g * d[k]); |
| 137 | 481 | mdecorde | } |
| 138 | 481 | mdecorde | d[j] = V[i-1][j];
|
| 139 | 481 | mdecorde | V[i][j] = 0.0;
|
| 140 | 481 | mdecorde | } |
| 141 | 481 | mdecorde | } |
| 142 | 481 | mdecorde | d[i] = h; |
| 143 | 481 | mdecorde | } |
| 144 | 481 | mdecorde | |
| 145 | 481 | mdecorde | // Accumulate transformations.
|
| 146 | 481 | mdecorde | |
| 147 | 481 | mdecorde | for (int i = 0; i < n-1; i++) { |
| 148 | 481 | mdecorde | V[n-1][i] = V[i][i];
|
| 149 | 481 | mdecorde | V[i][i] = 1.0;
|
| 150 | 481 | mdecorde | double h = d[i+1]; |
| 151 | 481 | mdecorde | if (h != 0.0) { |
| 152 | 481 | mdecorde | for (int k = 0; k <= i; k++) { |
| 153 | 481 | mdecorde | d[k] = V[k][i+1] / h;
|
| 154 | 481 | mdecorde | } |
| 155 | 481 | mdecorde | for (int j = 0; j <= i; j++) { |
| 156 | 481 | mdecorde | double g = 0.0; |
| 157 | 481 | mdecorde | for (int k = 0; k <= i; k++) { |
| 158 | 481 | mdecorde | g += V[k][i+1] * V[k][j];
|
| 159 | 481 | mdecorde | } |
| 160 | 481 | mdecorde | for (int k = 0; k <= i; k++) { |
| 161 | 481 | mdecorde | V[k][j] -= g * d[k]; |
| 162 | 481 | mdecorde | } |
| 163 | 481 | mdecorde | } |
| 164 | 481 | mdecorde | } |
| 165 | 481 | mdecorde | for (int k = 0; k <= i; k++) { |
| 166 | 481 | mdecorde | V[k][i+1] = 0.0; |
| 167 | 481 | mdecorde | } |
| 168 | 481 | mdecorde | } |
| 169 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 170 | 481 | mdecorde | d[j] = V[n-1][j];
|
| 171 | 481 | mdecorde | V[n-1][j] = 0.0; |
| 172 | 481 | mdecorde | } |
| 173 | 481 | mdecorde | V[n-1][n-1] = 1.0; |
| 174 | 481 | mdecorde | e[0] = 0.0; |
| 175 | 481 | mdecorde | } |
| 176 | 481 | mdecorde | |
| 177 | 481 | mdecorde | // Symmetric tridiagonal QL algorithm.
|
| 178 | 481 | mdecorde | |
| 179 | 481 | mdecorde | private void tql2 () { |
| 180 | 481 | mdecorde | |
| 181 | 481 | mdecorde | // This is derived from the Algol procedures tql2, by
|
| 182 | 481 | mdecorde | // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
| 183 | 481 | mdecorde | // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
| 184 | 481 | mdecorde | // Fortran subroutine in EISPACK.
|
| 185 | 481 | mdecorde | |
| 186 | 481 | mdecorde | for (int i = 1; i < n; i++) { |
| 187 | 481 | mdecorde | e[i-1] = e[i];
|
| 188 | 481 | mdecorde | } |
| 189 | 481 | mdecorde | e[n-1] = 0.0; |
| 190 | 481 | mdecorde | |
| 191 | 481 | mdecorde | double f = 0.0; |
| 192 | 481 | mdecorde | double tst1 = 0.0; |
| 193 | 481 | mdecorde | double eps = Math.pow(2.0,-52.0); |
| 194 | 481 | mdecorde | for (int l = 0; l < n; l++) { |
| 195 | 481 | mdecorde | |
| 196 | 481 | mdecorde | // Find small subdiagonal element
|
| 197 | 481 | mdecorde | |
| 198 | 481 | mdecorde | tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l])); |
| 199 | 481 | mdecorde | int m = l;
|
| 200 | 481 | mdecorde | while (m < n) {
|
| 201 | 481 | mdecorde | if (Math.abs(e[m]) <= eps*tst1) { |
| 202 | 481 | mdecorde | break;
|
| 203 | 481 | mdecorde | } |
| 204 | 481 | mdecorde | m++; |
| 205 | 481 | mdecorde | } |
| 206 | 481 | mdecorde | |
| 207 | 481 | mdecorde | // If m == l, d[l] is an eigenvalue,
|
| 208 | 481 | mdecorde | // otherwise, iterate.
|
| 209 | 481 | mdecorde | |
| 210 | 481 | mdecorde | if (m > l) {
|
| 211 | 481 | mdecorde | int iter = 0; |
| 212 | 481 | mdecorde | do {
|
| 213 | 481 | mdecorde | iter = iter + 1; // (Could check iteration count here.) |
| 214 | 481 | mdecorde | |
| 215 | 481 | mdecorde | // Compute implicit shift
|
| 216 | 481 | mdecorde | |
| 217 | 481 | mdecorde | double g = d[l];
|
| 218 | 481 | mdecorde | double p = (d[l+1] - g) / (2.0 * e[l]); |
| 219 | 481 | mdecorde | double r = Math.hypot(p,1.0); |
| 220 | 481 | mdecorde | if (p < 0) { |
| 221 | 481 | mdecorde | r = -r; |
| 222 | 481 | mdecorde | } |
| 223 | 481 | mdecorde | d[l] = e[l] / (p + r); |
| 224 | 481 | mdecorde | d[l+1] = e[l] * (p + r);
|
| 225 | 481 | mdecorde | double dl1 = d[l+1]; |
| 226 | 481 | mdecorde | double h = g - d[l];
|
| 227 | 481 | mdecorde | for (int i = l+2; i < n; i++) { |
| 228 | 481 | mdecorde | d[i] -= h; |
| 229 | 481 | mdecorde | } |
| 230 | 481 | mdecorde | f = f + h; |
| 231 | 481 | mdecorde | |
| 232 | 481 | mdecorde | // Implicit QL transformation.
|
| 233 | 481 | mdecorde | |
| 234 | 481 | mdecorde | p = d[m]; |
| 235 | 481 | mdecorde | double c = 1.0; |
| 236 | 481 | mdecorde | double c2 = c;
|
| 237 | 481 | mdecorde | double c3 = c;
|
| 238 | 481 | mdecorde | double el1 = e[l+1]; |
| 239 | 481 | mdecorde | double s = 0.0; |
| 240 | 481 | mdecorde | double s2 = 0.0; |
| 241 | 481 | mdecorde | for (int i = m-1; i >= l; i--) { |
| 242 | 481 | mdecorde | c3 = c2; |
| 243 | 481 | mdecorde | c2 = c; |
| 244 | 481 | mdecorde | s2 = s; |
| 245 | 481 | mdecorde | g = c * e[i]; |
| 246 | 481 | mdecorde | h = c * p; |
| 247 | 481 | mdecorde | r = Math.hypot(p,e[i]);
|
| 248 | 481 | mdecorde | e[i+1] = s * r;
|
| 249 | 481 | mdecorde | s = e[i] / r; |
| 250 | 481 | mdecorde | c = p / r; |
| 251 | 481 | mdecorde | p = c * d[i] - s * g; |
| 252 | 481 | mdecorde | d[i+1] = h + s * (c * g + s * d[i]);
|
| 253 | 481 | mdecorde | |
| 254 | 481 | mdecorde | // Accumulate transformation.
|
| 255 | 481 | mdecorde | |
| 256 | 481 | mdecorde | for (int k = 0; k < n; k++) { |
| 257 | 481 | mdecorde | h = V[k][i+1];
|
| 258 | 481 | mdecorde | V[k][i+1] = s * V[k][i] + c * h;
|
| 259 | 481 | mdecorde | V[k][i] = c * V[k][i] - s * h; |
| 260 | 481 | mdecorde | } |
| 261 | 481 | mdecorde | } |
| 262 | 481 | mdecorde | p = -s * s2 * c3 * el1 * e[l] / dl1; |
| 263 | 481 | mdecorde | e[l] = s * p; |
| 264 | 481 | mdecorde | d[l] = c * p; |
| 265 | 481 | mdecorde | |
| 266 | 481 | mdecorde | // Check for convergence.
|
| 267 | 481 | mdecorde | |
| 268 | 481 | mdecorde | } while (Math.abs(e[l]) > eps*tst1); |
| 269 | 481 | mdecorde | } |
| 270 | 481 | mdecorde | d[l] = d[l] + f; |
| 271 | 481 | mdecorde | e[l] = 0.0;
|
| 272 | 481 | mdecorde | } |
| 273 | 481 | mdecorde | |
| 274 | 481 | mdecorde | // Sort eigenvalues and corresponding vectors.
|
| 275 | 481 | mdecorde | |
| 276 | 481 | mdecorde | for (int i = 0; i < n-1; i++) { |
| 277 | 481 | mdecorde | int k = i;
|
| 278 | 481 | mdecorde | double p = d[i];
|
| 279 | 481 | mdecorde | for (int j = i+1; j < n; j++) { |
| 280 | 481 | mdecorde | if (d[j] < p) {
|
| 281 | 481 | mdecorde | k = j; |
| 282 | 481 | mdecorde | p = d[j]; |
| 283 | 481 | mdecorde | } |
| 284 | 481 | mdecorde | } |
| 285 | 481 | mdecorde | if (k != i) {
|
| 286 | 481 | mdecorde | d[k] = d[i]; |
| 287 | 481 | mdecorde | d[i] = p; |
| 288 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 289 | 481 | mdecorde | p = V[j][i]; |
| 290 | 481 | mdecorde | V[j][i] = V[j][k]; |
| 291 | 481 | mdecorde | V[j][k] = p; |
| 292 | 481 | mdecorde | } |
| 293 | 481 | mdecorde | } |
| 294 | 481 | mdecorde | } |
| 295 | 481 | mdecorde | } |
| 296 | 481 | mdecorde | |
| 297 | 481 | mdecorde | // Nonsymmetric reduction to Hessenberg form.
|
| 298 | 481 | mdecorde | |
| 299 | 481 | mdecorde | private void orthes () { |
| 300 | 481 | mdecorde | |
| 301 | 481 | mdecorde | // This is derived from the Algol procedures orthes and ortran,
|
| 302 | 481 | mdecorde | // by Martin and Wilkinson, Handbook for Auto. Comp.,
|
| 303 | 481 | mdecorde | // Vol.ii-Linear Algebra, and the corresponding
|
| 304 | 481 | mdecorde | // Fortran subroutines in EISPACK.
|
| 305 | 481 | mdecorde | |
| 306 | 481 | mdecorde | int low = 0; |
| 307 | 481 | mdecorde | int high = n-1; |
| 308 | 481 | mdecorde | |
| 309 | 481 | mdecorde | for (int m = low+1; m <= high-1; m++) { |
| 310 | 481 | mdecorde | |
| 311 | 481 | mdecorde | // Scale column.
|
| 312 | 481 | mdecorde | |
| 313 | 481 | mdecorde | double scale = 0.0; |
| 314 | 481 | mdecorde | for (int i = m; i <= high; i++) { |
| 315 | 481 | mdecorde | scale = scale + Math.abs(H[i][m-1]); |
| 316 | 481 | mdecorde | } |
| 317 | 481 | mdecorde | if (scale != 0.0) { |
| 318 | 481 | mdecorde | |
| 319 | 481 | mdecorde | // Compute Householder transformation.
|
| 320 | 481 | mdecorde | |
| 321 | 481 | mdecorde | double h = 0.0; |
| 322 | 481 | mdecorde | for (int i = high; i >= m; i--) { |
| 323 | 481 | mdecorde | ort[i] = H[i][m-1]/scale;
|
| 324 | 481 | mdecorde | h += ort[i] * ort[i]; |
| 325 | 481 | mdecorde | } |
| 326 | 481 | mdecorde | double g = Math.sqrt(h); |
| 327 | 481 | mdecorde | if (ort[m] > 0) { |
| 328 | 481 | mdecorde | g = -g; |
| 329 | 481 | mdecorde | } |
| 330 | 481 | mdecorde | h = h - ort[m] * g; |
| 331 | 481 | mdecorde | ort[m] = ort[m] - g; |
| 332 | 481 | mdecorde | |
| 333 | 481 | mdecorde | // Apply Householder similarity transformation
|
| 334 | 481 | mdecorde | // H = (I-u*u'/h)*H*(I-u*u')/h)
|
| 335 | 481 | mdecorde | |
| 336 | 481 | mdecorde | for (int j = m; j < n; j++) { |
| 337 | 481 | mdecorde | double f = 0.0; |
| 338 | 481 | mdecorde | for (int i = high; i >= m; i--) { |
| 339 | 481 | mdecorde | f += ort[i]*H[i][j]; |
| 340 | 481 | mdecorde | } |
| 341 | 481 | mdecorde | f = f/h; |
| 342 | 481 | mdecorde | for (int i = m; i <= high; i++) { |
| 343 | 481 | mdecorde | H[i][j] -= f*ort[i]; |
| 344 | 481 | mdecorde | } |
| 345 | 481 | mdecorde | } |
| 346 | 481 | mdecorde | |
| 347 | 481 | mdecorde | for (int i = 0; i <= high; i++) { |
| 348 | 481 | mdecorde | double f = 0.0; |
| 349 | 481 | mdecorde | for (int j = high; j >= m; j--) { |
| 350 | 481 | mdecorde | f += ort[j]*H[i][j]; |
| 351 | 481 | mdecorde | } |
| 352 | 481 | mdecorde | f = f/h; |
| 353 | 481 | mdecorde | for (int j = m; j <= high; j++) { |
| 354 | 481 | mdecorde | H[i][j] -= f*ort[j]; |
| 355 | 481 | mdecorde | } |
| 356 | 481 | mdecorde | } |
| 357 | 481 | mdecorde | ort[m] = scale*ort[m]; |
| 358 | 481 | mdecorde | H[m][m-1] = scale*g;
|
| 359 | 481 | mdecorde | } |
| 360 | 481 | mdecorde | } |
| 361 | 481 | mdecorde | |
| 362 | 481 | mdecorde | // Accumulate transformations (Algol's ortran).
|
| 363 | 481 | mdecorde | |
| 364 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
| 365 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 366 | 481 | mdecorde | V[i][j] = (i == j ? 1.0 : 0.0); |
| 367 | 481 | mdecorde | } |
| 368 | 481 | mdecorde | } |
| 369 | 481 | mdecorde | |
| 370 | 481 | mdecorde | for (int m = high-1; m >= low+1; m--) { |
| 371 | 481 | mdecorde | if (H[m][m-1] != 0.0) { |
| 372 | 481 | mdecorde | for (int i = m+1; i <= high; i++) { |
| 373 | 481 | mdecorde | ort[i] = H[i][m-1];
|
| 374 | 481 | mdecorde | } |
| 375 | 481 | mdecorde | for (int j = m; j <= high; j++) { |
| 376 | 481 | mdecorde | double g = 0.0; |
| 377 | 481 | mdecorde | for (int i = m; i <= high; i++) { |
| 378 | 481 | mdecorde | g += ort[i] * V[i][j]; |
| 379 | 481 | mdecorde | } |
| 380 | 481 | mdecorde | // Double division avoids possible underflow
|
| 381 | 481 | mdecorde | g = (g / ort[m]) / H[m][m-1];
|
| 382 | 481 | mdecorde | for (int i = m; i <= high; i++) { |
| 383 | 481 | mdecorde | V[i][j] += g * ort[i]; |
| 384 | 481 | mdecorde | } |
| 385 | 481 | mdecorde | } |
| 386 | 481 | mdecorde | } |
| 387 | 481 | mdecorde | } |
| 388 | 481 | mdecorde | } |
| 389 | 481 | mdecorde | |
| 390 | 481 | mdecorde | |
| 391 | 481 | mdecorde | // Complex scalar division.
|
| 392 | 481 | mdecorde | |
| 393 | 481 | mdecorde | private transient double cdivr, cdivi; |
| 394 | 481 | mdecorde | private void cdiv(double xr, double xi, double yr, double yi) { |
| 395 | 481 | mdecorde | double r,d;
|
| 396 | 481 | mdecorde | if (Math.abs(yr) > Math.abs(yi)) { |
| 397 | 481 | mdecorde | r = yi/yr; |
| 398 | 481 | mdecorde | d = yr + r*yi; |
| 399 | 481 | mdecorde | cdivr = (xr + r*xi)/d; |
| 400 | 481 | mdecorde | cdivi = (xi - r*xr)/d; |
| 401 | 481 | mdecorde | } else {
|
| 402 | 481 | mdecorde | r = yr/yi; |
| 403 | 481 | mdecorde | d = yi + r*yr; |
| 404 | 481 | mdecorde | cdivr = (r*xr + xi)/d; |
| 405 | 481 | mdecorde | cdivi = (r*xi - xr)/d; |
| 406 | 481 | mdecorde | } |
| 407 | 481 | mdecorde | } |
| 408 | 481 | mdecorde | |
| 409 | 481 | mdecorde | |
| 410 | 481 | mdecorde | // Nonsymmetric reduction from Hessenberg to real Schur form.
|
| 411 | 481 | mdecorde | |
| 412 | 481 | mdecorde | private void hqr2 () { |
| 413 | 481 | mdecorde | |
| 414 | 481 | mdecorde | // This is derived from the Algol procedure hqr2,
|
| 415 | 481 | mdecorde | // by Martin and Wilkinson, Handbook for Auto. Comp.,
|
| 416 | 481 | mdecorde | // Vol.ii-Linear Algebra, and the corresponding
|
| 417 | 481 | mdecorde | // Fortran subroutine in EISPACK.
|
| 418 | 481 | mdecorde | |
| 419 | 481 | mdecorde | // Initialize
|
| 420 | 481 | mdecorde | |
| 421 | 481 | mdecorde | int nn = this.n; |
| 422 | 481 | mdecorde | int n = nn-1; |
| 423 | 481 | mdecorde | int low = 0; |
| 424 | 481 | mdecorde | int high = nn-1; |
| 425 | 481 | mdecorde | double eps = Math.pow(2.0,-52.0); |
| 426 | 481 | mdecorde | double exshift = 0.0; |
| 427 | 481 | mdecorde | double p=0,q=0,r=0,s=0,z=0,t,w,x,y; |
| 428 | 481 | mdecorde | |
| 429 | 481 | mdecorde | // Store roots isolated by balanc and compute matrix norm
|
| 430 | 481 | mdecorde | |
| 431 | 481 | mdecorde | double norm = 0.0; |
| 432 | 481 | mdecorde | for (int i = 0; i < nn; i++) { |
| 433 | 481 | mdecorde | if (i < low | i > high) {
|
| 434 | 481 | mdecorde | d[i] = H[i][i]; |
| 435 | 481 | mdecorde | e[i] = 0.0;
|
| 436 | 481 | mdecorde | } |
| 437 | 481 | mdecorde | for (int j = Math.max(i-1,0); j < nn; j++) { |
| 438 | 481 | mdecorde | norm = norm + Math.abs(H[i][j]);
|
| 439 | 481 | mdecorde | } |
| 440 | 481 | mdecorde | } |
| 441 | 481 | mdecorde | |
| 442 | 481 | mdecorde | // Outer loop over eigenvalue index
|
| 443 | 481 | mdecorde | |
| 444 | 481 | mdecorde | int iter = 0; |
| 445 | 481 | mdecorde | while (n >= low) {
|
| 446 | 481 | mdecorde | |
| 447 | 481 | mdecorde | // Look for single small sub-diagonal element
|
| 448 | 481 | mdecorde | |
| 449 | 481 | mdecorde | int l = n;
|
| 450 | 481 | mdecorde | while (l > low) {
|
| 451 | 481 | mdecorde | s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]); |
| 452 | 481 | mdecorde | if (s == 0.0) { |
| 453 | 481 | mdecorde | s = norm; |
| 454 | 481 | mdecorde | } |
| 455 | 481 | mdecorde | if (Math.abs(H[l][l-1]) < eps * s) { |
| 456 | 481 | mdecorde | break;
|
| 457 | 481 | mdecorde | } |
| 458 | 481 | mdecorde | l--; |
| 459 | 481 | mdecorde | } |
| 460 | 481 | mdecorde | |
| 461 | 481 | mdecorde | // Check for convergence
|
| 462 | 481 | mdecorde | // One root found
|
| 463 | 481 | mdecorde | |
| 464 | 481 | mdecorde | if (l == n) {
|
| 465 | 481 | mdecorde | H[n][n] = H[n][n] + exshift; |
| 466 | 481 | mdecorde | d[n] = H[n][n]; |
| 467 | 481 | mdecorde | e[n] = 0.0;
|
| 468 | 481 | mdecorde | n--; |
| 469 | 481 | mdecorde | iter = 0;
|
| 470 | 481 | mdecorde | |
| 471 | 481 | mdecorde | // Two roots found
|
| 472 | 481 | mdecorde | |
| 473 | 481 | mdecorde | } else if (l == n-1) { |
| 474 | 481 | mdecorde | w = H[n][n-1] * H[n-1][n]; |
| 475 | 481 | mdecorde | p = (H[n-1][n-1] - H[n][n]) / 2.0; |
| 476 | 481 | mdecorde | q = p * p + w; |
| 477 | 481 | mdecorde | z = Math.sqrt(Math.abs(q)); |
| 478 | 481 | mdecorde | H[n][n] = H[n][n] + exshift; |
| 479 | 481 | mdecorde | H[n-1][n-1] = H[n-1][n-1] + exshift; |
| 480 | 481 | mdecorde | x = H[n][n]; |
| 481 | 481 | mdecorde | |
| 482 | 481 | mdecorde | // Real pair
|
| 483 | 481 | mdecorde | |
| 484 | 481 | mdecorde | if (q >= 0) { |
| 485 | 481 | mdecorde | if (p >= 0) { |
| 486 | 481 | mdecorde | z = p + z; |
| 487 | 481 | mdecorde | } else {
|
| 488 | 481 | mdecorde | z = p - z; |
| 489 | 481 | mdecorde | } |
| 490 | 481 | mdecorde | d[n-1] = x + z;
|
| 491 | 481 | mdecorde | d[n] = d[n-1];
|
| 492 | 481 | mdecorde | if (z != 0.0) { |
| 493 | 481 | mdecorde | d[n] = x - w / z; |
| 494 | 481 | mdecorde | } |
| 495 | 481 | mdecorde | e[n-1] = 0.0; |
| 496 | 481 | mdecorde | e[n] = 0.0;
|
| 497 | 481 | mdecorde | x = H[n][n-1];
|
| 498 | 481 | mdecorde | s = Math.abs(x) + Math.abs(z); |
| 499 | 481 | mdecorde | p = x / s; |
| 500 | 481 | mdecorde | q = z / s; |
| 501 | 481 | mdecorde | r = Math.sqrt(p * p+q * q);
|
| 502 | 481 | mdecorde | p = p / r; |
| 503 | 481 | mdecorde | q = q / r; |
| 504 | 481 | mdecorde | |
| 505 | 481 | mdecorde | // Row modification
|
| 506 | 481 | mdecorde | |
| 507 | 481 | mdecorde | for (int j = n-1; j < nn; j++) { |
| 508 | 481 | mdecorde | z = H[n-1][j];
|
| 509 | 481 | mdecorde | H[n-1][j] = q * z + p * H[n][j];
|
| 510 | 481 | mdecorde | H[n][j] = q * H[n][j] - p * z; |
| 511 | 481 | mdecorde | } |
| 512 | 481 | mdecorde | |
| 513 | 481 | mdecorde | // Column modification
|
| 514 | 481 | mdecorde | |
| 515 | 481 | mdecorde | for (int i = 0; i <= n; i++) { |
| 516 | 481 | mdecorde | z = H[i][n-1];
|
| 517 | 481 | mdecorde | H[i][n-1] = q * z + p * H[i][n];
|
| 518 | 481 | mdecorde | H[i][n] = q * H[i][n] - p * z; |
| 519 | 481 | mdecorde | } |
| 520 | 481 | mdecorde | |
| 521 | 481 | mdecorde | // Accumulate transformations
|
| 522 | 481 | mdecorde | |
| 523 | 481 | mdecorde | for (int i = low; i <= high; i++) { |
| 524 | 481 | mdecorde | z = V[i][n-1];
|
| 525 | 481 | mdecorde | V[i][n-1] = q * z + p * V[i][n];
|
| 526 | 481 | mdecorde | V[i][n] = q * V[i][n] - p * z; |
| 527 | 481 | mdecorde | } |
| 528 | 481 | mdecorde | |
| 529 | 481 | mdecorde | // Complex pair
|
| 530 | 481 | mdecorde | |
| 531 | 481 | mdecorde | } else {
|
| 532 | 481 | mdecorde | d[n-1] = x + p;
|
| 533 | 481 | mdecorde | d[n] = x + p; |
| 534 | 481 | mdecorde | e[n-1] = z;
|
| 535 | 481 | mdecorde | e[n] = -z; |
| 536 | 481 | mdecorde | } |
| 537 | 481 | mdecorde | n = n - 2;
|
| 538 | 481 | mdecorde | iter = 0;
|
| 539 | 481 | mdecorde | |
| 540 | 481 | mdecorde | // No convergence yet
|
| 541 | 481 | mdecorde | |
| 542 | 481 | mdecorde | } else {
|
| 543 | 481 | mdecorde | |
| 544 | 481 | mdecorde | // Form shift
|
| 545 | 481 | mdecorde | |
| 546 | 481 | mdecorde | x = H[n][n]; |
| 547 | 481 | mdecorde | y = 0.0;
|
| 548 | 481 | mdecorde | w = 0.0;
|
| 549 | 481 | mdecorde | if (l < n) {
|
| 550 | 481 | mdecorde | y = H[n-1][n-1]; |
| 551 | 481 | mdecorde | w = H[n][n-1] * H[n-1][n]; |
| 552 | 481 | mdecorde | } |
| 553 | 481 | mdecorde | |
| 554 | 481 | mdecorde | // Wilkinson's original ad hoc shift
|
| 555 | 481 | mdecorde | |
| 556 | 481 | mdecorde | if (iter == 10) { |
| 557 | 481 | mdecorde | exshift += x; |
| 558 | 481 | mdecorde | for (int i = low; i <= n; i++) { |
| 559 | 481 | mdecorde | H[i][i] -= x; |
| 560 | 481 | mdecorde | } |
| 561 | 481 | mdecorde | s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]); |
| 562 | 481 | mdecorde | x = y = 0.75 * s;
|
| 563 | 481 | mdecorde | w = -0.4375 * s * s;
|
| 564 | 481 | mdecorde | } |
| 565 | 481 | mdecorde | |
| 566 | 481 | mdecorde | // MATLAB's new ad hoc shift
|
| 567 | 481 | mdecorde | |
| 568 | 481 | mdecorde | if (iter == 30) { |
| 569 | 481 | mdecorde | s = (y - x) / 2.0;
|
| 570 | 481 | mdecorde | s = s * s + w; |
| 571 | 481 | mdecorde | if (s > 0) { |
| 572 | 481 | mdecorde | s = Math.sqrt(s);
|
| 573 | 481 | mdecorde | if (y < x) {
|
| 574 | 481 | mdecorde | s = -s; |
| 575 | 481 | mdecorde | } |
| 576 | 481 | mdecorde | s = x - w / ((y - x) / 2.0 + s);
|
| 577 | 481 | mdecorde | for (int i = low; i <= n; i++) { |
| 578 | 481 | mdecorde | H[i][i] -= s; |
| 579 | 481 | mdecorde | } |
| 580 | 481 | mdecorde | exshift += s; |
| 581 | 481 | mdecorde | x = y = w = 0.964;
|
| 582 | 481 | mdecorde | } |
| 583 | 481 | mdecorde | } |
| 584 | 481 | mdecorde | |
| 585 | 481 | mdecorde | iter = iter + 1; // (Could check iteration count here.) |
| 586 | 481 | mdecorde | |
| 587 | 481 | mdecorde | // Look for two consecutive small sub-diagonal elements
|
| 588 | 481 | mdecorde | |
| 589 | 481 | mdecorde | int m = n-2; |
| 590 | 481 | mdecorde | while (m >= l) {
|
| 591 | 481 | mdecorde | z = H[m][m]; |
| 592 | 481 | mdecorde | r = x - z; |
| 593 | 481 | mdecorde | s = y - z; |
| 594 | 481 | mdecorde | p = (r * s - w) / H[m+1][m] + H[m][m+1]; |
| 595 | 481 | mdecorde | q = H[m+1][m+1] - z - r - s; |
| 596 | 481 | mdecorde | r = H[m+2][m+1]; |
| 597 | 481 | mdecorde | s = Math.abs(p) + Math.abs(q) + Math.abs(r); |
| 598 | 481 | mdecorde | p = p / s; |
| 599 | 481 | mdecorde | q = q / s; |
| 600 | 481 | mdecorde | r = r / s; |
| 601 | 481 | mdecorde | if (m == l) {
|
| 602 | 481 | mdecorde | break;
|
| 603 | 481 | mdecorde | } |
| 604 | 481 | mdecorde | if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) < |
| 605 | 481 | mdecorde | eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) + |
| 606 | 481 | mdecorde | Math.abs(H[m+1][m+1])))) { |
| 607 | 481 | mdecorde | break;
|
| 608 | 481 | mdecorde | } |
| 609 | 481 | mdecorde | m--; |
| 610 | 481 | mdecorde | } |
| 611 | 481 | mdecorde | |
| 612 | 481 | mdecorde | for (int i = m+2; i <= n; i++) { |
| 613 | 481 | mdecorde | H[i][i-2] = 0.0; |
| 614 | 481 | mdecorde | if (i > m+2) { |
| 615 | 481 | mdecorde | H[i][i-3] = 0.0; |
| 616 | 481 | mdecorde | } |
| 617 | 481 | mdecorde | } |
| 618 | 481 | mdecorde | |
| 619 | 481 | mdecorde | // Double QR step involving rows l:n and columns m:n
|
| 620 | 481 | mdecorde | |
| 621 | 481 | mdecorde | for (int k = m; k <= n-1; k++) { |
| 622 | 481 | mdecorde | boolean notlast = (k != n-1); |
| 623 | 481 | mdecorde | if (k != m) {
|
| 624 | 481 | mdecorde | p = H[k][k-1];
|
| 625 | 481 | mdecorde | q = H[k+1][k-1]; |
| 626 | 481 | mdecorde | r = (notlast ? H[k+2][k-1] : 0.0); |
| 627 | 481 | mdecorde | x = Math.abs(p) + Math.abs(q) + Math.abs(r); |
| 628 | 481 | mdecorde | if (x != 0.0) { |
| 629 | 481 | mdecorde | p = p / x; |
| 630 | 481 | mdecorde | q = q / x; |
| 631 | 481 | mdecorde | r = r / x; |
| 632 | 481 | mdecorde | } |
| 633 | 481 | mdecorde | } |
| 634 | 481 | mdecorde | if (x == 0.0) { |
| 635 | 481 | mdecorde | break;
|
| 636 | 481 | mdecorde | } |
| 637 | 481 | mdecorde | s = Math.sqrt(p * p + q * q + r * r);
|
| 638 | 481 | mdecorde | if (p < 0) { |
| 639 | 481 | mdecorde | s = -s; |
| 640 | 481 | mdecorde | } |
| 641 | 481 | mdecorde | if (s != 0) { |
| 642 | 481 | mdecorde | if (k != m) {
|
| 643 | 481 | mdecorde | H[k][k-1] = -s * x;
|
| 644 | 481 | mdecorde | } else if (l != m) { |
| 645 | 481 | mdecorde | H[k][k-1] = -H[k][k-1]; |
| 646 | 481 | mdecorde | } |
| 647 | 481 | mdecorde | p = p + s; |
| 648 | 481 | mdecorde | x = p / s; |
| 649 | 481 | mdecorde | y = q / s; |
| 650 | 481 | mdecorde | z = r / s; |
| 651 | 481 | mdecorde | q = q / p; |
| 652 | 481 | mdecorde | r = r / p; |
| 653 | 481 | mdecorde | |
| 654 | 481 | mdecorde | // Row modification
|
| 655 | 481 | mdecorde | |
| 656 | 481 | mdecorde | for (int j = k; j < nn; j++) { |
| 657 | 481 | mdecorde | p = H[k][j] + q * H[k+1][j];
|
| 658 | 481 | mdecorde | if (notlast) {
|
| 659 | 481 | mdecorde | p = p + r * H[k+2][j];
|
| 660 | 481 | mdecorde | H[k+2][j] = H[k+2][j] - p * z; |
| 661 | 481 | mdecorde | } |
| 662 | 481 | mdecorde | H[k][j] = H[k][j] - p * x; |
| 663 | 481 | mdecorde | H[k+1][j] = H[k+1][j] - p * y; |
| 664 | 481 | mdecorde | } |
| 665 | 481 | mdecorde | |
| 666 | 481 | mdecorde | // Column modification
|
| 667 | 481 | mdecorde | |
| 668 | 481 | mdecorde | for (int i = 0; i <= Math.min(n,k+3); i++) { |
| 669 | 481 | mdecorde | p = x * H[i][k] + y * H[i][k+1];
|
| 670 | 481 | mdecorde | if (notlast) {
|
| 671 | 481 | mdecorde | p = p + z * H[i][k+2];
|
| 672 | 481 | mdecorde | H[i][k+2] = H[i][k+2] - p * r; |
| 673 | 481 | mdecorde | } |
| 674 | 481 | mdecorde | H[i][k] = H[i][k] - p; |
| 675 | 481 | mdecorde | H[i][k+1] = H[i][k+1] - p * q; |
| 676 | 481 | mdecorde | } |
| 677 | 481 | mdecorde | |
| 678 | 481 | mdecorde | // Accumulate transformations
|
| 679 | 481 | mdecorde | |
| 680 | 481 | mdecorde | for (int i = low; i <= high; i++) { |
| 681 | 481 | mdecorde | p = x * V[i][k] + y * V[i][k+1];
|
| 682 | 481 | mdecorde | if (notlast) {
|
| 683 | 481 | mdecorde | p = p + z * V[i][k+2];
|
| 684 | 481 | mdecorde | V[i][k+2] = V[i][k+2] - p * r; |
| 685 | 481 | mdecorde | } |
| 686 | 481 | mdecorde | V[i][k] = V[i][k] - p; |
| 687 | 481 | mdecorde | V[i][k+1] = V[i][k+1] - p * q; |
| 688 | 481 | mdecorde | } |
| 689 | 481 | mdecorde | } // (s != 0)
|
| 690 | 481 | mdecorde | } // k loop
|
| 691 | 481 | mdecorde | } // check convergence
|
| 692 | 481 | mdecorde | } // while (n >= low)
|
| 693 | 481 | mdecorde | |
| 694 | 481 | mdecorde | // Backsubstitute to find vectors of upper triangular form
|
| 695 | 481 | mdecorde | |
| 696 | 481 | mdecorde | if (norm == 0.0) { |
| 697 | 481 | mdecorde | return;
|
| 698 | 481 | mdecorde | } |
| 699 | 481 | mdecorde | |
| 700 | 481 | mdecorde | for (n = nn-1; n >= 0; n--) { |
| 701 | 481 | mdecorde | p = d[n]; |
| 702 | 481 | mdecorde | q = e[n]; |
| 703 | 481 | mdecorde | |
| 704 | 481 | mdecorde | // Real vector
|
| 705 | 481 | mdecorde | |
| 706 | 481 | mdecorde | if (q == 0) { |
| 707 | 481 | mdecorde | int l = n;
|
| 708 | 481 | mdecorde | H[n][n] = 1.0;
|
| 709 | 481 | mdecorde | for (int i = n-1; i >= 0; i--) { |
| 710 | 481 | mdecorde | w = H[i][i] - p; |
| 711 | 481 | mdecorde | r = 0.0;
|
| 712 | 481 | mdecorde | for (int j = l; j <= n; j++) { |
| 713 | 481 | mdecorde | r = r + H[i][j] * H[j][n]; |
| 714 | 481 | mdecorde | } |
| 715 | 481 | mdecorde | if (e[i] < 0.0) { |
| 716 | 481 | mdecorde | z = w; |
| 717 | 481 | mdecorde | s = r; |
| 718 | 481 | mdecorde | } else {
|
| 719 | 481 | mdecorde | l = i; |
| 720 | 481 | mdecorde | if (e[i] == 0.0) { |
| 721 | 481 | mdecorde | if (w != 0.0) { |
| 722 | 481 | mdecorde | H[i][n] = -r / w; |
| 723 | 481 | mdecorde | } else {
|
| 724 | 481 | mdecorde | H[i][n] = -r / (eps * norm); |
| 725 | 481 | mdecorde | } |
| 726 | 481 | mdecorde | |
| 727 | 481 | mdecorde | // Solve real equations
|
| 728 | 481 | mdecorde | |
| 729 | 481 | mdecorde | } else {
|
| 730 | 481 | mdecorde | x = H[i][i+1];
|
| 731 | 481 | mdecorde | y = H[i+1][i];
|
| 732 | 481 | mdecorde | q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
| 733 | 481 | mdecorde | t = (x * s - z * r) / q; |
| 734 | 481 | mdecorde | H[i][n] = t; |
| 735 | 481 | mdecorde | if (Math.abs(x) > Math.abs(z)) { |
| 736 | 481 | mdecorde | H[i+1][n] = (-r - w * t) / x;
|
| 737 | 481 | mdecorde | } else {
|
| 738 | 481 | mdecorde | H[i+1][n] = (-s - y * t) / z;
|
| 739 | 481 | mdecorde | } |
| 740 | 481 | mdecorde | } |
| 741 | 481 | mdecorde | |
| 742 | 481 | mdecorde | // Overflow control
|
| 743 | 481 | mdecorde | |
| 744 | 481 | mdecorde | t = Math.abs(H[i][n]);
|
| 745 | 481 | mdecorde | if ((eps * t) * t > 1) { |
| 746 | 481 | mdecorde | for (int j = i; j <= n; j++) { |
| 747 | 481 | mdecorde | H[j][n] = H[j][n] / t; |
| 748 | 481 | mdecorde | } |
| 749 | 481 | mdecorde | } |
| 750 | 481 | mdecorde | } |
| 751 | 481 | mdecorde | } |
| 752 | 481 | mdecorde | |
| 753 | 481 | mdecorde | // Complex vector
|
| 754 | 481 | mdecorde | |
| 755 | 481 | mdecorde | } else if (q < 0) { |
| 756 | 481 | mdecorde | int l = n-1; |
| 757 | 481 | mdecorde | |
| 758 | 481 | mdecorde | // Last vector component imaginary so matrix is triangular
|
| 759 | 481 | mdecorde | |
| 760 | 481 | mdecorde | if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) { |
| 761 | 481 | mdecorde | H[n-1][n-1] = q / H[n][n-1]; |
| 762 | 481 | mdecorde | H[n-1][n] = -(H[n][n] - p) / H[n][n-1]; |
| 763 | 481 | mdecorde | } else {
|
| 764 | 481 | mdecorde | cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q); |
| 765 | 481 | mdecorde | H[n-1][n-1] = cdivr; |
| 766 | 481 | mdecorde | H[n-1][n] = cdivi;
|
| 767 | 481 | mdecorde | } |
| 768 | 481 | mdecorde | H[n][n-1] = 0.0; |
| 769 | 481 | mdecorde | H[n][n] = 1.0;
|
| 770 | 481 | mdecorde | for (int i = n-2; i >= 0; i--) { |
| 771 | 481 | mdecorde | double ra,sa,vr,vi;
|
| 772 | 481 | mdecorde | ra = 0.0;
|
| 773 | 481 | mdecorde | sa = 0.0;
|
| 774 | 481 | mdecorde | for (int j = l; j <= n; j++) { |
| 775 | 481 | mdecorde | ra = ra + H[i][j] * H[j][n-1];
|
| 776 | 481 | mdecorde | sa = sa + H[i][j] * H[j][n]; |
| 777 | 481 | mdecorde | } |
| 778 | 481 | mdecorde | w = H[i][i] - p; |
| 779 | 481 | mdecorde | |
| 780 | 481 | mdecorde | if (e[i] < 0.0) { |
| 781 | 481 | mdecorde | z = w; |
| 782 | 481 | mdecorde | r = ra; |
| 783 | 481 | mdecorde | s = sa; |
| 784 | 481 | mdecorde | } else {
|
| 785 | 481 | mdecorde | l = i; |
| 786 | 481 | mdecorde | if (e[i] == 0) { |
| 787 | 481 | mdecorde | cdiv(-ra,-sa,w,q); |
| 788 | 481 | mdecorde | H[i][n-1] = cdivr;
|
| 789 | 481 | mdecorde | H[i][n] = cdivi; |
| 790 | 481 | mdecorde | } else {
|
| 791 | 481 | mdecorde | |
| 792 | 481 | mdecorde | // Solve complex equations
|
| 793 | 481 | mdecorde | |
| 794 | 481 | mdecorde | x = H[i][i+1];
|
| 795 | 481 | mdecorde | y = H[i+1][i];
|
| 796 | 481 | mdecorde | vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
| 797 | 481 | mdecorde | vi = (d[i] - p) * 2.0 * q;
|
| 798 | 481 | mdecorde | if (vr == 0.0 & vi == 0.0) { |
| 799 | 481 | mdecorde | vr = eps * norm * (Math.abs(w) + Math.abs(q) + |
| 800 | 481 | mdecorde | Math.abs(x) + Math.abs(y) + Math.abs(z)); |
| 801 | 481 | mdecorde | } |
| 802 | 481 | mdecorde | cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); |
| 803 | 481 | mdecorde | H[i][n-1] = cdivr;
|
| 804 | 481 | mdecorde | H[i][n] = cdivi; |
| 805 | 481 | mdecorde | if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) { |
| 806 | 481 | mdecorde | H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x; |
| 807 | 481 | mdecorde | H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x; |
| 808 | 481 | mdecorde | } else {
|
| 809 | 481 | mdecorde | cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
|
| 810 | 481 | mdecorde | H[i+1][n-1] = cdivr; |
| 811 | 481 | mdecorde | H[i+1][n] = cdivi;
|
| 812 | 481 | mdecorde | } |
| 813 | 481 | mdecorde | } |
| 814 | 481 | mdecorde | |
| 815 | 481 | mdecorde | // Overflow control
|
| 816 | 481 | mdecorde | |
| 817 | 481 | mdecorde | t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n])); |
| 818 | 481 | mdecorde | if ((eps * t) * t > 1) { |
| 819 | 481 | mdecorde | for (int j = i; j <= n; j++) { |
| 820 | 481 | mdecorde | H[j][n-1] = H[j][n-1] / t; |
| 821 | 481 | mdecorde | H[j][n] = H[j][n] / t; |
| 822 | 481 | mdecorde | } |
| 823 | 481 | mdecorde | } |
| 824 | 481 | mdecorde | } |
| 825 | 481 | mdecorde | } |
| 826 | 481 | mdecorde | } |
| 827 | 481 | mdecorde | } |
| 828 | 481 | mdecorde | |
| 829 | 481 | mdecorde | // Vectors of isolated roots
|
| 830 | 481 | mdecorde | |
| 831 | 481 | mdecorde | for (int i = 0; i < nn; i++) { |
| 832 | 481 | mdecorde | if (i < low | i > high) {
|
| 833 | 481 | mdecorde | for (int j = i; j < nn; j++) { |
| 834 | 481 | mdecorde | V[i][j] = H[i][j]; |
| 835 | 481 | mdecorde | } |
| 836 | 481 | mdecorde | } |
| 837 | 481 | mdecorde | } |
| 838 | 481 | mdecorde | |
| 839 | 481 | mdecorde | // Back transformation to get eigenvectors of original matrix
|
| 840 | 481 | mdecorde | |
| 841 | 481 | mdecorde | for (int j = nn-1; j >= low; j--) { |
| 842 | 481 | mdecorde | for (int i = low; i <= high; i++) { |
| 843 | 481 | mdecorde | z = 0.0;
|
| 844 | 481 | mdecorde | for (int k = low; k <= Math.min(j,high); k++) { |
| 845 | 481 | mdecorde | z = z + V[i][k] * H[k][j]; |
| 846 | 481 | mdecorde | } |
| 847 | 481 | mdecorde | V[i][j] = z; |
| 848 | 481 | mdecorde | } |
| 849 | 481 | mdecorde | } |
| 850 | 481 | mdecorde | } |
| 851 | 481 | mdecorde | |
| 852 | 481 | mdecorde | |
| 853 | 481 | mdecorde | /* ------------------------
|
| 854 | 481 | mdecorde | Constructor
|
| 855 | 481 | mdecorde | * ------------------------ */
|
| 856 | 481 | mdecorde | |
| 857 | 481 | mdecorde | /** Check for symmetry, then construct the eigenvalue decomposition
|
| 858 | 481 | mdecorde | @param A Square matrix
|
| 859 | 481 | mdecorde | @return Structure to access D and V.
|
| 860 | 481 | mdecorde | */
|
| 861 | 481 | mdecorde | |
| 862 | 481 | mdecorde | public EigenvalueDecomposition (Matrix Arg) {
|
| 863 | 481 | mdecorde | double[][] A = Arg.getArray(); |
| 864 | 481 | mdecorde | n = Arg.getColumnDimension(); |
| 865 | 481 | mdecorde | V = new double[n][n]; |
| 866 | 481 | mdecorde | d = new double[n]; |
| 867 | 481 | mdecorde | e = new double[n]; |
| 868 | 481 | mdecorde | |
| 869 | 481 | mdecorde | issymmetric = true;
|
| 870 | 481 | mdecorde | for (int j = 0; (j < n) & issymmetric; j++) { |
| 871 | 481 | mdecorde | for (int i = 0; (i < n) & issymmetric; i++) { |
| 872 | 481 | mdecorde | issymmetric = (A[i][j] == A[j][i]); |
| 873 | 481 | mdecorde | } |
| 874 | 481 | mdecorde | } |
| 875 | 481 | mdecorde | |
| 876 | 481 | mdecorde | if (issymmetric) {
|
| 877 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
| 878 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 879 | 481 | mdecorde | V[i][j] = A[i][j]; |
| 880 | 481 | mdecorde | } |
| 881 | 481 | mdecorde | } |
| 882 | 481 | mdecorde | |
| 883 | 481 | mdecorde | // Tridiagonalize.
|
| 884 | 481 | mdecorde | tred2(); |
| 885 | 481 | mdecorde | |
| 886 | 481 | mdecorde | // Diagonalize.
|
| 887 | 481 | mdecorde | tql2(); |
| 888 | 481 | mdecorde | |
| 889 | 481 | mdecorde | } else {
|
| 890 | 481 | mdecorde | H = new double[n][n]; |
| 891 | 481 | mdecorde | ort = new double[n]; |
| 892 | 481 | mdecorde | |
| 893 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 894 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
| 895 | 481 | mdecorde | H[i][j] = A[i][j]; |
| 896 | 481 | mdecorde | } |
| 897 | 481 | mdecorde | } |
| 898 | 481 | mdecorde | |
| 899 | 481 | mdecorde | // Reduce to Hessenberg form.
|
| 900 | 481 | mdecorde | orthes(); |
| 901 | 481 | mdecorde | |
| 902 | 481 | mdecorde | // Reduce Hessenberg to real Schur form.
|
| 903 | 481 | mdecorde | hqr2(); |
| 904 | 481 | mdecorde | } |
| 905 | 481 | mdecorde | } |
| 906 | 481 | mdecorde | |
| 907 | 481 | mdecorde | /* ------------------------
|
| 908 | 481 | mdecorde | Public Methods
|
| 909 | 481 | mdecorde | * ------------------------ */
|
| 910 | 481 | mdecorde | |
| 911 | 481 | mdecorde | /** Return the eigenvector matrix
|
| 912 | 481 | mdecorde | @return V
|
| 913 | 481 | mdecorde | */
|
| 914 | 481 | mdecorde | |
| 915 | 481 | mdecorde | public Matrix getV () {
|
| 916 | 481 | mdecorde | return new Matrix(V,n,n); |
| 917 | 481 | mdecorde | } |
| 918 | 481 | mdecorde | |
| 919 | 481 | mdecorde | /** Return the real parts of the eigenvalues
|
| 920 | 481 | mdecorde | @return real(diag(D))
|
| 921 | 481 | mdecorde | */
|
| 922 | 481 | mdecorde | |
| 923 | 481 | mdecorde | public double[] getRealEigenvalues () { |
| 924 | 481 | mdecorde | return d;
|
| 925 | 481 | mdecorde | } |
| 926 | 481 | mdecorde | |
| 927 | 481 | mdecorde | /** Return the imaginary parts of the eigenvalues
|
| 928 | 481 | mdecorde | @return imag(diag(D))
|
| 929 | 481 | mdecorde | */
|
| 930 | 481 | mdecorde | |
| 931 | 481 | mdecorde | public double[] getImagEigenvalues () { |
| 932 | 481 | mdecorde | return e;
|
| 933 | 481 | mdecorde | } |
| 934 | 481 | mdecorde | |
| 935 | 481 | mdecorde | /** Return the block diagonal eigenvalue matrix
|
| 936 | 481 | mdecorde | @return D
|
| 937 | 481 | mdecorde | */
|
| 938 | 481 | mdecorde | |
| 939 | 481 | mdecorde | public Matrix getD () {
|
| 940 | 481 | mdecorde | Matrix X = new Matrix(n,n);
|
| 941 | 481 | mdecorde | double[][] D = X.getArray(); |
| 942 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
| 943 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 944 | 481 | mdecorde | D[i][j] = 0.0;
|
| 945 | 481 | mdecorde | } |
| 946 | 481 | mdecorde | D[i][i] = d[i]; |
| 947 | 481 | mdecorde | if (e[i] > 0) { |
| 948 | 481 | mdecorde | D[i][i+1] = e[i];
|
| 949 | 481 | mdecorde | } else if (e[i] < 0) { |
| 950 | 481 | mdecorde | D[i][i-1] = e[i];
|
| 951 | 481 | mdecorde | } |
| 952 | 481 | mdecorde | } |
| 953 | 481 | mdecorde | return X;
|
| 954 | 481 | mdecorde | } |
| 955 | 481 | mdecorde | } |