root / tmp / org.txm.analec.rcp / src / JamaPlus / QRDecomposition.java @ 2071
Historique | Voir | Annoter | Télécharger (5,92 ko)
1 | 481 | mdecorde | package JamaPlus; |
---|---|---|---|
2 | 481 | mdecorde | import JamaPlus.util.*; |
3 | 481 | mdecorde | |
4 | 481 | mdecorde | /** QR Decomposition.
|
5 | 481 | mdecorde | <P>
|
6 | 481 | mdecorde | For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
|
7 | 481 | mdecorde | orthogonal matrix Q and an n-by-n upper triangular matrix R so that
|
8 | 481 | mdecorde | A = Q*R.
|
9 | 481 | mdecorde | <P>
|
10 | 481 | mdecorde | The QR decompostion always exists, even if the matrix does not have
|
11 | 481 | mdecorde | full rank, so the constructor will never fail. The primary use of the
|
12 | 481 | mdecorde | QR decomposition is in the least squares solution of nonsquare systems
|
13 | 481 | mdecorde | of simultaneous linear equations. This will fail if isFullRank()
|
14 | 481 | mdecorde | returns false.
|
15 | 481 | mdecorde | */
|
16 | 481 | mdecorde | |
17 | 481 | mdecorde | public class QRDecomposition implements java.io.Serializable { |
18 | 481 | mdecorde | |
19 | 481 | mdecorde | /* ------------------------
|
20 | 481 | mdecorde | Class variables
|
21 | 481 | mdecorde | * ------------------------ */
|
22 | 481 | mdecorde | |
23 | 481 | mdecorde | /** Array for internal storage of decomposition.
|
24 | 481 | mdecorde | @serial internal array storage.
|
25 | 481 | mdecorde | */
|
26 | 481 | mdecorde | private double[][] QR; |
27 | 481 | mdecorde | |
28 | 481 | mdecorde | /** Row and column dimensions.
|
29 | 481 | mdecorde | @serial column dimension.
|
30 | 481 | mdecorde | @serial row dimension.
|
31 | 481 | mdecorde | */
|
32 | 481 | mdecorde | private int m, n; |
33 | 481 | mdecorde | |
34 | 481 | mdecorde | /** Array for internal storage of diagonal of R.
|
35 | 481 | mdecorde | @serial diagonal of R.
|
36 | 481 | mdecorde | */
|
37 | 481 | mdecorde | private double[] Rdiag; |
38 | 481 | mdecorde | |
39 | 481 | mdecorde | /* ------------------------
|
40 | 481 | mdecorde | Constructor
|
41 | 481 | mdecorde | * ------------------------ */
|
42 | 481 | mdecorde | |
43 | 481 | mdecorde | /** QR Decomposition, computed by Householder reflections.
|
44 | 481 | mdecorde | @param A Rectangular matrix
|
45 | 481 | mdecorde | @return Structure to access R and the Householder vectors and compute Q.
|
46 | 481 | mdecorde | */
|
47 | 481 | mdecorde | |
48 | 481 | mdecorde | public QRDecomposition (Matrix A) {
|
49 | 481 | mdecorde | // Initialize.
|
50 | 481 | mdecorde | QR = A.getArrayCopy(); |
51 | 481 | mdecorde | m = A.getRowDimension(); |
52 | 481 | mdecorde | n = A.getColumnDimension(); |
53 | 481 | mdecorde | Rdiag = new double[n]; |
54 | 481 | mdecorde | |
55 | 481 | mdecorde | // Main loop.
|
56 | 481 | mdecorde | for (int k = 0; k < n; k++) { |
57 | 481 | mdecorde | // Compute 2-norm of k-th column without under/overflow.
|
58 | 481 | mdecorde | double nrm = 0; |
59 | 481 | mdecorde | for (int i = k; i < m; i++) { |
60 | 481 | mdecorde | nrm = Math.hypot(nrm,QR[i][k]);
|
61 | 481 | mdecorde | } |
62 | 481 | mdecorde | |
63 | 481 | mdecorde | if (nrm != 0.0) { |
64 | 481 | mdecorde | // Form k-th Householder vector.
|
65 | 481 | mdecorde | if (QR[k][k] < 0) { |
66 | 481 | mdecorde | nrm = -nrm; |
67 | 481 | mdecorde | } |
68 | 481 | mdecorde | for (int i = k; i < m; i++) { |
69 | 481 | mdecorde | QR[i][k] /= nrm; |
70 | 481 | mdecorde | } |
71 | 481 | mdecorde | QR[k][k] += 1.0;
|
72 | 481 | mdecorde | |
73 | 481 | mdecorde | // Apply transformation to remaining columns.
|
74 | 481 | mdecorde | for (int j = k+1; j < n; j++) { |
75 | 481 | mdecorde | double s = 0.0; |
76 | 481 | mdecorde | for (int i = k; i < m; i++) { |
77 | 481 | mdecorde | s += QR[i][k]*QR[i][j]; |
78 | 481 | mdecorde | } |
79 | 481 | mdecorde | s = -s/QR[k][k]; |
80 | 481 | mdecorde | for (int i = k; i < m; i++) { |
81 | 481 | mdecorde | QR[i][j] += s*QR[i][k]; |
82 | 481 | mdecorde | } |
83 | 481 | mdecorde | } |
84 | 481 | mdecorde | } |
85 | 481 | mdecorde | Rdiag[k] = -nrm; |
86 | 481 | mdecorde | } |
87 | 481 | mdecorde | } |
88 | 481 | mdecorde | |
89 | 481 | mdecorde | /* ------------------------
|
90 | 481 | mdecorde | Public Methods
|
91 | 481 | mdecorde | * ------------------------ */
|
92 | 481 | mdecorde | |
93 | 481 | mdecorde | /** Is the matrix full rank?
|
94 | 481 | mdecorde | @return true if R, and hence A, has full rank.
|
95 | 481 | mdecorde | */
|
96 | 481 | mdecorde | |
97 | 481 | mdecorde | public boolean isFullRank () { |
98 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
99 | 481 | mdecorde | if (Rdiag[j] == 0) |
100 | 481 | mdecorde | return false; |
101 | 481 | mdecorde | } |
102 | 481 | mdecorde | return true; |
103 | 481 | mdecorde | } |
104 | 481 | mdecorde | |
105 | 481 | mdecorde | /** Return the Householder vectors
|
106 | 481 | mdecorde | @return Lower trapezoidal matrix whose columns define the reflections
|
107 | 481 | mdecorde | */
|
108 | 481 | mdecorde | |
109 | 481 | mdecorde | public Matrix getH () {
|
110 | 481 | mdecorde | Matrix X = new Matrix(m,n);
|
111 | 481 | mdecorde | double[][] H = X.getArray(); |
112 | 481 | mdecorde | for (int i = 0; i < m; i++) { |
113 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
114 | 481 | mdecorde | if (i >= j) {
|
115 | 481 | mdecorde | H[i][j] = QR[i][j]; |
116 | 481 | mdecorde | } else {
|
117 | 481 | mdecorde | H[i][j] = 0.0;
|
118 | 481 | mdecorde | } |
119 | 481 | mdecorde | } |
120 | 481 | mdecorde | } |
121 | 481 | mdecorde | return X;
|
122 | 481 | mdecorde | } |
123 | 481 | mdecorde | |
124 | 481 | mdecorde | /** Return the upper triangular factor
|
125 | 481 | mdecorde | @return R
|
126 | 481 | mdecorde | */
|
127 | 481 | mdecorde | |
128 | 481 | mdecorde | public Matrix getR () {
|
129 | 481 | mdecorde | Matrix X = new Matrix(n,n);
|
130 | 481 | mdecorde | double[][] R = X.getArray(); |
131 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
132 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
133 | 481 | mdecorde | if (i < j) {
|
134 | 481 | mdecorde | R[i][j] = QR[i][j]; |
135 | 481 | mdecorde | } else if (i == j) { |
136 | 481 | mdecorde | R[i][j] = Rdiag[i]; |
137 | 481 | mdecorde | } else {
|
138 | 481 | mdecorde | R[i][j] = 0.0;
|
139 | 481 | mdecorde | } |
140 | 481 | mdecorde | } |
141 | 481 | mdecorde | } |
142 | 481 | mdecorde | return X;
|
143 | 481 | mdecorde | } |
144 | 481 | mdecorde | |
145 | 481 | mdecorde | /** Generate and return the (economy-sized) orthogonal factor
|
146 | 481 | mdecorde | @return Q
|
147 | 481 | mdecorde | */
|
148 | 481 | mdecorde | |
149 | 481 | mdecorde | public Matrix getQ () {
|
150 | 481 | mdecorde | Matrix X = new Matrix(m,n);
|
151 | 481 | mdecorde | double[][] Q = X.getArray(); |
152 | 481 | mdecorde | for (int k = n-1; k >= 0; k--) { |
153 | 481 | mdecorde | for (int i = 0; i < m; i++) { |
154 | 481 | mdecorde | Q[i][k] = 0.0;
|
155 | 481 | mdecorde | } |
156 | 481 | mdecorde | Q[k][k] = 1.0;
|
157 | 481 | mdecorde | for (int j = k; j < n; j++) { |
158 | 481 | mdecorde | if (QR[k][k] != 0) { |
159 | 481 | mdecorde | double s = 0.0; |
160 | 481 | mdecorde | for (int i = k; i < m; i++) { |
161 | 481 | mdecorde | s += QR[i][k]*Q[i][j]; |
162 | 481 | mdecorde | } |
163 | 481 | mdecorde | s = -s/QR[k][k]; |
164 | 481 | mdecorde | for (int i = k; i < m; i++) { |
165 | 481 | mdecorde | Q[i][j] += s*QR[i][k]; |
166 | 481 | mdecorde | } |
167 | 481 | mdecorde | } |
168 | 481 | mdecorde | } |
169 | 481 | mdecorde | } |
170 | 481 | mdecorde | return X;
|
171 | 481 | mdecorde | } |
172 | 481 | mdecorde | |
173 | 481 | mdecorde | /** Least squares solution of A*X = B
|
174 | 481 | mdecorde | @param B A Matrix with as many rows as A and any number of columns.
|
175 | 481 | mdecorde | @return X that minimizes the two norm of Q*R*X-B.
|
176 | 481 | mdecorde | @exception IllegalArgumentException Matrix row dimensions must agree.
|
177 | 481 | mdecorde | @exception RuntimeException Matrix is rank deficient.
|
178 | 481 | mdecorde | */
|
179 | 481 | mdecorde | |
180 | 481 | mdecorde | public Matrix solve (Matrix B) {
|
181 | 481 | mdecorde | if (B.getRowDimension() != m) {
|
182 | 481 | mdecorde | throw new IllegalArgumentException("Matrix row dimensions must agree."); |
183 | 481 | mdecorde | } |
184 | 481 | mdecorde | if (!this.isFullRank()) { |
185 | 481 | mdecorde | throw new RuntimeException("Matrix is rank deficient."); |
186 | 481 | mdecorde | } |
187 | 481 | mdecorde | |
188 | 481 | mdecorde | // Copy right hand side
|
189 | 481 | mdecorde | int nx = B.getColumnDimension();
|
190 | 481 | mdecorde | double[][] X = B.getArrayCopy(); |
191 | 481 | mdecorde | |
192 | 481 | mdecorde | // Compute Y = transpose(Q)*B
|
193 | 481 | mdecorde | for (int k = 0; k < n; k++) { |
194 | 481 | mdecorde | for (int j = 0; j < nx; j++) { |
195 | 481 | mdecorde | double s = 0.0; |
196 | 481 | mdecorde | for (int i = k; i < m; i++) { |
197 | 481 | mdecorde | s += QR[i][k]*X[i][j]; |
198 | 481 | mdecorde | } |
199 | 481 | mdecorde | s = -s/QR[k][k]; |
200 | 481 | mdecorde | for (int i = k; i < m; i++) { |
201 | 481 | mdecorde | X[i][j] += s*QR[i][k]; |
202 | 481 | mdecorde | } |
203 | 481 | mdecorde | } |
204 | 481 | mdecorde | } |
205 | 481 | mdecorde | // Solve R*X = Y;
|
206 | 481 | mdecorde | for (int k = n-1; k >= 0; k--) { |
207 | 481 | mdecorde | for (int j = 0; j < nx; j++) { |
208 | 481 | mdecorde | X[k][j] /= Rdiag[k]; |
209 | 481 | mdecorde | } |
210 | 481 | mdecorde | for (int i = 0; i < k; i++) { |
211 | 481 | mdecorde | for (int j = 0; j < nx; j++) { |
212 | 481 | mdecorde | X[i][j] -= X[k][j]*QR[i][k]; |
213 | 481 | mdecorde | } |
214 | 481 | mdecorde | } |
215 | 481 | mdecorde | } |
216 | 481 | mdecorde | return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1)); |
217 | 481 | mdecorde | } |
218 | 481 | mdecorde | } |