root / tmp / org.txm.analec.rcp / src matt / JamaPlus / EigenvalueDecomposition.java @ 2034
Historique | Voir | Annoter | Télécharger (27,12 ko)
1 |
package JamaPlus; |
---|---|
2 |
import JamaPlus.util.*; |
3 |
|
4 |
/** Eigenvalues and eigenvectors of a real matrix.
|
5 |
<P>
|
6 |
If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
|
7 |
diagonal and the eigenvector matrix V is orthogonal.
|
8 |
I.e. A = V.times(D.times(V.transpose())) and
|
9 |
V.times(V.transpose()) equals the identity matrix.
|
10 |
<P>
|
11 |
If A is not symmetric, then the eigenvalue matrix D is block diagonal
|
12 |
with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
|
13 |
lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
|
14 |
columns of V represent the eigenvectors in the sense that A*V = V*D,
|
15 |
i.e. A.times(V) equals V.times(D). The matrix V may be badly
|
16 |
conditioned, or even singular, so the validity of the equation
|
17 |
A = V*D*inverse(V) depends upon V.cond().
|
18 |
**/
|
19 |
|
20 |
public class EigenvalueDecomposition implements java.io.Serializable { |
21 |
|
22 |
/* ------------------------
|
23 |
Class variables
|
24 |
* ------------------------ */
|
25 |
|
26 |
/** Row and column dimension (square matrix).
|
27 |
@serial matrix dimension.
|
28 |
*/
|
29 |
private int n; |
30 |
|
31 |
/** Symmetry flag.
|
32 |
@serial internal symmetry flag.
|
33 |
*/
|
34 |
private boolean issymmetric; |
35 |
|
36 |
/** Arrays for internal storage of eigenvalues.
|
37 |
@serial internal storage of eigenvalues.
|
38 |
*/
|
39 |
private double[] d, e; |
40 |
|
41 |
/** Array for internal storage of eigenvectors.
|
42 |
@serial internal storage of eigenvectors.
|
43 |
*/
|
44 |
private double[][] V; |
45 |
|
46 |
/** Array for internal storage of nonsymmetric Hessenberg form.
|
47 |
@serial internal storage of nonsymmetric Hessenberg form.
|
48 |
*/
|
49 |
private double[][] H; |
50 |
|
51 |
/** Working storage for nonsymmetric algorithm.
|
52 |
@serial working storage for nonsymmetric algorithm.
|
53 |
*/
|
54 |
private double[] ort; |
55 |
|
56 |
/* ------------------------
|
57 |
Private Methods
|
58 |
* ------------------------ */
|
59 |
|
60 |
// Symmetric Householder reduction to tridiagonal form.
|
61 |
|
62 |
private void tred2 () { |
63 |
|
64 |
// This is derived from the Algol procedures tred2 by
|
65 |
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
66 |
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
67 |
// Fortran subroutine in EISPACK.
|
68 |
|
69 |
for (int j = 0; j < n; j++) { |
70 |
d[j] = V[n-1][j];
|
71 |
} |
72 |
|
73 |
// Householder reduction to tridiagonal form.
|
74 |
|
75 |
for (int i = n-1; i > 0; i--) { |
76 |
|
77 |
// Scale to avoid under/overflow.
|
78 |
|
79 |
double scale = 0.0; |
80 |
double h = 0.0; |
81 |
for (int k = 0; k < i; k++) { |
82 |
scale = scale + Math.abs(d[k]);
|
83 |
} |
84 |
if (scale == 0.0) { |
85 |
e[i] = d[i-1];
|
86 |
for (int j = 0; j < i; j++) { |
87 |
d[j] = V[i-1][j];
|
88 |
V[i][j] = 0.0;
|
89 |
V[j][i] = 0.0;
|
90 |
} |
91 |
} else {
|
92 |
|
93 |
// Generate Householder vector.
|
94 |
|
95 |
for (int k = 0; k < i; k++) { |
96 |
d[k] /= scale; |
97 |
h += d[k] * d[k]; |
98 |
} |
99 |
double f = d[i-1]; |
100 |
double g = Math.sqrt(h); |
101 |
if (f > 0) { |
102 |
g = -g; |
103 |
} |
104 |
e[i] = scale * g; |
105 |
h = h - f * g; |
106 |
d[i-1] = f - g;
|
107 |
for (int j = 0; j < i; j++) { |
108 |
e[j] = 0.0;
|
109 |
} |
110 |
|
111 |
// Apply similarity transformation to remaining columns.
|
112 |
|
113 |
for (int j = 0; j < i; j++) { |
114 |
f = d[j]; |
115 |
V[j][i] = f; |
116 |
g = e[j] + V[j][j] * f; |
117 |
for (int k = j+1; k <= i-1; k++) { |
118 |
g += V[k][j] * d[k]; |
119 |
e[k] += V[k][j] * f; |
120 |
} |
121 |
e[j] = g; |
122 |
} |
123 |
f = 0.0;
|
124 |
for (int j = 0; j < i; j++) { |
125 |
e[j] /= h; |
126 |
f += e[j] * d[j]; |
127 |
} |
128 |
double hh = f / (h + h);
|
129 |
for (int j = 0; j < i; j++) { |
130 |
e[j] -= hh * d[j]; |
131 |
} |
132 |
for (int j = 0; j < i; j++) { |
133 |
f = d[j]; |
134 |
g = e[j]; |
135 |
for (int k = j; k <= i-1; k++) { |
136 |
V[k][j] -= (f * e[k] + g * d[k]); |
137 |
} |
138 |
d[j] = V[i-1][j];
|
139 |
V[i][j] = 0.0;
|
140 |
} |
141 |
} |
142 |
d[i] = h; |
143 |
} |
144 |
|
145 |
// Accumulate transformations.
|
146 |
|
147 |
for (int i = 0; i < n-1; i++) { |
148 |
V[n-1][i] = V[i][i];
|
149 |
V[i][i] = 1.0;
|
150 |
double h = d[i+1]; |
151 |
if (h != 0.0) { |
152 |
for (int k = 0; k <= i; k++) { |
153 |
d[k] = V[k][i+1] / h;
|
154 |
} |
155 |
for (int j = 0; j <= i; j++) { |
156 |
double g = 0.0; |
157 |
for (int k = 0; k <= i; k++) { |
158 |
g += V[k][i+1] * V[k][j];
|
159 |
} |
160 |
for (int k = 0; k <= i; k++) { |
161 |
V[k][j] -= g * d[k]; |
162 |
} |
163 |
} |
164 |
} |
165 |
for (int k = 0; k <= i; k++) { |
166 |
V[k][i+1] = 0.0; |
167 |
} |
168 |
} |
169 |
for (int j = 0; j < n; j++) { |
170 |
d[j] = V[n-1][j];
|
171 |
V[n-1][j] = 0.0; |
172 |
} |
173 |
V[n-1][n-1] = 1.0; |
174 |
e[0] = 0.0; |
175 |
} |
176 |
|
177 |
// Symmetric tridiagonal QL algorithm.
|
178 |
|
179 |
private void tql2 () { |
180 |
|
181 |
// This is derived from the Algol procedures tql2, by
|
182 |
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
183 |
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
184 |
// Fortran subroutine in EISPACK.
|
185 |
|
186 |
for (int i = 1; i < n; i++) { |
187 |
e[i-1] = e[i];
|
188 |
} |
189 |
e[n-1] = 0.0; |
190 |
|
191 |
double f = 0.0; |
192 |
double tst1 = 0.0; |
193 |
double eps = Math.pow(2.0,-52.0); |
194 |
for (int l = 0; l < n; l++) { |
195 |
|
196 |
// Find small subdiagonal element
|
197 |
|
198 |
tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l])); |
199 |
int m = l;
|
200 |
while (m < n) {
|
201 |
if (Math.abs(e[m]) <= eps*tst1) { |
202 |
break;
|
203 |
} |
204 |
m++; |
205 |
} |
206 |
|
207 |
// If m == l, d[l] is an eigenvalue,
|
208 |
// otherwise, iterate.
|
209 |
|
210 |
if (m > l) {
|
211 |
int iter = 0; |
212 |
do {
|
213 |
iter = iter + 1; // (Could check iteration count here.) |
214 |
|
215 |
// Compute implicit shift
|
216 |
|
217 |
double g = d[l];
|
218 |
double p = (d[l+1] - g) / (2.0 * e[l]); |
219 |
double r = Math.hypot(p,1.0); |
220 |
if (p < 0) { |
221 |
r = -r; |
222 |
} |
223 |
d[l] = e[l] / (p + r); |
224 |
d[l+1] = e[l] * (p + r);
|
225 |
double dl1 = d[l+1]; |
226 |
double h = g - d[l];
|
227 |
for (int i = l+2; i < n; i++) { |
228 |
d[i] -= h; |
229 |
} |
230 |
f = f + h; |
231 |
|
232 |
// Implicit QL transformation.
|
233 |
|
234 |
p = d[m]; |
235 |
double c = 1.0; |
236 |
double c2 = c;
|
237 |
double c3 = c;
|
238 |
double el1 = e[l+1]; |
239 |
double s = 0.0; |
240 |
double s2 = 0.0; |
241 |
for (int i = m-1; i >= l; i--) { |
242 |
c3 = c2; |
243 |
c2 = c; |
244 |
s2 = s; |
245 |
g = c * e[i]; |
246 |
h = c * p; |
247 |
r = Math.hypot(p,e[i]);
|
248 |
e[i+1] = s * r;
|
249 |
s = e[i] / r; |
250 |
c = p / r; |
251 |
p = c * d[i] - s * g; |
252 |
d[i+1] = h + s * (c * g + s * d[i]);
|
253 |
|
254 |
// Accumulate transformation.
|
255 |
|
256 |
for (int k = 0; k < n; k++) { |
257 |
h = V[k][i+1];
|
258 |
V[k][i+1] = s * V[k][i] + c * h;
|
259 |
V[k][i] = c * V[k][i] - s * h; |
260 |
} |
261 |
} |
262 |
p = -s * s2 * c3 * el1 * e[l] / dl1; |
263 |
e[l] = s * p; |
264 |
d[l] = c * p; |
265 |
|
266 |
// Check for convergence.
|
267 |
|
268 |
} while (Math.abs(e[l]) > eps*tst1); |
269 |
} |
270 |
d[l] = d[l] + f; |
271 |
e[l] = 0.0;
|
272 |
} |
273 |
|
274 |
// Sort eigenvalues and corresponding vectors.
|
275 |
|
276 |
for (int i = 0; i < n-1; i++) { |
277 |
int k = i;
|
278 |
double p = d[i];
|
279 |
for (int j = i+1; j < n; j++) { |
280 |
if (d[j] < p) {
|
281 |
k = j; |
282 |
p = d[j]; |
283 |
} |
284 |
} |
285 |
if (k != i) {
|
286 |
d[k] = d[i]; |
287 |
d[i] = p; |
288 |
for (int j = 0; j < n; j++) { |
289 |
p = V[j][i]; |
290 |
V[j][i] = V[j][k]; |
291 |
V[j][k] = p; |
292 |
} |
293 |
} |
294 |
} |
295 |
} |
296 |
|
297 |
// Nonsymmetric reduction to Hessenberg form.
|
298 |
|
299 |
private void orthes () { |
300 |
|
301 |
// This is derived from the Algol procedures orthes and ortran,
|
302 |
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
303 |
// Vol.ii-Linear Algebra, and the corresponding
|
304 |
// Fortran subroutines in EISPACK.
|
305 |
|
306 |
int low = 0; |
307 |
int high = n-1; |
308 |
|
309 |
for (int m = low+1; m <= high-1; m++) { |
310 |
|
311 |
// Scale column.
|
312 |
|
313 |
double scale = 0.0; |
314 |
for (int i = m; i <= high; i++) { |
315 |
scale = scale + Math.abs(H[i][m-1]); |
316 |
} |
317 |
if (scale != 0.0) { |
318 |
|
319 |
// Compute Householder transformation.
|
320 |
|
321 |
double h = 0.0; |
322 |
for (int i = high; i >= m; i--) { |
323 |
ort[i] = H[i][m-1]/scale;
|
324 |
h += ort[i] * ort[i]; |
325 |
} |
326 |
double g = Math.sqrt(h); |
327 |
if (ort[m] > 0) { |
328 |
g = -g; |
329 |
} |
330 |
h = h - ort[m] * g; |
331 |
ort[m] = ort[m] - g; |
332 |
|
333 |
// Apply Householder similarity transformation
|
334 |
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
335 |
|
336 |
for (int j = m; j < n; j++) { |
337 |
double f = 0.0; |
338 |
for (int i = high; i >= m; i--) { |
339 |
f += ort[i]*H[i][j]; |
340 |
} |
341 |
f = f/h; |
342 |
for (int i = m; i <= high; i++) { |
343 |
H[i][j] -= f*ort[i]; |
344 |
} |
345 |
} |
346 |
|
347 |
for (int i = 0; i <= high; i++) { |
348 |
double f = 0.0; |
349 |
for (int j = high; j >= m; j--) { |
350 |
f += ort[j]*H[i][j]; |
351 |
} |
352 |
f = f/h; |
353 |
for (int j = m; j <= high; j++) { |
354 |
H[i][j] -= f*ort[j]; |
355 |
} |
356 |
} |
357 |
ort[m] = scale*ort[m]; |
358 |
H[m][m-1] = scale*g;
|
359 |
} |
360 |
} |
361 |
|
362 |
// Accumulate transformations (Algol's ortran).
|
363 |
|
364 |
for (int i = 0; i < n; i++) { |
365 |
for (int j = 0; j < n; j++) { |
366 |
V[i][j] = (i == j ? 1.0 : 0.0); |
367 |
} |
368 |
} |
369 |
|
370 |
for (int m = high-1; m >= low+1; m--) { |
371 |
if (H[m][m-1] != 0.0) { |
372 |
for (int i = m+1; i <= high; i++) { |
373 |
ort[i] = H[i][m-1];
|
374 |
} |
375 |
for (int j = m; j <= high; j++) { |
376 |
double g = 0.0; |
377 |
for (int i = m; i <= high; i++) { |
378 |
g += ort[i] * V[i][j]; |
379 |
} |
380 |
// Double division avoids possible underflow
|
381 |
g = (g / ort[m]) / H[m][m-1];
|
382 |
for (int i = m; i <= high; i++) { |
383 |
V[i][j] += g * ort[i]; |
384 |
} |
385 |
} |
386 |
} |
387 |
} |
388 |
} |
389 |
|
390 |
|
391 |
// Complex scalar division.
|
392 |
|
393 |
private transient double cdivr, cdivi; |
394 |
private void cdiv(double xr, double xi, double yr, double yi) { |
395 |
double r,d;
|
396 |
if (Math.abs(yr) > Math.abs(yi)) { |
397 |
r = yi/yr; |
398 |
d = yr + r*yi; |
399 |
cdivr = (xr + r*xi)/d; |
400 |
cdivi = (xi - r*xr)/d; |
401 |
} else {
|
402 |
r = yr/yi; |
403 |
d = yi + r*yr; |
404 |
cdivr = (r*xr + xi)/d; |
405 |
cdivi = (r*xi - xr)/d; |
406 |
} |
407 |
} |
408 |
|
409 |
|
410 |
// Nonsymmetric reduction from Hessenberg to real Schur form.
|
411 |
|
412 |
private void hqr2 () { |
413 |
|
414 |
// This is derived from the Algol procedure hqr2,
|
415 |
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
416 |
// Vol.ii-Linear Algebra, and the corresponding
|
417 |
// Fortran subroutine in EISPACK.
|
418 |
|
419 |
// Initialize
|
420 |
|
421 |
int nn = this.n; |
422 |
int n = nn-1; |
423 |
int low = 0; |
424 |
int high = nn-1; |
425 |
double eps = Math.pow(2.0,-52.0); |
426 |
double exshift = 0.0; |
427 |
double p=0,q=0,r=0,s=0,z=0,t,w,x,y; |
428 |
|
429 |
// Store roots isolated by balanc and compute matrix norm
|
430 |
|
431 |
double norm = 0.0; |
432 |
for (int i = 0; i < nn; i++) { |
433 |
if (i < low | i > high) {
|
434 |
d[i] = H[i][i]; |
435 |
e[i] = 0.0;
|
436 |
} |
437 |
for (int j = Math.max(i-1,0); j < nn; j++) { |
438 |
norm = norm + Math.abs(H[i][j]);
|
439 |
} |
440 |
} |
441 |
|
442 |
// Outer loop over eigenvalue index
|
443 |
|
444 |
int iter = 0; |
445 |
while (n >= low) {
|
446 |
|
447 |
// Look for single small sub-diagonal element
|
448 |
|
449 |
int l = n;
|
450 |
while (l > low) {
|
451 |
s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]); |
452 |
if (s == 0.0) { |
453 |
s = norm; |
454 |
} |
455 |
if (Math.abs(H[l][l-1]) < eps * s) { |
456 |
break;
|
457 |
} |
458 |
l--; |
459 |
} |
460 |
|
461 |
// Check for convergence
|
462 |
// One root found
|
463 |
|
464 |
if (l == n) {
|
465 |
H[n][n] = H[n][n] + exshift; |
466 |
d[n] = H[n][n]; |
467 |
e[n] = 0.0;
|
468 |
n--; |
469 |
iter = 0;
|
470 |
|
471 |
// Two roots found
|
472 |
|
473 |
} else if (l == n-1) { |
474 |
w = H[n][n-1] * H[n-1][n]; |
475 |
p = (H[n-1][n-1] - H[n][n]) / 2.0; |
476 |
q = p * p + w; |
477 |
z = Math.sqrt(Math.abs(q)); |
478 |
H[n][n] = H[n][n] + exshift; |
479 |
H[n-1][n-1] = H[n-1][n-1] + exshift; |
480 |
x = H[n][n]; |
481 |
|
482 |
// Real pair
|
483 |
|
484 |
if (q >= 0) { |
485 |
if (p >= 0) { |
486 |
z = p + z; |
487 |
} else {
|
488 |
z = p - z; |
489 |
} |
490 |
d[n-1] = x + z;
|
491 |
d[n] = d[n-1];
|
492 |
if (z != 0.0) { |
493 |
d[n] = x - w / z; |
494 |
} |
495 |
e[n-1] = 0.0; |
496 |
e[n] = 0.0;
|
497 |
x = H[n][n-1];
|
498 |
s = Math.abs(x) + Math.abs(z); |
499 |
p = x / s; |
500 |
q = z / s; |
501 |
r = Math.sqrt(p * p+q * q);
|
502 |
p = p / r; |
503 |
q = q / r; |
504 |
|
505 |
// Row modification
|
506 |
|
507 |
for (int j = n-1; j < nn; j++) { |
508 |
z = H[n-1][j];
|
509 |
H[n-1][j] = q * z + p * H[n][j];
|
510 |
H[n][j] = q * H[n][j] - p * z; |
511 |
} |
512 |
|
513 |
// Column modification
|
514 |
|
515 |
for (int i = 0; i <= n; i++) { |
516 |
z = H[i][n-1];
|
517 |
H[i][n-1] = q * z + p * H[i][n];
|
518 |
H[i][n] = q * H[i][n] - p * z; |
519 |
} |
520 |
|
521 |
// Accumulate transformations
|
522 |
|
523 |
for (int i = low; i <= high; i++) { |
524 |
z = V[i][n-1];
|
525 |
V[i][n-1] = q * z + p * V[i][n];
|
526 |
V[i][n] = q * V[i][n] - p * z; |
527 |
} |
528 |
|
529 |
// Complex pair
|
530 |
|
531 |
} else {
|
532 |
d[n-1] = x + p;
|
533 |
d[n] = x + p; |
534 |
e[n-1] = z;
|
535 |
e[n] = -z; |
536 |
} |
537 |
n = n - 2;
|
538 |
iter = 0;
|
539 |
|
540 |
// No convergence yet
|
541 |
|
542 |
} else {
|
543 |
|
544 |
// Form shift
|
545 |
|
546 |
x = H[n][n]; |
547 |
y = 0.0;
|
548 |
w = 0.0;
|
549 |
if (l < n) {
|
550 |
y = H[n-1][n-1]; |
551 |
w = H[n][n-1] * H[n-1][n]; |
552 |
} |
553 |
|
554 |
// Wilkinson's original ad hoc shift
|
555 |
|
556 |
if (iter == 10) { |
557 |
exshift += x; |
558 |
for (int i = low; i <= n; i++) { |
559 |
H[i][i] -= x; |
560 |
} |
561 |
s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]); |
562 |
x = y = 0.75 * s;
|
563 |
w = -0.4375 * s * s;
|
564 |
} |
565 |
|
566 |
// MATLAB's new ad hoc shift
|
567 |
|
568 |
if (iter == 30) { |
569 |
s = (y - x) / 2.0;
|
570 |
s = s * s + w; |
571 |
if (s > 0) { |
572 |
s = Math.sqrt(s);
|
573 |
if (y < x) {
|
574 |
s = -s; |
575 |
} |
576 |
s = x - w / ((y - x) / 2.0 + s);
|
577 |
for (int i = low; i <= n; i++) { |
578 |
H[i][i] -= s; |
579 |
} |
580 |
exshift += s; |
581 |
x = y = w = 0.964;
|
582 |
} |
583 |
} |
584 |
|
585 |
iter = iter + 1; // (Could check iteration count here.) |
586 |
|
587 |
// Look for two consecutive small sub-diagonal elements
|
588 |
|
589 |
int m = n-2; |
590 |
while (m >= l) {
|
591 |
z = H[m][m]; |
592 |
r = x - z; |
593 |
s = y - z; |
594 |
p = (r * s - w) / H[m+1][m] + H[m][m+1]; |
595 |
q = H[m+1][m+1] - z - r - s; |
596 |
r = H[m+2][m+1]; |
597 |
s = Math.abs(p) + Math.abs(q) + Math.abs(r); |
598 |
p = p / s; |
599 |
q = q / s; |
600 |
r = r / s; |
601 |
if (m == l) {
|
602 |
break;
|
603 |
} |
604 |
if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) < |
605 |
eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) + |
606 |
Math.abs(H[m+1][m+1])))) { |
607 |
break;
|
608 |
} |
609 |
m--; |
610 |
} |
611 |
|
612 |
for (int i = m+2; i <= n; i++) { |
613 |
H[i][i-2] = 0.0; |
614 |
if (i > m+2) { |
615 |
H[i][i-3] = 0.0; |
616 |
} |
617 |
} |
618 |
|
619 |
// Double QR step involving rows l:n and columns m:n
|
620 |
|
621 |
for (int k = m; k <= n-1; k++) { |
622 |
boolean notlast = (k != n-1); |
623 |
if (k != m) {
|
624 |
p = H[k][k-1];
|
625 |
q = H[k+1][k-1]; |
626 |
r = (notlast ? H[k+2][k-1] : 0.0); |
627 |
x = Math.abs(p) + Math.abs(q) + Math.abs(r); |
628 |
if (x != 0.0) { |
629 |
p = p / x; |
630 |
q = q / x; |
631 |
r = r / x; |
632 |
} |
633 |
} |
634 |
if (x == 0.0) { |
635 |
break;
|
636 |
} |
637 |
s = Math.sqrt(p * p + q * q + r * r);
|
638 |
if (p < 0) { |
639 |
s = -s; |
640 |
} |
641 |
if (s != 0) { |
642 |
if (k != m) {
|
643 |
H[k][k-1] = -s * x;
|
644 |
} else if (l != m) { |
645 |
H[k][k-1] = -H[k][k-1]; |
646 |
} |
647 |
p = p + s; |
648 |
x = p / s; |
649 |
y = q / s; |
650 |
z = r / s; |
651 |
q = q / p; |
652 |
r = r / p; |
653 |
|
654 |
// Row modification
|
655 |
|
656 |
for (int j = k; j < nn; j++) { |
657 |
p = H[k][j] + q * H[k+1][j];
|
658 |
if (notlast) {
|
659 |
p = p + r * H[k+2][j];
|
660 |
H[k+2][j] = H[k+2][j] - p * z; |
661 |
} |
662 |
H[k][j] = H[k][j] - p * x; |
663 |
H[k+1][j] = H[k+1][j] - p * y; |
664 |
} |
665 |
|
666 |
// Column modification
|
667 |
|
668 |
for (int i = 0; i <= Math.min(n,k+3); i++) { |
669 |
p = x * H[i][k] + y * H[i][k+1];
|
670 |
if (notlast) {
|
671 |
p = p + z * H[i][k+2];
|
672 |
H[i][k+2] = H[i][k+2] - p * r; |
673 |
} |
674 |
H[i][k] = H[i][k] - p; |
675 |
H[i][k+1] = H[i][k+1] - p * q; |
676 |
} |
677 |
|
678 |
// Accumulate transformations
|
679 |
|
680 |
for (int i = low; i <= high; i++) { |
681 |
p = x * V[i][k] + y * V[i][k+1];
|
682 |
if (notlast) {
|
683 |
p = p + z * V[i][k+2];
|
684 |
V[i][k+2] = V[i][k+2] - p * r; |
685 |
} |
686 |
V[i][k] = V[i][k] - p; |
687 |
V[i][k+1] = V[i][k+1] - p * q; |
688 |
} |
689 |
} // (s != 0)
|
690 |
} // k loop
|
691 |
} // check convergence
|
692 |
} // while (n >= low)
|
693 |
|
694 |
// Backsubstitute to find vectors of upper triangular form
|
695 |
|
696 |
if (norm == 0.0) { |
697 |
return;
|
698 |
} |
699 |
|
700 |
for (n = nn-1; n >= 0; n--) { |
701 |
p = d[n]; |
702 |
q = e[n]; |
703 |
|
704 |
// Real vector
|
705 |
|
706 |
if (q == 0) { |
707 |
int l = n;
|
708 |
H[n][n] = 1.0;
|
709 |
for (int i = n-1; i >= 0; i--) { |
710 |
w = H[i][i] - p; |
711 |
r = 0.0;
|
712 |
for (int j = l; j <= n; j++) { |
713 |
r = r + H[i][j] * H[j][n]; |
714 |
} |
715 |
if (e[i] < 0.0) { |
716 |
z = w; |
717 |
s = r; |
718 |
} else {
|
719 |
l = i; |
720 |
if (e[i] == 0.0) { |
721 |
if (w != 0.0) { |
722 |
H[i][n] = -r / w; |
723 |
} else {
|
724 |
H[i][n] = -r / (eps * norm); |
725 |
} |
726 |
|
727 |
// Solve real equations
|
728 |
|
729 |
} else {
|
730 |
x = H[i][i+1];
|
731 |
y = H[i+1][i];
|
732 |
q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; |
733 |
t = (x * s - z * r) / q; |
734 |
H[i][n] = t; |
735 |
if (Math.abs(x) > Math.abs(z)) { |
736 |
H[i+1][n] = (-r - w * t) / x;
|
737 |
} else {
|
738 |
H[i+1][n] = (-s - y * t) / z;
|
739 |
} |
740 |
} |
741 |
|
742 |
// Overflow control
|
743 |
|
744 |
t = Math.abs(H[i][n]);
|
745 |
if ((eps * t) * t > 1) { |
746 |
for (int j = i; j <= n; j++) { |
747 |
H[j][n] = H[j][n] / t; |
748 |
} |
749 |
} |
750 |
} |
751 |
} |
752 |
|
753 |
// Complex vector
|
754 |
|
755 |
} else if (q < 0) { |
756 |
int l = n-1; |
757 |
|
758 |
// Last vector component imaginary so matrix is triangular
|
759 |
|
760 |
if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) { |
761 |
H[n-1][n-1] = q / H[n][n-1]; |
762 |
H[n-1][n] = -(H[n][n] - p) / H[n][n-1]; |
763 |
} else {
|
764 |
cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q); |
765 |
H[n-1][n-1] = cdivr; |
766 |
H[n-1][n] = cdivi;
|
767 |
} |
768 |
H[n][n-1] = 0.0; |
769 |
H[n][n] = 1.0;
|
770 |
for (int i = n-2; i >= 0; i--) { |
771 |
double ra,sa,vr,vi;
|
772 |
ra = 0.0;
|
773 |
sa = 0.0;
|
774 |
for (int j = l; j <= n; j++) { |
775 |
ra = ra + H[i][j] * H[j][n-1];
|
776 |
sa = sa + H[i][j] * H[j][n]; |
777 |
} |
778 |
w = H[i][i] - p; |
779 |
|
780 |
if (e[i] < 0.0) { |
781 |
z = w; |
782 |
r = ra; |
783 |
s = sa; |
784 |
} else {
|
785 |
l = i; |
786 |
if (e[i] == 0) { |
787 |
cdiv(-ra,-sa,w,q); |
788 |
H[i][n-1] = cdivr;
|
789 |
H[i][n] = cdivi; |
790 |
} else {
|
791 |
|
792 |
// Solve complex equations
|
793 |
|
794 |
x = H[i][i+1];
|
795 |
y = H[i+1][i];
|
796 |
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; |
797 |
vi = (d[i] - p) * 2.0 * q;
|
798 |
if (vr == 0.0 & vi == 0.0) { |
799 |
vr = eps * norm * (Math.abs(w) + Math.abs(q) + |
800 |
Math.abs(x) + Math.abs(y) + Math.abs(z)); |
801 |
} |
802 |
cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); |
803 |
H[i][n-1] = cdivr;
|
804 |
H[i][n] = cdivi; |
805 |
if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) { |
806 |
H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x; |
807 |
H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x; |
808 |
} else {
|
809 |
cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
|
810 |
H[i+1][n-1] = cdivr; |
811 |
H[i+1][n] = cdivi;
|
812 |
} |
813 |
} |
814 |
|
815 |
// Overflow control
|
816 |
|
817 |
t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n])); |
818 |
if ((eps * t) * t > 1) { |
819 |
for (int j = i; j <= n; j++) { |
820 |
H[j][n-1] = H[j][n-1] / t; |
821 |
H[j][n] = H[j][n] / t; |
822 |
} |
823 |
} |
824 |
} |
825 |
} |
826 |
} |
827 |
} |
828 |
|
829 |
// Vectors of isolated roots
|
830 |
|
831 |
for (int i = 0; i < nn; i++) { |
832 |
if (i < low | i > high) {
|
833 |
for (int j = i; j < nn; j++) { |
834 |
V[i][j] = H[i][j]; |
835 |
} |
836 |
} |
837 |
} |
838 |
|
839 |
// Back transformation to get eigenvectors of original matrix
|
840 |
|
841 |
for (int j = nn-1; j >= low; j--) { |
842 |
for (int i = low; i <= high; i++) { |
843 |
z = 0.0;
|
844 |
for (int k = low; k <= Math.min(j,high); k++) { |
845 |
z = z + V[i][k] * H[k][j]; |
846 |
} |
847 |
V[i][j] = z; |
848 |
} |
849 |
} |
850 |
} |
851 |
|
852 |
|
853 |
/* ------------------------
|
854 |
Constructor
|
855 |
* ------------------------ */
|
856 |
|
857 |
/** Check for symmetry, then construct the eigenvalue decomposition
|
858 |
@param A Square matrix
|
859 |
@return Structure to access D and V.
|
860 |
*/
|
861 |
|
862 |
public EigenvalueDecomposition (Matrix Arg) {
|
863 |
double[][] A = Arg.getArray(); |
864 |
n = Arg.getColumnDimension(); |
865 |
V = new double[n][n]; |
866 |
d = new double[n]; |
867 |
e = new double[n]; |
868 |
|
869 |
issymmetric = true;
|
870 |
for (int j = 0; (j < n) & issymmetric; j++) { |
871 |
for (int i = 0; (i < n) & issymmetric; i++) { |
872 |
issymmetric = (A[i][j] == A[j][i]); |
873 |
} |
874 |
} |
875 |
|
876 |
if (issymmetric) {
|
877 |
for (int i = 0; i < n; i++) { |
878 |
for (int j = 0; j < n; j++) { |
879 |
V[i][j] = A[i][j]; |
880 |
} |
881 |
} |
882 |
|
883 |
// Tridiagonalize.
|
884 |
tred2(); |
885 |
|
886 |
// Diagonalize.
|
887 |
tql2(); |
888 |
|
889 |
} else {
|
890 |
H = new double[n][n]; |
891 |
ort = new double[n]; |
892 |
|
893 |
for (int j = 0; j < n; j++) { |
894 |
for (int i = 0; i < n; i++) { |
895 |
H[i][j] = A[i][j]; |
896 |
} |
897 |
} |
898 |
|
899 |
// Reduce to Hessenberg form.
|
900 |
orthes(); |
901 |
|
902 |
// Reduce Hessenberg to real Schur form.
|
903 |
hqr2(); |
904 |
} |
905 |
} |
906 |
|
907 |
/* ------------------------
|
908 |
Public Methods
|
909 |
* ------------------------ */
|
910 |
|
911 |
/** Return the eigenvector matrix
|
912 |
@return V
|
913 |
*/
|
914 |
|
915 |
public Matrix getV () {
|
916 |
return new Matrix(V,n,n); |
917 |
} |
918 |
|
919 |
/** Return the real parts of the eigenvalues
|
920 |
@return real(diag(D))
|
921 |
*/
|
922 |
|
923 |
public double[] getRealEigenvalues () { |
924 |
return d;
|
925 |
} |
926 |
|
927 |
/** Return the imaginary parts of the eigenvalues
|
928 |
@return imag(diag(D))
|
929 |
*/
|
930 |
|
931 |
public double[] getImagEigenvalues () { |
932 |
return e;
|
933 |
} |
934 |
|
935 |
/** Return the block diagonal eigenvalue matrix
|
936 |
@return D
|
937 |
*/
|
938 |
|
939 |
public Matrix getD () {
|
940 |
Matrix X = new Matrix(n,n);
|
941 |
double[][] D = X.getArray(); |
942 |
for (int i = 0; i < n; i++) { |
943 |
for (int j = 0; j < n; j++) { |
944 |
D[i][j] = 0.0;
|
945 |
} |
946 |
D[i][i] = d[i]; |
947 |
if (e[i] > 0) { |
948 |
D[i][i+1] = e[i];
|
949 |
} else if (e[i] < 0) { |
950 |
D[i][i-1] = e[i];
|
951 |
} |
952 |
} |
953 |
return X;
|
954 |
} |
955 |
} |