root / tmp / org.txm.analec.rcp / src / JamaPlus / LUDecomposition.java @ 2031
Historique | Voir | Annoter | Télécharger (8,29 ko)
| 1 | 481 | mdecorde | package JamaPlus; |
|---|---|---|---|
| 2 | 481 | mdecorde | |
| 3 | 481 | mdecorde | /** LU Decomposition.
|
| 4 | 481 | mdecorde | <P>
|
| 5 | 481 | mdecorde | For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
| 6 | 481 | mdecorde | unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
| 7 | 481 | mdecorde | and a permutation vector piv of length m so that A(piv,:) = L*U.
|
| 8 | 481 | mdecorde | If m < n, then L is m-by-m and U is m-by-n.
|
| 9 | 481 | mdecorde | <P>
|
| 10 | 481 | mdecorde | The LU decompostion with pivoting always exists, even if the matrix is
|
| 11 | 481 | mdecorde | singular, so the constructor will never fail. The primary use of the
|
| 12 | 481 | mdecorde | LU decomposition is in the solution of square systems of simultaneous
|
| 13 | 481 | mdecorde | linear equations. This will fail if isNonsingular() returns false.
|
| 14 | 481 | mdecorde | */
|
| 15 | 481 | mdecorde | |
| 16 | 481 | mdecorde | public class LUDecomposition implements java.io.Serializable { |
| 17 | 481 | mdecorde | |
| 18 | 481 | mdecorde | /* ------------------------
|
| 19 | 481 | mdecorde | Class variables
|
| 20 | 481 | mdecorde | * ------------------------ */
|
| 21 | 481 | mdecorde | |
| 22 | 481 | mdecorde | /** Array for internal storage of decomposition.
|
| 23 | 481 | mdecorde | @serial internal array storage.
|
| 24 | 481 | mdecorde | */
|
| 25 | 481 | mdecorde | private double[][] LU; |
| 26 | 481 | mdecorde | |
| 27 | 481 | mdecorde | /** Row and column dimensions, and pivot sign.
|
| 28 | 481 | mdecorde | @serial column dimension.
|
| 29 | 481 | mdecorde | @serial row dimension.
|
| 30 | 481 | mdecorde | @serial pivot sign.
|
| 31 | 481 | mdecorde | */
|
| 32 | 481 | mdecorde | private int m, n, pivsign; |
| 33 | 481 | mdecorde | |
| 34 | 481 | mdecorde | /** Internal storage of pivot vector.
|
| 35 | 481 | mdecorde | @serial pivot vector.
|
| 36 | 481 | mdecorde | */
|
| 37 | 481 | mdecorde | private int[] piv; |
| 38 | 481 | mdecorde | |
| 39 | 481 | mdecorde | /* ------------------------
|
| 40 | 481 | mdecorde | Constructor
|
| 41 | 481 | mdecorde | * ------------------------ */
|
| 42 | 481 | mdecorde | |
| 43 | 481 | mdecorde | /** LU Decomposition
|
| 44 | 481 | mdecorde | @param A Rectangular matrix
|
| 45 | 481 | mdecorde | @return Structure to access L, U and piv.
|
| 46 | 481 | mdecorde | */
|
| 47 | 481 | mdecorde | |
| 48 | 481 | mdecorde | public LUDecomposition (Matrix A) {
|
| 49 | 481 | mdecorde | |
| 50 | 481 | mdecorde | // Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
| 51 | 481 | mdecorde | |
| 52 | 481 | mdecorde | LU = A.getArrayCopy(); |
| 53 | 481 | mdecorde | m = A.getRowDimension(); |
| 54 | 481 | mdecorde | n = A.getColumnDimension(); |
| 55 | 481 | mdecorde | piv = new int[m]; |
| 56 | 481 | mdecorde | for (int i = 0; i < m; i++) { |
| 57 | 481 | mdecorde | piv[i] = i; |
| 58 | 481 | mdecorde | } |
| 59 | 481 | mdecorde | pivsign = 1;
|
| 60 | 481 | mdecorde | double[] LUrowi; |
| 61 | 481 | mdecorde | double[] LUcolj = new double[m]; |
| 62 | 481 | mdecorde | |
| 63 | 481 | mdecorde | // Outer loop.
|
| 64 | 481 | mdecorde | |
| 65 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 66 | 481 | mdecorde | |
| 67 | 481 | mdecorde | // Make a copy of the j-th column to localize references.
|
| 68 | 481 | mdecorde | |
| 69 | 481 | mdecorde | for (int i = 0; i < m; i++) { |
| 70 | 481 | mdecorde | LUcolj[i] = LU[i][j]; |
| 71 | 481 | mdecorde | } |
| 72 | 481 | mdecorde | |
| 73 | 481 | mdecorde | // Apply previous transformations.
|
| 74 | 481 | mdecorde | |
| 75 | 481 | mdecorde | for (int i = 0; i < m; i++) { |
| 76 | 481 | mdecorde | LUrowi = LU[i]; |
| 77 | 481 | mdecorde | |
| 78 | 481 | mdecorde | // Most of the time is spent in the following dot product.
|
| 79 | 481 | mdecorde | |
| 80 | 481 | mdecorde | int kmax = Math.min(i,j); |
| 81 | 481 | mdecorde | double s = 0.0; |
| 82 | 481 | mdecorde | for (int k = 0; k < kmax; k++) { |
| 83 | 481 | mdecorde | s += LUrowi[k]*LUcolj[k]; |
| 84 | 481 | mdecorde | } |
| 85 | 481 | mdecorde | |
| 86 | 481 | mdecorde | LUrowi[j] = LUcolj[i] -= s; |
| 87 | 481 | mdecorde | } |
| 88 | 481 | mdecorde | |
| 89 | 481 | mdecorde | // Find pivot and exchange if necessary.
|
| 90 | 481 | mdecorde | |
| 91 | 481 | mdecorde | int p = j;
|
| 92 | 481 | mdecorde | for (int i = j+1; i < m; i++) { |
| 93 | 481 | mdecorde | if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { |
| 94 | 481 | mdecorde | p = i; |
| 95 | 481 | mdecorde | } |
| 96 | 481 | mdecorde | } |
| 97 | 481 | mdecorde | if (p != j) {
|
| 98 | 481 | mdecorde | for (int k = 0; k < n; k++) { |
| 99 | 481 | mdecorde | double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
|
| 100 | 481 | mdecorde | } |
| 101 | 481 | mdecorde | int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
|
| 102 | 481 | mdecorde | pivsign = -pivsign; |
| 103 | 481 | mdecorde | } |
| 104 | 481 | mdecorde | |
| 105 | 481 | mdecorde | // Compute multipliers.
|
| 106 | 481 | mdecorde | |
| 107 | 481 | mdecorde | if (j < m & LU[j][j] != 0.0) { |
| 108 | 481 | mdecorde | for (int i = j+1; i < m; i++) { |
| 109 | 481 | mdecorde | LU[i][j] /= LU[j][j]; |
| 110 | 481 | mdecorde | } |
| 111 | 481 | mdecorde | } |
| 112 | 481 | mdecorde | } |
| 113 | 481 | mdecorde | } |
| 114 | 481 | mdecorde | |
| 115 | 481 | mdecorde | /* ------------------------
|
| 116 | 481 | mdecorde | Temporary, experimental code.
|
| 117 | 481 | mdecorde | ------------------------ *\
|
| 118 | 481 | mdecorde | |
| 119 | 481 | mdecorde | \** LU Decomposition, computed by Gaussian elimination.
|
| 120 | 481 | mdecorde | <P>
|
| 121 | 481 | mdecorde | This constructor computes L and U with the "daxpy"-based elimination
|
| 122 | 481 | mdecorde | algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,
|
| 123 | 481 | mdecorde | Crout algorithm will be faster. We have temporarily included this
|
| 124 | 481 | mdecorde | constructor until timing experiments confirm this suspicion.
|
| 125 | 481 | mdecorde | <P>
|
| 126 | 481 | mdecorde | @param A Rectangular matrix
|
| 127 | 481 | mdecorde | @param linpackflag Use Gaussian elimination. Actual value ignored.
|
| 128 | 481 | mdecorde | @return Structure to access L, U and piv.
|
| 129 | 481 | mdecorde | *\
|
| 130 | 481 | mdecorde | |
| 131 | 481 | mdecorde | public LUDecomposition (Matrix A, int linpackflag) {
|
| 132 | 481 | mdecorde | // Initialize.
|
| 133 | 481 | mdecorde | LU = A.getArrayCopy();
|
| 134 | 481 | mdecorde | m = A.getRowDimension();
|
| 135 | 481 | mdecorde | n = A.getColumnDimension();
|
| 136 | 481 | mdecorde | piv = new int[m];
|
| 137 | 481 | mdecorde | for (int i = 0; i < m; i++) {
|
| 138 | 481 | mdecorde | piv[i] = i;
|
| 139 | 481 | mdecorde | }
|
| 140 | 481 | mdecorde | pivsign = 1;
|
| 141 | 481 | mdecorde | // Main loop.
|
| 142 | 481 | mdecorde | for (int k = 0; k < n; k++) {
|
| 143 | 481 | mdecorde | // Find pivot.
|
| 144 | 481 | mdecorde | int p = k;
|
| 145 | 481 | mdecorde | for (int i = k+1; i < m; i++) {
|
| 146 | 481 | mdecorde | if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {
|
| 147 | 481 | mdecorde | p = i;
|
| 148 | 481 | mdecorde | }
|
| 149 | 481 | mdecorde | }
|
| 150 | 481 | mdecorde | // Exchange if necessary.
|
| 151 | 481 | mdecorde | if (p != k) {
|
| 152 | 481 | mdecorde | for (int j = 0; j < n; j++) {
|
| 153 | 481 | mdecorde | double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
|
| 154 | 481 | mdecorde | }
|
| 155 | 481 | mdecorde | int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
|
| 156 | 481 | mdecorde | pivsign = -pivsign;
|
| 157 | 481 | mdecorde | }
|
| 158 | 481 | mdecorde | // Compute multipliers and eliminate k-th column.
|
| 159 | 481 | mdecorde | if (LU[k][k] != 0.0) {
|
| 160 | 481 | mdecorde | for (int i = k+1; i < m; i++) {
|
| 161 | 481 | mdecorde | LU[i][k] /= LU[k][k];
|
| 162 | 481 | mdecorde | for (int j = k+1; j < n; j++) {
|
| 163 | 481 | mdecorde | LU[i][j] -= LU[i][k]*LU[k][j];
|
| 164 | 481 | mdecorde | }
|
| 165 | 481 | mdecorde | }
|
| 166 | 481 | mdecorde | }
|
| 167 | 481 | mdecorde | }
|
| 168 | 481 | mdecorde | }
|
| 169 | 481 | mdecorde | |
| 170 | 481 | mdecorde | \* ------------------------
|
| 171 | 481 | mdecorde | End of temporary code.
|
| 172 | 481 | mdecorde | * ------------------------ */
|
| 173 | 481 | mdecorde | |
| 174 | 481 | mdecorde | /* ------------------------
|
| 175 | 481 | mdecorde | Public Methods
|
| 176 | 481 | mdecorde | * ------------------------ */
|
| 177 | 481 | mdecorde | |
| 178 | 481 | mdecorde | /** Is the matrix nonsingular?
|
| 179 | 481 | mdecorde | @return true if U, and hence A, is nonsingular.
|
| 180 | 481 | mdecorde | */
|
| 181 | 481 | mdecorde | |
| 182 | 481 | mdecorde | public boolean isNonsingular () { |
| 183 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 184 | 481 | mdecorde | if (LU[j][j] == 0) |
| 185 | 481 | mdecorde | return false; |
| 186 | 481 | mdecorde | } |
| 187 | 481 | mdecorde | return true; |
| 188 | 481 | mdecorde | } |
| 189 | 481 | mdecorde | |
| 190 | 481 | mdecorde | /** Return lower triangular factor
|
| 191 | 481 | mdecorde | @return L
|
| 192 | 481 | mdecorde | */
|
| 193 | 481 | mdecorde | |
| 194 | 481 | mdecorde | public Matrix getL () {
|
| 195 | 481 | mdecorde | Matrix X = new Matrix(m,n);
|
| 196 | 481 | mdecorde | double[][] L = X.getArray(); |
| 197 | 481 | mdecorde | for (int i = 0; i < m; i++) { |
| 198 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 199 | 481 | mdecorde | if (i > j) {
|
| 200 | 481 | mdecorde | L[i][j] = LU[i][j]; |
| 201 | 481 | mdecorde | } else if (i == j) { |
| 202 | 481 | mdecorde | L[i][j] = 1.0;
|
| 203 | 481 | mdecorde | } else {
|
| 204 | 481 | mdecorde | L[i][j] = 0.0;
|
| 205 | 481 | mdecorde | } |
| 206 | 481 | mdecorde | } |
| 207 | 481 | mdecorde | } |
| 208 | 481 | mdecorde | return X;
|
| 209 | 481 | mdecorde | } |
| 210 | 481 | mdecorde | |
| 211 | 481 | mdecorde | /** Return upper triangular factor
|
| 212 | 481 | mdecorde | @return U
|
| 213 | 481 | mdecorde | */
|
| 214 | 481 | mdecorde | |
| 215 | 481 | mdecorde | public Matrix getU () {
|
| 216 | 481 | mdecorde | Matrix X = new Matrix(n,n);
|
| 217 | 481 | mdecorde | double[][] U = X.getArray(); |
| 218 | 481 | mdecorde | for (int i = 0; i < n; i++) { |
| 219 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 220 | 481 | mdecorde | if (i <= j) {
|
| 221 | 481 | mdecorde | U[i][j] = LU[i][j]; |
| 222 | 481 | mdecorde | } else {
|
| 223 | 481 | mdecorde | U[i][j] = 0.0;
|
| 224 | 481 | mdecorde | } |
| 225 | 481 | mdecorde | } |
| 226 | 481 | mdecorde | } |
| 227 | 481 | mdecorde | return X;
|
| 228 | 481 | mdecorde | } |
| 229 | 481 | mdecorde | |
| 230 | 481 | mdecorde | /** Return pivot permutation vector
|
| 231 | 481 | mdecorde | @return piv
|
| 232 | 481 | mdecorde | */
|
| 233 | 481 | mdecorde | |
| 234 | 481 | mdecorde | public int[] getPivot () { |
| 235 | 481 | mdecorde | int[] p = new int[m]; |
| 236 | 481 | mdecorde | for (int i = 0; i < m; i++) { |
| 237 | 481 | mdecorde | p[i] = piv[i]; |
| 238 | 481 | mdecorde | } |
| 239 | 481 | mdecorde | return p;
|
| 240 | 481 | mdecorde | } |
| 241 | 481 | mdecorde | |
| 242 | 481 | mdecorde | /** Return pivot permutation vector as a one-dimensional double array
|
| 243 | 481 | mdecorde | @return (double) piv
|
| 244 | 481 | mdecorde | */
|
| 245 | 481 | mdecorde | |
| 246 | 481 | mdecorde | public double[] getDoublePivot () { |
| 247 | 481 | mdecorde | double[] vals = new double[m]; |
| 248 | 481 | mdecorde | for (int i = 0; i < m; i++) { |
| 249 | 481 | mdecorde | vals[i] = (double) piv[i];
|
| 250 | 481 | mdecorde | } |
| 251 | 481 | mdecorde | return vals;
|
| 252 | 481 | mdecorde | } |
| 253 | 481 | mdecorde | |
| 254 | 481 | mdecorde | /** Determinant
|
| 255 | 481 | mdecorde | @return det(A)
|
| 256 | 481 | mdecorde | @exception IllegalArgumentException Matrix must be square
|
| 257 | 481 | mdecorde | */
|
| 258 | 481 | mdecorde | |
| 259 | 481 | mdecorde | public double det () { |
| 260 | 481 | mdecorde | if (m != n) {
|
| 261 | 481 | mdecorde | throw new IllegalArgumentException("Matrix must be square."); |
| 262 | 481 | mdecorde | } |
| 263 | 481 | mdecorde | double d = (double) pivsign; |
| 264 | 481 | mdecorde | for (int j = 0; j < n; j++) { |
| 265 | 481 | mdecorde | d *= LU[j][j]; |
| 266 | 481 | mdecorde | } |
| 267 | 481 | mdecorde | return d;
|
| 268 | 481 | mdecorde | } |
| 269 | 481 | mdecorde | |
| 270 | 481 | mdecorde | /** Solve A*X = B
|
| 271 | 481 | mdecorde | @param B A Matrix with as many rows as A and any number of columns.
|
| 272 | 481 | mdecorde | @return X so that L*U*X = B(piv,:)
|
| 273 | 481 | mdecorde | @exception IllegalArgumentException Matrix row dimensions must agree.
|
| 274 | 481 | mdecorde | @exception RuntimeException Matrix is singular.
|
| 275 | 481 | mdecorde | */
|
| 276 | 481 | mdecorde | |
| 277 | 481 | mdecorde | public Matrix solve (Matrix B) {
|
| 278 | 481 | mdecorde | if (B.getRowDimension() != m) {
|
| 279 | 481 | mdecorde | throw new IllegalArgumentException("Matrix row dimensions must agree."); |
| 280 | 481 | mdecorde | } |
| 281 | 481 | mdecorde | if (!this.isNonsingular()) { |
| 282 | 481 | mdecorde | throw new RuntimeException("Matrix is singular."); |
| 283 | 481 | mdecorde | } |
| 284 | 481 | mdecorde | |
| 285 | 481 | mdecorde | // Copy right hand side with pivoting
|
| 286 | 481 | mdecorde | int nx = B.getColumnDimension();
|
| 287 | 481 | mdecorde | Matrix Xmat = B.getMatrix(piv,0,nx-1); |
| 288 | 481 | mdecorde | double[][] X = Xmat.getArray(); |
| 289 | 481 | mdecorde | |
| 290 | 481 | mdecorde | // Solve L*Y = B(piv,:)
|
| 291 | 481 | mdecorde | for (int k = 0; k < n; k++) { |
| 292 | 481 | mdecorde | for (int i = k+1; i < n; i++) { |
| 293 | 481 | mdecorde | for (int j = 0; j < nx; j++) { |
| 294 | 481 | mdecorde | X[i][j] -= X[k][j]*LU[i][k]; |
| 295 | 481 | mdecorde | } |
| 296 | 481 | mdecorde | } |
| 297 | 481 | mdecorde | } |
| 298 | 481 | mdecorde | // Solve U*X = Y;
|
| 299 | 481 | mdecorde | for (int k = n-1; k >= 0; k--) { |
| 300 | 481 | mdecorde | for (int j = 0; j < nx; j++) { |
| 301 | 481 | mdecorde | X[k][j] /= LU[k][k]; |
| 302 | 481 | mdecorde | } |
| 303 | 481 | mdecorde | for (int i = 0; i < k; i++) { |
| 304 | 481 | mdecorde | for (int j = 0; j < nx; j++) { |
| 305 | 481 | mdecorde | X[i][j] -= X[k][j]*LU[i][k]; |
| 306 | 481 | mdecorde | } |
| 307 | 481 | mdecorde | } |
| 308 | 481 | mdecorde | } |
| 309 | 481 | mdecorde | return Xmat;
|
| 310 | 481 | mdecorde | } |
| 311 | 481 | mdecorde | } |