Statistiques
| Révision :

root / tmp / org.txm.analec.rcp / src / JamaPlus / EigenvalueDecomposition.java @ 2019

Historique | Voir | Annoter | Télécharger (27,12 ko)

1
package JamaPlus;
2
import JamaPlus.util.*;
3

    
4
/** Eigenvalues and eigenvectors of a real matrix. 
5
<P>
6
    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
7
    diagonal and the eigenvector matrix V is orthogonal.
8
    I.e. A = V.times(D.times(V.transpose())) and 
9
    V.times(V.transpose()) equals the identity matrix.
10
<P>
11
    If A is not symmetric, then the eigenvalue matrix D is block diagonal
12
    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
13
    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The
14
    columns of V represent the eigenvectors in the sense that A*V = V*D,
15
    i.e. A.times(V) equals V.times(D).  The matrix V may be badly
16
    conditioned, or even singular, so the validity of the equation
17
    A = V*D*inverse(V) depends upon V.cond().
18
**/
19

    
20
public class EigenvalueDecomposition implements java.io.Serializable {
21

    
22
/* ------------------------
23
   Class variables
24
 * ------------------------ */
25

    
26
   /** Row and column dimension (square matrix).
27
   @serial matrix dimension.
28
   */
29
   private int n;
30

    
31
   /** Symmetry flag.
32
   @serial internal symmetry flag.
33
   */
34
   private boolean issymmetric;
35

    
36
   /** Arrays for internal storage of eigenvalues.
37
   @serial internal storage of eigenvalues.
38
   */
39
   private double[] d, e;
40

    
41
   /** Array for internal storage of eigenvectors.
42
   @serial internal storage of eigenvectors.
43
   */
44
   private double[][] V;
45

    
46
   /** Array for internal storage of nonsymmetric Hessenberg form.
47
   @serial internal storage of nonsymmetric Hessenberg form.
48
   */
49
   private double[][] H;
50

    
51
   /** Working storage for nonsymmetric algorithm.
52
   @serial working storage for nonsymmetric algorithm.
53
   */
54
   private double[] ort;
55

    
56
/* ------------------------
57
   Private Methods
58
 * ------------------------ */
59

    
60
   // Symmetric Householder reduction to tridiagonal form.
61

    
62
   private void tred2 () {
63

    
64
   //  This is derived from the Algol procedures tred2 by
65
   //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
66
   //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
67
   //  Fortran subroutine in EISPACK.
68

    
69
      for (int j = 0; j < n; j++) {
70
         d[j] = V[n-1][j];
71
      }
72

    
73
      // Householder reduction to tridiagonal form.
74
   
75
      for (int i = n-1; i > 0; i--) {
76
   
77
         // Scale to avoid under/overflow.
78
   
79
         double scale = 0.0;
80
         double h = 0.0;
81
         for (int k = 0; k < i; k++) {
82
            scale = scale + Math.abs(d[k]);
83
         }
84
         if (scale == 0.0) {
85
            e[i] = d[i-1];
86
            for (int j = 0; j < i; j++) {
87
               d[j] = V[i-1][j];
88
               V[i][j] = 0.0;
89
               V[j][i] = 0.0;
90
            }
91
         } else {
92
   
93
            // Generate Householder vector.
94
   
95
            for (int k = 0; k < i; k++) {
96
               d[k] /= scale;
97
               h += d[k] * d[k];
98
            }
99
            double f = d[i-1];
100
            double g = Math.sqrt(h);
101
            if (f > 0) {
102
               g = -g;
103
            }
104
            e[i] = scale * g;
105
            h = h - f * g;
106
            d[i-1] = f - g;
107
            for (int j = 0; j < i; j++) {
108
               e[j] = 0.0;
109
            }
110
   
111
            // Apply similarity transformation to remaining columns.
112
   
113
            for (int j = 0; j < i; j++) {
114
               f = d[j];
115
               V[j][i] = f;
116
               g = e[j] + V[j][j] * f;
117
               for (int k = j+1; k <= i-1; k++) {
118
                  g += V[k][j] * d[k];
119
                  e[k] += V[k][j] * f;
120
               }
121
               e[j] = g;
122
            }
123
            f = 0.0;
124
            for (int j = 0; j < i; j++) {
125
               e[j] /= h;
126
               f += e[j] * d[j];
127
            }
128
            double hh = f / (h + h);
129
            for (int j = 0; j < i; j++) {
130
               e[j] -= hh * d[j];
131
            }
132
            for (int j = 0; j < i; j++) {
133
               f = d[j];
134
               g = e[j];
135
               for (int k = j; k <= i-1; k++) {
136
                  V[k][j] -= (f * e[k] + g * d[k]);
137
               }
138
               d[j] = V[i-1][j];
139
               V[i][j] = 0.0;
140
            }
141
         }
142
         d[i] = h;
143
      }
144
   
145
      // Accumulate transformations.
146
   
147
      for (int i = 0; i < n-1; i++) {
148
         V[n-1][i] = V[i][i];
149
         V[i][i] = 1.0;
150
         double h = d[i+1];
151
         if (h != 0.0) {
152
            for (int k = 0; k <= i; k++) {
153
               d[k] = V[k][i+1] / h;
154
            }
155
            for (int j = 0; j <= i; j++) {
156
               double g = 0.0;
157
               for (int k = 0; k <= i; k++) {
158
                  g += V[k][i+1] * V[k][j];
159
               }
160
               for (int k = 0; k <= i; k++) {
161
                  V[k][j] -= g * d[k];
162
               }
163
            }
164
         }
165
         for (int k = 0; k <= i; k++) {
166
            V[k][i+1] = 0.0;
167
         }
168
      }
169
      for (int j = 0; j < n; j++) {
170
         d[j] = V[n-1][j];
171
         V[n-1][j] = 0.0;
172
      }
173
      V[n-1][n-1] = 1.0;
174
      e[0] = 0.0;
175
   } 
176

    
177
   // Symmetric tridiagonal QL algorithm.
178
   
179
   private void tql2 () {
180

    
181
   //  This is derived from the Algol procedures tql2, by
182
   //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
183
   //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
184
   //  Fortran subroutine in EISPACK.
185
   
186
      for (int i = 1; i < n; i++) {
187
         e[i-1] = e[i];
188
      }
189
      e[n-1] = 0.0;
190
   
191
      double f = 0.0;
192
      double tst1 = 0.0;
193
      double eps = Math.pow(2.0,-52.0);
194
      for (int l = 0; l < n; l++) {
195

    
196
         // Find small subdiagonal element
197
   
198
         tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
199
         int m = l;
200
         while (m < n) {
201
            if (Math.abs(e[m]) <= eps*tst1) {
202
               break;
203
            }
204
            m++;
205
         }
206
   
207
         // If m == l, d[l] is an eigenvalue,
208
         // otherwise, iterate.
209
   
210
         if (m > l) {
211
            int iter = 0;
212
            do {
213
               iter = iter + 1;  // (Could check iteration count here.)
214
   
215
               // Compute implicit shift
216
   
217
               double g = d[l];
218
               double p = (d[l+1] - g) / (2.0 * e[l]);
219
               double r = Math.hypot(p,1.0);
220
               if (p < 0) {
221
                  r = -r;
222
               }
223
               d[l] = e[l] / (p + r);
224
               d[l+1] = e[l] * (p + r);
225
               double dl1 = d[l+1];
226
               double h = g - d[l];
227
               for (int i = l+2; i < n; i++) {
228
                  d[i] -= h;
229
               }
230
               f = f + h;
231
   
232
               // Implicit QL transformation.
233
   
234
               p = d[m];
235
               double c = 1.0;
236
               double c2 = c;
237
               double c3 = c;
238
               double el1 = e[l+1];
239
               double s = 0.0;
240
               double s2 = 0.0;
241
               for (int i = m-1; i >= l; i--) {
242
                  c3 = c2;
243
                  c2 = c;
244
                  s2 = s;
245
                  g = c * e[i];
246
                  h = c * p;
247
                  r = Math.hypot(p,e[i]);
248
                  e[i+1] = s * r;
249
                  s = e[i] / r;
250
                  c = p / r;
251
                  p = c * d[i] - s * g;
252
                  d[i+1] = h + s * (c * g + s * d[i]);
253
   
254
                  // Accumulate transformation.
255
   
256
                  for (int k = 0; k < n; k++) {
257
                     h = V[k][i+1];
258
                     V[k][i+1] = s * V[k][i] + c * h;
259
                     V[k][i] = c * V[k][i] - s * h;
260
                  }
261
               }
262
               p = -s * s2 * c3 * el1 * e[l] / dl1;
263
               e[l] = s * p;
264
               d[l] = c * p;
265
   
266
               // Check for convergence.
267
   
268
            } while (Math.abs(e[l]) > eps*tst1);
269
         }
270
         d[l] = d[l] + f;
271
         e[l] = 0.0;
272
      }
273
     
274
      // Sort eigenvalues and corresponding vectors.
275
   
276
      for (int i = 0; i < n-1; i++) {
277
         int k = i;
278
         double p = d[i];
279
         for (int j = i+1; j < n; j++) {
280
            if (d[j] < p) {
281
               k = j;
282
               p = d[j];
283
            }
284
         }
285
         if (k != i) {
286
            d[k] = d[i];
287
            d[i] = p;
288
            for (int j = 0; j < n; j++) {
289
               p = V[j][i];
290
               V[j][i] = V[j][k];
291
               V[j][k] = p;
292
            }
293
         }
294
      }
295
   }
296

    
297
   // Nonsymmetric reduction to Hessenberg form.
298

    
299
   private void orthes () {
300
   
301
      //  This is derived from the Algol procedures orthes and ortran,
302
      //  by Martin and Wilkinson, Handbook for Auto. Comp.,
303
      //  Vol.ii-Linear Algebra, and the corresponding
304
      //  Fortran subroutines in EISPACK.
305
   
306
      int low = 0;
307
      int high = n-1;
308
   
309
      for (int m = low+1; m <= high-1; m++) {
310
   
311
         // Scale column.
312
   
313
         double scale = 0.0;
314
         for (int i = m; i <= high; i++) {
315
            scale = scale + Math.abs(H[i][m-1]);
316
         }
317
         if (scale != 0.0) {
318
   
319
            // Compute Householder transformation.
320
   
321
            double h = 0.0;
322
            for (int i = high; i >= m; i--) {
323
               ort[i] = H[i][m-1]/scale;
324
               h += ort[i] * ort[i];
325
            }
326
            double g = Math.sqrt(h);
327
            if (ort[m] > 0) {
328
               g = -g;
329
            }
330
            h = h - ort[m] * g;
331
            ort[m] = ort[m] - g;
332
   
333
            // Apply Householder similarity transformation
334
            // H = (I-u*u'/h)*H*(I-u*u')/h)
335
   
336
            for (int j = m; j < n; j++) {
337
               double f = 0.0;
338
               for (int i = high; i >= m; i--) {
339
                  f += ort[i]*H[i][j];
340
               }
341
               f = f/h;
342
               for (int i = m; i <= high; i++) {
343
                  H[i][j] -= f*ort[i];
344
               }
345
           }
346
   
347
           for (int i = 0; i <= high; i++) {
348
               double f = 0.0;
349
               for (int j = high; j >= m; j--) {
350
                  f += ort[j]*H[i][j];
351
               }
352
               f = f/h;
353
               for (int j = m; j <= high; j++) {
354
                  H[i][j] -= f*ort[j];
355
               }
356
            }
357
            ort[m] = scale*ort[m];
358
            H[m][m-1] = scale*g;
359
         }
360
      }
361
   
362
      // Accumulate transformations (Algol's ortran).
363

    
364
      for (int i = 0; i < n; i++) {
365
         for (int j = 0; j < n; j++) {
366
            V[i][j] = (i == j ? 1.0 : 0.0);
367
         }
368
      }
369

    
370
      for (int m = high-1; m >= low+1; m--) {
371
         if (H[m][m-1] != 0.0) {
372
            for (int i = m+1; i <= high; i++) {
373
               ort[i] = H[i][m-1];
374
            }
375
            for (int j = m; j <= high; j++) {
376
               double g = 0.0;
377
               for (int i = m; i <= high; i++) {
378
                  g += ort[i] * V[i][j];
379
               }
380
               // Double division avoids possible underflow
381
               g = (g / ort[m]) / H[m][m-1];
382
               for (int i = m; i <= high; i++) {
383
                  V[i][j] += g * ort[i];
384
               }
385
            }
386
         }
387
      }
388
   }
389

    
390

    
391
   // Complex scalar division.
392

    
393
   private transient double cdivr, cdivi;
394
   private void cdiv(double xr, double xi, double yr, double yi) {
395
      double r,d;
396
      if (Math.abs(yr) > Math.abs(yi)) {
397
         r = yi/yr;
398
         d = yr + r*yi;
399
         cdivr = (xr + r*xi)/d;
400
         cdivi = (xi - r*xr)/d;
401
      } else {
402
         r = yr/yi;
403
         d = yi + r*yr;
404
         cdivr = (r*xr + xi)/d;
405
         cdivi = (r*xi - xr)/d;
406
      }
407
   }
408

    
409

    
410
   // Nonsymmetric reduction from Hessenberg to real Schur form.
411

    
412
   private void hqr2 () {
413
   
414
      //  This is derived from the Algol procedure hqr2,
415
      //  by Martin and Wilkinson, Handbook for Auto. Comp.,
416
      //  Vol.ii-Linear Algebra, and the corresponding
417
      //  Fortran subroutine in EISPACK.
418
   
419
      // Initialize
420
   
421
      int nn = this.n;
422
      int n = nn-1;
423
      int low = 0;
424
      int high = nn-1;
425
      double eps = Math.pow(2.0,-52.0);
426
      double exshift = 0.0;
427
      double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
428
   
429
      // Store roots isolated by balanc and compute matrix norm
430
   
431
      double norm = 0.0;
432
      for (int i = 0; i < nn; i++) {
433
         if (i < low | i > high) {
434
            d[i] = H[i][i];
435
            e[i] = 0.0;
436
         }
437
         for (int j = Math.max(i-1,0); j < nn; j++) {
438
            norm = norm + Math.abs(H[i][j]);
439
         }
440
      }
441
   
442
      // Outer loop over eigenvalue index
443
   
444
      int iter = 0;
445
      while (n >= low) {
446
   
447
         // Look for single small sub-diagonal element
448
   
449
         int l = n;
450
         while (l > low) {
451
            s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
452
            if (s == 0.0) {
453
               s = norm;
454
            }
455
            if (Math.abs(H[l][l-1]) < eps * s) {
456
               break;
457
            }
458
            l--;
459
         }
460
       
461
         // Check for convergence
462
         // One root found
463
   
464
         if (l == n) {
465
            H[n][n] = H[n][n] + exshift;
466
            d[n] = H[n][n];
467
            e[n] = 0.0;
468
            n--;
469
            iter = 0;
470
   
471
         // Two roots found
472
   
473
         } else if (l == n-1) {
474
            w = H[n][n-1] * H[n-1][n];
475
            p = (H[n-1][n-1] - H[n][n]) / 2.0;
476
            q = p * p + w;
477
            z = Math.sqrt(Math.abs(q));
478
            H[n][n] = H[n][n] + exshift;
479
            H[n-1][n-1] = H[n-1][n-1] + exshift;
480
            x = H[n][n];
481
   
482
            // Real pair
483
   
484
            if (q >= 0) {
485
               if (p >= 0) {
486
                  z = p + z;
487
               } else {
488
                  z = p - z;
489
               }
490
               d[n-1] = x + z;
491
               d[n] = d[n-1];
492
               if (z != 0.0) {
493
                  d[n] = x - w / z;
494
               }
495
               e[n-1] = 0.0;
496
               e[n] = 0.0;
497
               x = H[n][n-1];
498
               s = Math.abs(x) + Math.abs(z);
499
               p = x / s;
500
               q = z / s;
501
               r = Math.sqrt(p * p+q * q);
502
               p = p / r;
503
               q = q / r;
504
   
505
               // Row modification
506
   
507
               for (int j = n-1; j < nn; j++) {
508
                  z = H[n-1][j];
509
                  H[n-1][j] = q * z + p * H[n][j];
510
                  H[n][j] = q * H[n][j] - p * z;
511
               }
512
   
513
               // Column modification
514
   
515
               for (int i = 0; i <= n; i++) {
516
                  z = H[i][n-1];
517
                  H[i][n-1] = q * z + p * H[i][n];
518
                  H[i][n] = q * H[i][n] - p * z;
519
               }
520
   
521
               // Accumulate transformations
522
   
523
               for (int i = low; i <= high; i++) {
524
                  z = V[i][n-1];
525
                  V[i][n-1] = q * z + p * V[i][n];
526
                  V[i][n] = q * V[i][n] - p * z;
527
               }
528
   
529
            // Complex pair
530
   
531
            } else {
532
               d[n-1] = x + p;
533
               d[n] = x + p;
534
               e[n-1] = z;
535
               e[n] = -z;
536
            }
537
            n = n - 2;
538
            iter = 0;
539
   
540
         // No convergence yet
541
   
542
         } else {
543
   
544
            // Form shift
545
   
546
            x = H[n][n];
547
            y = 0.0;
548
            w = 0.0;
549
            if (l < n) {
550
               y = H[n-1][n-1];
551
               w = H[n][n-1] * H[n-1][n];
552
            }
553
   
554
            // Wilkinson's original ad hoc shift
555
   
556
            if (iter == 10) {
557
               exshift += x;
558
               for (int i = low; i <= n; i++) {
559
                  H[i][i] -= x;
560
               }
561
               s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);
562
               x = y = 0.75 * s;
563
               w = -0.4375 * s * s;
564
            }
565

    
566
            // MATLAB's new ad hoc shift
567

    
568
            if (iter == 30) {
569
                s = (y - x) / 2.0;
570
                s = s * s + w;
571
                if (s > 0) {
572
                    s = Math.sqrt(s);
573
                    if (y < x) {
574
                       s = -s;
575
                    }
576
                    s = x - w / ((y - x) / 2.0 + s);
577
                    for (int i = low; i <= n; i++) {
578
                       H[i][i] -= s;
579
                    }
580
                    exshift += s;
581
                    x = y = w = 0.964;
582
                }
583
            }
584
   
585
            iter = iter + 1;   // (Could check iteration count here.)
586
   
587
            // Look for two consecutive small sub-diagonal elements
588
   
589
            int m = n-2;
590
            while (m >= l) {
591
               z = H[m][m];
592
               r = x - z;
593
               s = y - z;
594
               p = (r * s - w) / H[m+1][m] + H[m][m+1];
595
               q = H[m+1][m+1] - z - r - s;
596
               r = H[m+2][m+1];
597
               s = Math.abs(p) + Math.abs(q) + Math.abs(r);
598
               p = p / s;
599
               q = q / s;
600
               r = r / s;
601
               if (m == l) {
602
                  break;
603
               }
604
               if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <
605
                  eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +
606
                  Math.abs(H[m+1][m+1])))) {
607
                     break;
608
               }
609
               m--;
610
            }
611
   
612
            for (int i = m+2; i <= n; i++) {
613
               H[i][i-2] = 0.0;
614
               if (i > m+2) {
615
                  H[i][i-3] = 0.0;
616
               }
617
            }
618
   
619
            // Double QR step involving rows l:n and columns m:n
620
   
621
            for (int k = m; k <= n-1; k++) {
622
               boolean notlast = (k != n-1);
623
               if (k != m) {
624
                  p = H[k][k-1];
625
                  q = H[k+1][k-1];
626
                  r = (notlast ? H[k+2][k-1] : 0.0);
627
                  x = Math.abs(p) + Math.abs(q) + Math.abs(r);
628
                  if (x != 0.0) {
629
                     p = p / x;
630
                     q = q / x;
631
                     r = r / x;
632
                  }
633
               }
634
               if (x == 0.0) {
635
                  break;
636
               }
637
               s = Math.sqrt(p * p + q * q + r * r);
638
               if (p < 0) {
639
                  s = -s;
640
               }
641
               if (s != 0) {
642
                  if (k != m) {
643
                     H[k][k-1] = -s * x;
644
                  } else if (l != m) {
645
                     H[k][k-1] = -H[k][k-1];
646
                  }
647
                  p = p + s;
648
                  x = p / s;
649
                  y = q / s;
650
                  z = r / s;
651
                  q = q / p;
652
                  r = r / p;
653
   
654
                  // Row modification
655
   
656
                  for (int j = k; j < nn; j++) {
657
                     p = H[k][j] + q * H[k+1][j];
658
                     if (notlast) {
659
                        p = p + r * H[k+2][j];
660
                        H[k+2][j] = H[k+2][j] - p * z;
661
                     }
662
                     H[k][j] = H[k][j] - p * x;
663
                     H[k+1][j] = H[k+1][j] - p * y;
664
                  }
665
   
666
                  // Column modification
667
   
668
                  for (int i = 0; i <= Math.min(n,k+3); i++) {
669
                     p = x * H[i][k] + y * H[i][k+1];
670
                     if (notlast) {
671
                        p = p + z * H[i][k+2];
672
                        H[i][k+2] = H[i][k+2] - p * r;
673
                     }
674
                     H[i][k] = H[i][k] - p;
675
                     H[i][k+1] = H[i][k+1] - p * q;
676
                  }
677
   
678
                  // Accumulate transformations
679
   
680
                  for (int i = low; i <= high; i++) {
681
                     p = x * V[i][k] + y * V[i][k+1];
682
                     if (notlast) {
683
                        p = p + z * V[i][k+2];
684
                        V[i][k+2] = V[i][k+2] - p * r;
685
                     }
686
                     V[i][k] = V[i][k] - p;
687
                     V[i][k+1] = V[i][k+1] - p * q;
688
                  }
689
               }  // (s != 0)
690
            }  // k loop
691
         }  // check convergence
692
      }  // while (n >= low)
693
      
694
      // Backsubstitute to find vectors of upper triangular form
695

    
696
      if (norm == 0.0) {
697
         return;
698
      }
699
   
700
      for (n = nn-1; n >= 0; n--) {
701
         p = d[n];
702
         q = e[n];
703
   
704
         // Real vector
705
   
706
         if (q == 0) {
707
            int l = n;
708
            H[n][n] = 1.0;
709
            for (int i = n-1; i >= 0; i--) {
710
               w = H[i][i] - p;
711
               r = 0.0;
712
               for (int j = l; j <= n; j++) {
713
                  r = r + H[i][j] * H[j][n];
714
               }
715
               if (e[i] < 0.0) {
716
                  z = w;
717
                  s = r;
718
               } else {
719
                  l = i;
720
                  if (e[i] == 0.0) {
721
                     if (w != 0.0) {
722
                        H[i][n] = -r / w;
723
                     } else {
724
                        H[i][n] = -r / (eps * norm);
725
                     }
726
   
727
                  // Solve real equations
728
   
729
                  } else {
730
                     x = H[i][i+1];
731
                     y = H[i+1][i];
732
                     q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
733
                     t = (x * s - z * r) / q;
734
                     H[i][n] = t;
735
                     if (Math.abs(x) > Math.abs(z)) {
736
                        H[i+1][n] = (-r - w * t) / x;
737
                     } else {
738
                        H[i+1][n] = (-s - y * t) / z;
739
                     }
740
                  }
741
   
742
                  // Overflow control
743
   
744
                  t = Math.abs(H[i][n]);
745
                  if ((eps * t) * t > 1) {
746
                     for (int j = i; j <= n; j++) {
747
                        H[j][n] = H[j][n] / t;
748
                     }
749
                  }
750
               }
751
            }
752
   
753
         // Complex vector
754
   
755
         } else if (q < 0) {
756
            int l = n-1;
757

    
758
            // Last vector component imaginary so matrix is triangular
759
   
760
            if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {
761
               H[n-1][n-1] = q / H[n][n-1];
762
               H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
763
            } else {
764
               cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
765
               H[n-1][n-1] = cdivr;
766
               H[n-1][n] = cdivi;
767
            }
768
            H[n][n-1] = 0.0;
769
            H[n][n] = 1.0;
770
            for (int i = n-2; i >= 0; i--) {
771
               double ra,sa,vr,vi;
772
               ra = 0.0;
773
               sa = 0.0;
774
               for (int j = l; j <= n; j++) {
775
                  ra = ra + H[i][j] * H[j][n-1];
776
                  sa = sa + H[i][j] * H[j][n];
777
               }
778
               w = H[i][i] - p;
779
   
780
               if (e[i] < 0.0) {
781
                  z = w;
782
                  r = ra;
783
                  s = sa;
784
               } else {
785
                  l = i;
786
                  if (e[i] == 0) {
787
                     cdiv(-ra,-sa,w,q);
788
                     H[i][n-1] = cdivr;
789
                     H[i][n] = cdivi;
790
                  } else {
791
   
792
                     // Solve complex equations
793
   
794
                     x = H[i][i+1];
795
                     y = H[i+1][i];
796
                     vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
797
                     vi = (d[i] - p) * 2.0 * q;
798
                     if (vr == 0.0 & vi == 0.0) {
799
                        vr = eps * norm * (Math.abs(w) + Math.abs(q) +
800
                        Math.abs(x) + Math.abs(y) + Math.abs(z));
801
                     }
802
                     cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
803
                     H[i][n-1] = cdivr;
804
                     H[i][n] = cdivi;
805
                     if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
806
                        H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
807
                        H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
808
                     } else {
809
                        cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
810
                        H[i+1][n-1] = cdivr;
811
                        H[i+1][n] = cdivi;
812
                     }
813
                  }
814
   
815
                  // Overflow control
816

    
817
                  t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));
818
                  if ((eps * t) * t > 1) {
819
                     for (int j = i; j <= n; j++) {
820
                        H[j][n-1] = H[j][n-1] / t;
821
                        H[j][n] = H[j][n] / t;
822
                     }
823
                  }
824
               }
825
            }
826
         }
827
      }
828
   
829
      // Vectors of isolated roots
830
   
831
      for (int i = 0; i < nn; i++) {
832
         if (i < low | i > high) {
833
            for (int j = i; j < nn; j++) {
834
               V[i][j] = H[i][j];
835
            }
836
         }
837
      }
838
   
839
      // Back transformation to get eigenvectors of original matrix
840
   
841
      for (int j = nn-1; j >= low; j--) {
842
         for (int i = low; i <= high; i++) {
843
            z = 0.0;
844
            for (int k = low; k <= Math.min(j,high); k++) {
845
               z = z + V[i][k] * H[k][j];
846
            }
847
            V[i][j] = z;
848
         }
849
      }
850
   }
851

    
852

    
853
/* ------------------------
854
   Constructor
855
 * ------------------------ */
856

    
857
   /** Check for symmetry, then construct the eigenvalue decomposition
858
   @param A    Square matrix
859
   @return     Structure to access D and V.
860
   */
861

    
862
   public EigenvalueDecomposition (Matrix Arg) {
863
      double[][] A = Arg.getArray();
864
      n = Arg.getColumnDimension();
865
      V = new double[n][n];
866
      d = new double[n];
867
      e = new double[n];
868

    
869
      issymmetric = true;
870
      for (int j = 0; (j < n) & issymmetric; j++) {
871
         for (int i = 0; (i < n) & issymmetric; i++) {
872
            issymmetric = (A[i][j] == A[j][i]);
873
         }
874
      }
875

    
876
      if (issymmetric) {
877
         for (int i = 0; i < n; i++) {
878
            for (int j = 0; j < n; j++) {
879
               V[i][j] = A[i][j];
880
            }
881
         }
882
   
883
         // Tridiagonalize.
884
         tred2();
885
   
886
         // Diagonalize.
887
         tql2();
888

    
889
      } else {
890
         H = new double[n][n];
891
         ort = new double[n];
892
         
893
         for (int j = 0; j < n; j++) {
894
            for (int i = 0; i < n; i++) {
895
               H[i][j] = A[i][j];
896
            }
897
         }
898
   
899
         // Reduce to Hessenberg form.
900
         orthes();
901
   
902
         // Reduce Hessenberg to real Schur form.
903
         hqr2();
904
      }
905
   }
906

    
907
/* ------------------------
908
   Public Methods
909
 * ------------------------ */
910

    
911
   /** Return the eigenvector matrix
912
   @return     V
913
   */
914

    
915
   public Matrix getV () {
916
      return new Matrix(V,n,n);
917
   }
918

    
919
   /** Return the real parts of the eigenvalues
920
   @return     real(diag(D))
921
   */
922

    
923
   public double[] getRealEigenvalues () {
924
      return d;
925
   }
926

    
927
   /** Return the imaginary parts of the eigenvalues
928
   @return     imag(diag(D))
929
   */
930

    
931
   public double[] getImagEigenvalues () {
932
      return e;
933
   }
934

    
935
   /** Return the block diagonal eigenvalue matrix
936
   @return     D
937
   */
938

    
939
   public Matrix getD () {
940
      Matrix X = new Matrix(n,n);
941
      double[][] D = X.getArray();
942
      for (int i = 0; i < n; i++) {
943
         for (int j = 0; j < n; j++) {
944
            D[i][j] = 0.0;
945
         }
946
         D[i][i] = d[i];
947
         if (e[i] > 0) {
948
            D[i][i+1] = e[i];
949
         } else if (e[i] < 0) {
950
            D[i][i-1] = e[i];
951
         }
952
      }
953
      return X;
954
   }
955
}