root / tmp / org.txm.analec.rcp / src / JamaPlus / SparseAFC.java @ 1967
Historique | Voir | Annoter | Télécharger (2,27 ko)
| 1 |
/*
|
|---|---|
| 2 |
* To change this template, choose Tools | Templates
|
| 3 |
* and open the template in the editor.
|
| 4 |
*/
|
| 5 |
package JamaPlus; |
| 6 |
|
| 7 |
import JamaPlus.SparseSVD.SparseSVDException; |
| 8 |
|
| 9 |
/**
|
| 10 |
/**
|
| 11 |
*
|
| 12 |
* SparseAFC analyse factorielle des correspondances (matrices creuses)
|
| 13 |
* mat : matrice binaire (0. ou 1.) profil des lignes (un individu par ligne, un caractère par colonne)
|
| 14 |
* CP: composantes principales,
|
| 15 |
* VP: valeurs d'inertie,
|
| 16 |
* CG: centres de gravité des CP contenant un même caractère (non calculé dans cette version)
|
| 17 |
* [p,q] = size(mat); p:nb de lignes, q:nb de col
|
| 18 |
*
|
| 19 |
* @author Bernard
|
| 20 |
*/
|
| 21 |
public class SparseAFC { |
| 22 |
private double[][] CP; |
| 23 |
private double[] VP; |
| 24 |
private int p, q, n; |
| 25 |
|
| 26 |
SparseAFC(SparseMatrix Arg) throws SparseSVDException {
|
| 27 |
SparseMatrix mat = Arg.copy(); |
| 28 |
mat.nulColumnSuppression(); |
| 29 |
p = mat.getRowDimension(); |
| 30 |
q = mat.getColumnDimension(); |
| 31 |
n = Math.min(Math.min(p, q), 5); |
| 32 |
// n : nombre de composantes principales espérées (pas plus de 5)
|
| 33 |
if (n == 0) return; |
| 34 |
if (n == 1) { |
| 35 |
CP = new double[p][1]; |
| 36 |
VP = new double[1]; |
| 37 |
return;
|
| 38 |
} |
| 39 |
double f = mat.elementSum();
|
| 40 |
if (f == 0) return; |
| 41 |
mat = mat.timesEquals(1 / f);
|
| 42 |
Matrix r = mat.lineSum(); |
| 43 |
Matrix r1 = r.arrayInverse(); |
| 44 |
Matrix r2 = r.arraySqrt(); |
| 45 |
Matrix r3 = r2.arrayInverse(); |
| 46 |
Matrix c = mat.columnSum(); |
| 47 |
Matrix c1 = c.arrayInverse(); |
| 48 |
Matrix c2 = c.arraySqrt(); |
| 49 |
Matrix c3 = c2.arrayInverse(); |
| 50 |
mat = mat.firstColumnTimesEqual(r3); |
| 51 |
mat = mat.firstLineTimesEqual(c3); |
| 52 |
SparseSVD svd = mat.svd(n); |
| 53 |
Matrix cp = svd.getU(); |
| 54 |
Matrix vp = new Matrix(svd.getSingularValues(), 1); |
| 55 |
n = vp.getColumnDimension(); |
| 56 |
// peut-être moins de composantes principales effectivement calculées
|
| 57 |
if (n == 0) return; |
| 58 |
if (n == 1) { |
| 59 |
CP = new double[p][1]; |
| 60 |
VP = new double[1]; |
| 61 |
return;
|
| 62 |
} |
| 63 |
cp = cp.getMatrix(0, p - 1, 1, n - 1); |
| 64 |
cp = cp.firstColumnTimesEqual(r2); |
| 65 |
vp = vp.getMatrix(0, 0, 1, n - 1); |
| 66 |
cp = cp.firstLineTimesEqual(vp); |
| 67 |
cp.fixColumnSigns(); |
| 68 |
cp = cp.firstColumnTimesEqual(r1); |
| 69 |
CP = cp.getArray(); |
| 70 |
VP = vp.getColumnPackedCopy(); |
| 71 |
} |
| 72 |
|
| 73 |
public Matrix getCP() {
|
| 74 |
if (CP == null) return null; |
| 75 |
return new Matrix(CP, p, n - 1); |
| 76 |
} |
| 77 |
|
| 78 |
public double[] getVP() { |
| 79 |
return VP;
|
| 80 |
} |
| 81 |
} |
| 82 |
|