root / tmp / org.txm.analec.rcp / src matt / JamaPlus / CholeskyDecomposition.java @ 1738
Historique | Voir | Annoter | Télécharger (5,63 ko)
1 |
package JamaPlus; |
---|---|
2 |
|
3 |
/** Cholesky Decomposition.
|
4 |
<P>
|
5 |
For a symmetric, positive definite matrix A, the Cholesky decomposition
|
6 |
is an lower triangular matrix L so that A = L*L'.
|
7 |
<P>
|
8 |
If the matrix is not symmetric or positive definite, the constructor
|
9 |
returns a partial decomposition and sets an internal flag that may
|
10 |
be queried by the isSPD() method.
|
11 |
*/
|
12 |
|
13 |
public class CholeskyDecomposition implements java.io.Serializable { |
14 |
|
15 |
/* ------------------------
|
16 |
Class variables
|
17 |
* ------------------------ */
|
18 |
|
19 |
/** Array for internal storage of decomposition.
|
20 |
@serial internal array storage.
|
21 |
*/
|
22 |
private double[][] L; |
23 |
|
24 |
/** Row and column dimension (square matrix).
|
25 |
@serial matrix dimension.
|
26 |
*/
|
27 |
private int n; |
28 |
|
29 |
/** Symmetric and positive definite flag.
|
30 |
@serial is symmetric and positive definite flag.
|
31 |
*/
|
32 |
private boolean isspd; |
33 |
|
34 |
/* ------------------------
|
35 |
Constructor
|
36 |
* ------------------------ */
|
37 |
|
38 |
/** Cholesky algorithm for symmetric and positive definite matrix.
|
39 |
@param A Square, symmetric matrix.
|
40 |
@return Structure to access L and isspd flag.
|
41 |
*/
|
42 |
|
43 |
public CholeskyDecomposition (Matrix Arg) {
|
44 |
|
45 |
|
46 |
// Initialize.
|
47 |
double[][] A = Arg.getArray(); |
48 |
n = Arg.getRowDimension(); |
49 |
L = new double[n][n]; |
50 |
isspd = (Arg.getColumnDimension() == n); |
51 |
// Main loop.
|
52 |
for (int j = 0; j < n; j++) { |
53 |
double[] Lrowj = L[j]; |
54 |
double d = 0.0; |
55 |
for (int k = 0; k < j; k++) { |
56 |
double[] Lrowk = L[k]; |
57 |
double s = 0.0; |
58 |
for (int i = 0; i < k; i++) { |
59 |
s += Lrowk[i]*Lrowj[i]; |
60 |
} |
61 |
Lrowj[k] = s = (A[j][k] - s)/L[k][k]; |
62 |
d = d + s*s; |
63 |
isspd = isspd & (A[k][j] == A[j][k]); |
64 |
} |
65 |
d = A[j][j] - d; |
66 |
isspd = isspd & (d > 0.0);
|
67 |
L[j][j] = Math.sqrt(Math.max(d,0.0)); |
68 |
for (int k = j+1; k < n; k++) { |
69 |
L[j][k] = 0.0;
|
70 |
} |
71 |
} |
72 |
} |
73 |
|
74 |
/* ------------------------
|
75 |
Temporary, experimental code.
|
76 |
* ------------------------ *\
|
77 |
|
78 |
\** Right Triangular Cholesky Decomposition.
|
79 |
<P>
|
80 |
For a symmetric, positive definite matrix A, the Right Cholesky
|
81 |
decomposition is an upper triangular matrix R so that A = R'*R.
|
82 |
This constructor computes R with the Fortran inspired column oriented
|
83 |
algorithm used in LINPACK and MATLAB. In Java, we suspect a row oriented,
|
84 |
lower triangular decomposition is faster. We have temporarily included
|
85 |
this constructor here until timing experiments confirm this suspicion.
|
86 |
*\
|
87 |
|
88 |
\** Array for internal storage of right triangular decomposition. **\
|
89 |
private transient double[][] R;
|
90 |
|
91 |
\** Cholesky algorithm for symmetric and positive definite matrix.
|
92 |
@param A Square, symmetric matrix.
|
93 |
@param rightflag Actual value ignored.
|
94 |
@return Structure to access R and isspd flag.
|
95 |
*\
|
96 |
|
97 |
public CholeskyDecomposition (Matrix Arg, int rightflag) {
|
98 |
// Initialize.
|
99 |
double[][] A = Arg.getArray();
|
100 |
n = Arg.getColumnDimension();
|
101 |
R = new double[n][n];
|
102 |
isspd = (Arg.getColumnDimension() == n);
|
103 |
// Main loop.
|
104 |
for (int j = 0; j < n; j++) {
|
105 |
double d = 0.0;
|
106 |
for (int k = 0; k < j; k++) {
|
107 |
double s = A[k][j];
|
108 |
for (int i = 0; i < k; i++) {
|
109 |
s = s - R[i][k]*R[i][j];
|
110 |
}
|
111 |
R[k][j] = s = s/R[k][k];
|
112 |
d = d + s*s;
|
113 |
isspd = isspd & (A[k][j] == A[j][k]);
|
114 |
}
|
115 |
d = A[j][j] - d;
|
116 |
isspd = isspd & (d > 0.0);
|
117 |
R[j][j] = Math.sqrt(Math.max(d,0.0));
|
118 |
for (int k = j+1; k < n; k++) {
|
119 |
R[k][j] = 0.0;
|
120 |
}
|
121 |
}
|
122 |
}
|
123 |
|
124 |
\** Return upper triangular factor.
|
125 |
@return R
|
126 |
*\
|
127 |
|
128 |
public Matrix getR () {
|
129 |
return new Matrix(R,n,n);
|
130 |
}
|
131 |
|
132 |
\* ------------------------
|
133 |
End of temporary code.
|
134 |
* ------------------------ */
|
135 |
|
136 |
/* ------------------------
|
137 |
Public Methods
|
138 |
* ------------------------ */
|
139 |
|
140 |
/** Is the matrix symmetric and positive definite?
|
141 |
@return true if A is symmetric and positive definite.
|
142 |
*/
|
143 |
|
144 |
public boolean isSPD () { |
145 |
return isspd;
|
146 |
} |
147 |
|
148 |
/** Return triangular factor.
|
149 |
@return L
|
150 |
*/
|
151 |
|
152 |
public Matrix getL () {
|
153 |
return new Matrix(L,n,n); |
154 |
} |
155 |
|
156 |
/** Solve A*X = B
|
157 |
@param B A Matrix with as many rows as A and any number of columns.
|
158 |
@return X so that L*L'*X = B
|
159 |
@exception IllegalArgumentException Matrix row dimensions must agree.
|
160 |
@exception RuntimeException Matrix is not symmetric positive definite.
|
161 |
*/
|
162 |
|
163 |
public Matrix solve (Matrix B) {
|
164 |
if (B.getRowDimension() != n) {
|
165 |
throw new IllegalArgumentException("Matrix row dimensions must agree."); |
166 |
} |
167 |
if (!isspd) {
|
168 |
throw new RuntimeException("Matrix is not symmetric positive definite."); |
169 |
} |
170 |
|
171 |
// Copy right hand side.
|
172 |
double[][] X = B.getArrayCopy(); |
173 |
int nx = B.getColumnDimension();
|
174 |
|
175 |
// Solve L*Y = B;
|
176 |
for (int k = 0; k < n; k++) { |
177 |
for (int j = 0; j < nx; j++) { |
178 |
for (int i = 0; i < k ; i++) { |
179 |
X[k][j] -= X[i][j]*L[k][i]; |
180 |
} |
181 |
X[k][j] /= L[k][k]; |
182 |
} |
183 |
} |
184 |
|
185 |
// Solve L'*X = Y;
|
186 |
for (int k = n-1; k >= 0; k--) { |
187 |
for (int j = 0; j < nx; j++) { |
188 |
for (int i = k+1; i < n ; i++) { |
189 |
X[k][j] -= X[i][j]*L[i][k]; |
190 |
} |
191 |
X[k][j] /= L[k][k]; |
192 |
} |
193 |
} |
194 |
|
195 |
|
196 |
return new Matrix(X,n,nx); |
197 |
} |
198 |
} |
199 |
|