root / tmp / org.txm.analec.rcp / src / JamaPlus / SingularValueDecomposition.java0 @ 1733
Historique | Voir | Annoter | Télécharger (15,79 ko)
| 1 | 481 | mdecorde | package JamaPlus; |
|---|---|---|---|
| 2 | 481 | mdecorde | import JamaPlus.util.*; |
| 3 | 481 | mdecorde | |
| 4 | 481 | mdecorde | /** Singular Value Decomposition. |
| 5 | 481 | mdecorde | <P> |
| 6 | 481 | mdecorde | For an m-by-n matrix A with m >= n, the singular value decomposition is |
| 7 | 481 | mdecorde | an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and |
| 8 | 481 | mdecorde | an n-by-n orthogonal matrix V so that A = U*S*V'. |
| 9 | 481 | mdecorde | <P> |
| 10 | 481 | mdecorde | The singular values, sigma[k] = S[k][k], are ordered so that |
| 11 | 481 | mdecorde | sigma[0] >= sigma[1] >= ... >= sigma[n-1]. |
| 12 | 481 | mdecorde | <P> |
| 13 | 481 | mdecorde | The singular value decompostion always exists, so the constructor will |
| 14 | 481 | mdecorde | never fail. The matrix condition number and the effective numerical |
| 15 | 481 | mdecorde | rank can be computed from this decomposition. |
| 16 | 481 | mdecorde | */ |
| 17 | 481 | mdecorde | |
| 18 | 481 | mdecorde | public class SingularValueDecomposition implements java.io.Serializable {
|
| 19 | 481 | mdecorde | |
| 20 | 481 | mdecorde | /* ------------------------ |
| 21 | 481 | mdecorde | Class variables |
| 22 | 481 | mdecorde | * ------------------------ */ |
| 23 | 481 | mdecorde | |
| 24 | 481 | mdecorde | /** Arrays for internal storage of U and V. |
| 25 | 481 | mdecorde | @serial internal storage of U. |
| 26 | 481 | mdecorde | @serial internal storage of V. |
| 27 | 481 | mdecorde | */ |
| 28 | 481 | mdecorde | private double[][] U, V; |
| 29 | 481 | mdecorde | |
| 30 | 481 | mdecorde | /** Array for internal storage of singular values. |
| 31 | 481 | mdecorde | @serial internal storage of singular values. |
| 32 | 481 | mdecorde | */ |
| 33 | 481 | mdecorde | private double[] s; |
| 34 | 481 | mdecorde | |
| 35 | 481 | mdecorde | /** Row and column dimensions. |
| 36 | 481 | mdecorde | @serial row dimension. |
| 37 | 481 | mdecorde | @serial column dimension. |
| 38 | 481 | mdecorde | */ |
| 39 | 481 | mdecorde | private int m, n; |
| 40 | 481 | mdecorde | |
| 41 | 481 | mdecorde | /* ------------------------ |
| 42 | 481 | mdecorde | Constructor |
| 43 | 481 | mdecorde | * ------------------------ */ |
| 44 | 481 | mdecorde | |
| 45 | 481 | mdecorde | /** Construct the singular value decomposition |
| 46 | 481 | mdecorde | @param A Rectangular matrix |
| 47 | 481 | mdecorde | @return Structure to access U, S and V. |
| 48 | 481 | mdecorde | */ |
| 49 | 481 | mdecorde | |
| 50 | 481 | mdecorde | public SingularValueDecomposition (Matrix Arg) {
|
| 51 | 481 | mdecorde | |
| 52 | 481 | mdecorde | // Derived from LINPACK code. |
| 53 | 481 | mdecorde | // Initialize. |
| 54 | 481 | mdecorde | double[][] A = Arg.getArrayCopy(); |
| 55 | 481 | mdecorde | m = Arg.getRowDimension(); |
| 56 | 481 | mdecorde | n = Arg.getColumnDimension(); |
| 57 | 481 | mdecorde | |
| 58 | 481 | mdecorde | /* Apparently the failing cases are only a proper subset of (m<n), |
| 59 | 481 | mdecorde | so let's not throw error. Correct fix to come later? |
| 60 | 481 | mdecorde | if (m<n) {
|
| 61 | 481 | mdecorde | throw new IllegalArgumentException("Jama SVD only works for m >= n"); }
|
| 62 | 481 | mdecorde | */ |
| 63 | 481 | mdecorde | int nu = Math.min(m,n); |
| 64 | 481 | mdecorde | s = new double [Math.min(m+1,n)]; |
| 65 | 481 | mdecorde | U = new double [m][nu]; |
| 66 | 481 | mdecorde | V = new double [n][n]; |
| 67 | 481 | mdecorde | double[] e = new double [n]; |
| 68 | 481 | mdecorde | double[] work = new double [m]; |
| 69 | 481 | mdecorde | boolean wantu = true; |
| 70 | 481 | mdecorde | boolean wantv = true; |
| 71 | 481 | mdecorde | |
| 72 | 481 | mdecorde | // Reduce A to bidiagonal form, storing the diagonal elements |
| 73 | 481 | mdecorde | // in s and the super-diagonal elements in e. |
| 74 | 481 | mdecorde | |
| 75 | 481 | mdecorde | int nct = Math.min(m-1,n); |
| 76 | 481 | mdecorde | int nrt = Math.max(0,Math.min(n-2,m)); |
| 77 | 481 | mdecorde | for (int k = 0; k < Math.max(nct,nrt); k++) {
|
| 78 | 481 | mdecorde | if (k < nct) {
|
| 79 | 481 | mdecorde | |
| 80 | 481 | mdecorde | // Compute the transformation for the k-th column and |
| 81 | 481 | mdecorde | // place the k-th diagonal in s[k]. |
| 82 | 481 | mdecorde | // Compute 2-norm of k-th column without under/overflow. |
| 83 | 481 | mdecorde | s[k] = 0; |
| 84 | 481 | mdecorde | for (int i = k; i < m; i++) {
|
| 85 | 481 | mdecorde | s[k] = Math.hypot(s[k],A[i][k]); |
| 86 | 481 | mdecorde | } |
| 87 | 481 | mdecorde | if (s[k] != 0.0) {
|
| 88 | 481 | mdecorde | if (A[k][k] < 0.0) {
|
| 89 | 481 | mdecorde | s[k] = -s[k]; |
| 90 | 481 | mdecorde | } |
| 91 | 481 | mdecorde | for (int i = k; i < m; i++) {
|
| 92 | 481 | mdecorde | A[i][k] /= s[k]; |
| 93 | 481 | mdecorde | } |
| 94 | 481 | mdecorde | A[k][k] += 1.0; |
| 95 | 481 | mdecorde | } |
| 96 | 481 | mdecorde | s[k] = -s[k]; |
| 97 | 481 | mdecorde | } |
| 98 | 481 | mdecorde | for (int j = k+1; j < n; j++) {
|
| 99 | 481 | mdecorde | if ((k < nct) & (s[k] != 0.0)) {
|
| 100 | 481 | mdecorde | |
| 101 | 481 | mdecorde | // Apply the transformation. |
| 102 | 481 | mdecorde | |
| 103 | 481 | mdecorde | double t = 0; |
| 104 | 481 | mdecorde | for (int i = k; i < m; i++) {
|
| 105 | 481 | mdecorde | t += A[i][k]*A[i][j]; |
| 106 | 481 | mdecorde | } |
| 107 | 481 | mdecorde | t = -t/A[k][k]; |
| 108 | 481 | mdecorde | for (int i = k; i < m; i++) {
|
| 109 | 481 | mdecorde | A[i][j] += t*A[i][k]; |
| 110 | 481 | mdecorde | } |
| 111 | 481 | mdecorde | } |
| 112 | 481 | mdecorde | |
| 113 | 481 | mdecorde | // Place the k-th row of A into e for the |
| 114 | 481 | mdecorde | // subsequent calculation of the row transformation. |
| 115 | 481 | mdecorde | |
| 116 | 481 | mdecorde | e[j] = A[k][j]; |
| 117 | 481 | mdecorde | } |
| 118 | 481 | mdecorde | if (wantu & (k < nct)) {
|
| 119 | 481 | mdecorde | |
| 120 | 481 | mdecorde | // Place the transformation in U for subsequent back |
| 121 | 481 | mdecorde | // multiplication. |
| 122 | 481 | mdecorde | |
| 123 | 481 | mdecorde | for (int i = k; i < m; i++) {
|
| 124 | 481 | mdecorde | U[i][k] = A[i][k]; |
| 125 | 481 | mdecorde | } |
| 126 | 481 | mdecorde | } |
| 127 | 481 | mdecorde | if (k < nrt) {
|
| 128 | 481 | mdecorde | |
| 129 | 481 | mdecorde | // Compute the k-th row transformation and place the |
| 130 | 481 | mdecorde | // k-th super-diagonal in e[k]. |
| 131 | 481 | mdecorde | // Compute 2-norm without under/overflow. |
| 132 | 481 | mdecorde | e[k] = 0; |
| 133 | 481 | mdecorde | for (int i = k+1; i < n; i++) {
|
| 134 | 481 | mdecorde | e[k] = Math.hypot(e[k],e[i]); |
| 135 | 481 | mdecorde | } |
| 136 | 481 | mdecorde | if (e[k] != 0.0) {
|
| 137 | 481 | mdecorde | if (e[k+1] < 0.0) {
|
| 138 | 481 | mdecorde | e[k] = -e[k]; |
| 139 | 481 | mdecorde | } |
| 140 | 481 | mdecorde | for (int i = k+1; i < n; i++) {
|
| 141 | 481 | mdecorde | e[i] /= e[k]; |
| 142 | 481 | mdecorde | } |
| 143 | 481 | mdecorde | e[k+1] += 1.0; |
| 144 | 481 | mdecorde | } |
| 145 | 481 | mdecorde | e[k] = -e[k]; |
| 146 | 481 | mdecorde | if ((k+1 < m) & (e[k] != 0.0)) {
|
| 147 | 481 | mdecorde | |
| 148 | 481 | mdecorde | // Apply the transformation. |
| 149 | 481 | mdecorde | |
| 150 | 481 | mdecorde | for (int i = k+1; i < m; i++) {
|
| 151 | 481 | mdecorde | work[i] = 0.0; |
| 152 | 481 | mdecorde | } |
| 153 | 481 | mdecorde | for (int j = k+1; j < n; j++) {
|
| 154 | 481 | mdecorde | for (int i = k+1; i < m; i++) {
|
| 155 | 481 | mdecorde | work[i] += e[j]*A[i][j]; |
| 156 | 481 | mdecorde | } |
| 157 | 481 | mdecorde | } |
| 158 | 481 | mdecorde | for (int j = k+1; j < n; j++) {
|
| 159 | 481 | mdecorde | double t = -e[j]/e[k+1]; |
| 160 | 481 | mdecorde | for (int i = k+1; i < m; i++) {
|
| 161 | 481 | mdecorde | A[i][j] += t*work[i]; |
| 162 | 481 | mdecorde | } |
| 163 | 481 | mdecorde | } |
| 164 | 481 | mdecorde | } |
| 165 | 481 | mdecorde | if (wantv) {
|
| 166 | 481 | mdecorde | |
| 167 | 481 | mdecorde | // Place the transformation in V for subsequent |
| 168 | 481 | mdecorde | // back multiplication. |
| 169 | 481 | mdecorde | |
| 170 | 481 | mdecorde | for (int i = k+1; i < n; i++) {
|
| 171 | 481 | mdecorde | V[i][k] = e[i]; |
| 172 | 481 | mdecorde | } |
| 173 | 481 | mdecorde | } |
| 174 | 481 | mdecorde | } |
| 175 | 481 | mdecorde | } |
| 176 | 481 | mdecorde | |
| 177 | 481 | mdecorde | // Set up the final bidiagonal matrix or order p. |
| 178 | 481 | mdecorde | |
| 179 | 481 | mdecorde | int p = Math.min(n,m+1); |
| 180 | 481 | mdecorde | if (nct < n) {
|
| 181 | 481 | mdecorde | s[nct] = A[nct][nct]; |
| 182 | 481 | mdecorde | } |
| 183 | 481 | mdecorde | if (m < p) {
|
| 184 | 481 | mdecorde | s[p-1] = 0.0; |
| 185 | 481 | mdecorde | } |
| 186 | 481 | mdecorde | if (nrt+1 < p) {
|
| 187 | 481 | mdecorde | e[nrt] = A[nrt][p-1]; |
| 188 | 481 | mdecorde | } |
| 189 | 481 | mdecorde | e[p-1] = 0.0; |
| 190 | 481 | mdecorde | |
| 191 | 481 | mdecorde | // If required, generate U. |
| 192 | 481 | mdecorde | |
| 193 | 481 | mdecorde | if (wantu) {
|
| 194 | 481 | mdecorde | for (int j = nct; j < nu; j++) {
|
| 195 | 481 | mdecorde | for (int i = 0; i < m; i++) {
|
| 196 | 481 | mdecorde | U[i][j] = 0.0; |
| 197 | 481 | mdecorde | } |
| 198 | 481 | mdecorde | U[j][j] = 1.0; |
| 199 | 481 | mdecorde | } |
| 200 | 481 | mdecorde | for (int k = nct-1; k >= 0; k--) {
|
| 201 | 481 | mdecorde | if (s[k] != 0.0) {
|
| 202 | 481 | mdecorde | for (int j = k+1; j < nu; j++) {
|
| 203 | 481 | mdecorde | double t = 0; |
| 204 | 481 | mdecorde | for (int i = k; i < m; i++) {
|
| 205 | 481 | mdecorde | t += U[i][k]*U[i][j]; |
| 206 | 481 | mdecorde | } |
| 207 | 481 | mdecorde | t = -t/U[k][k]; |
| 208 | 481 | mdecorde | for (int i = k; i < m; i++) {
|
| 209 | 481 | mdecorde | U[i][j] += t*U[i][k]; |
| 210 | 481 | mdecorde | } |
| 211 | 481 | mdecorde | } |
| 212 | 481 | mdecorde | for (int i = k; i < m; i++ ) {
|
| 213 | 481 | mdecorde | U[i][k] = -U[i][k]; |
| 214 | 481 | mdecorde | } |
| 215 | 481 | mdecorde | U[k][k] = 1.0 + U[k][k]; |
| 216 | 481 | mdecorde | for (int i = 0; i < k-1; i++) {
|
| 217 | 481 | mdecorde | U[i][k] = 0.0; |
| 218 | 481 | mdecorde | } |
| 219 | 481 | mdecorde | } else {
|
| 220 | 481 | mdecorde | for (int i = 0; i < m; i++) {
|
| 221 | 481 | mdecorde | U[i][k] = 0.0; |
| 222 | 481 | mdecorde | } |
| 223 | 481 | mdecorde | U[k][k] = 1.0; |
| 224 | 481 | mdecorde | } |
| 225 | 481 | mdecorde | } |
| 226 | 481 | mdecorde | } |
| 227 | 481 | mdecorde | |
| 228 | 481 | mdecorde | // If required, generate V. |
| 229 | 481 | mdecorde | |
| 230 | 481 | mdecorde | if (wantv) {
|
| 231 | 481 | mdecorde | for (int k = n-1; k >= 0; k--) {
|
| 232 | 481 | mdecorde | if ((k < nrt) & (e[k] != 0.0)) {
|
| 233 | 481 | mdecorde | for (int j = k+1; j < nu; j++) {
|
| 234 | 481 | mdecorde | double t = 0; |
| 235 | 481 | mdecorde | for (int i = k+1; i < n; i++) {
|
| 236 | 481 | mdecorde | t += V[i][k]*V[i][j]; |
| 237 | 481 | mdecorde | } |
| 238 | 481 | mdecorde | t = -t/V[k+1][k]; |
| 239 | 481 | mdecorde | for (int i = k+1; i < n; i++) {
|
| 240 | 481 | mdecorde | V[i][j] += t*V[i][k]; |
| 241 | 481 | mdecorde | } |
| 242 | 481 | mdecorde | } |
| 243 | 481 | mdecorde | } |
| 244 | 481 | mdecorde | for (int i = 0; i < n; i++) {
|
| 245 | 481 | mdecorde | V[i][k] = 0.0; |
| 246 | 481 | mdecorde | } |
| 247 | 481 | mdecorde | V[k][k] = 1.0; |
| 248 | 481 | mdecorde | } |
| 249 | 481 | mdecorde | } |
| 250 | 481 | mdecorde | |
| 251 | 481 | mdecorde | // Main iteration loop for the singular values. |
| 252 | 481 | mdecorde | |
| 253 | 481 | mdecorde | int pp = p-1; |
| 254 | 481 | mdecorde | int iter = 0; |
| 255 | 481 | mdecorde | double eps = Math.pow(2.0,-52.0); |
| 256 | 481 | mdecorde | double tiny = Math.pow(2.0,-966.0); |
| 257 | 481 | mdecorde | while (p > 0) {
|
| 258 | 481 | mdecorde | int k,kase; |
| 259 | 481 | mdecorde | |
| 260 | 481 | mdecorde | // Here is where a test for too many iterations would go. |
| 261 | 481 | mdecorde | |
| 262 | 481 | mdecorde | // This section of the program inspects for |
| 263 | 481 | mdecorde | // negligible elements in the s and e arrays. On |
| 264 | 481 | mdecorde | // completion the variables kase and k are set as follows. |
| 265 | 481 | mdecorde | |
| 266 | 481 | mdecorde | // kase = 1 if s(p) and e[k-1] are negligible and k<p |
| 267 | 481 | mdecorde | // kase = 2 if s(k) is negligible and k<p |
| 268 | 481 | mdecorde | // kase = 3 if e[k-1] is negligible, k<p, and |
| 269 | 481 | mdecorde | // s(k), ..., s(p) are not negligible (qr step). |
| 270 | 481 | mdecorde | // kase = 4 if e(p-1) is negligible (convergence). |
| 271 | 481 | mdecorde | |
| 272 | 481 | mdecorde | for (k = p-2; k >= -1; k--) {
|
| 273 | 481 | mdecorde | if (k == -1) {
|
| 274 | 481 | mdecorde | break; |
| 275 | 481 | mdecorde | } |
| 276 | 481 | mdecorde | if (Math.abs(e[k]) <= |
| 277 | 481 | mdecorde | tiny + eps*(Math.abs(s[k]) + Math.abs(s[k+1]))) {
|
| 278 | 481 | mdecorde | e[k] = 0.0; |
| 279 | 481 | mdecorde | break; |
| 280 | 481 | mdecorde | } |
| 281 | 481 | mdecorde | } |
| 282 | 481 | mdecorde | if (k == p-2) {
|
| 283 | 481 | mdecorde | kase = 4; |
| 284 | 481 | mdecorde | } else {
|
| 285 | 481 | mdecorde | int ks; |
| 286 | 481 | mdecorde | for (ks = p-1; ks >= k; ks--) {
|
| 287 | 481 | mdecorde | if (ks == k) {
|
| 288 | 481 | mdecorde | break; |
| 289 | 481 | mdecorde | } |
| 290 | 481 | mdecorde | double t = (ks != p ? Math.abs(e[ks]) : 0.) + |
| 291 | 481 | mdecorde | (ks != k+1 ? Math.abs(e[ks-1]) : 0.); |
| 292 | 481 | mdecorde | if (Math.abs(s[ks]) <= tiny + eps*t) {
|
| 293 | 481 | mdecorde | s[ks] = 0.0; |
| 294 | 481 | mdecorde | break; |
| 295 | 481 | mdecorde | } |
| 296 | 481 | mdecorde | } |
| 297 | 481 | mdecorde | if (ks == k) {
|
| 298 | 481 | mdecorde | kase = 3; |
| 299 | 481 | mdecorde | } else if (ks == p-1) {
|
| 300 | 481 | mdecorde | kase = 1; |
| 301 | 481 | mdecorde | } else {
|
| 302 | 481 | mdecorde | kase = 2; |
| 303 | 481 | mdecorde | k = ks; |
| 304 | 481 | mdecorde | } |
| 305 | 481 | mdecorde | } |
| 306 | 481 | mdecorde | k++; |
| 307 | 481 | mdecorde | |
| 308 | 481 | mdecorde | // Perform the task indicated by kase. |
| 309 | 481 | mdecorde | |
| 310 | 481 | mdecorde | switch (kase) {
|
| 311 | 481 | mdecorde | |
| 312 | 481 | mdecorde | // Deflate negligible s(p). |
| 313 | 481 | mdecorde | |
| 314 | 481 | mdecorde | case 1: {
|
| 315 | 481 | mdecorde | double f = e[p-2]; |
| 316 | 481 | mdecorde | e[p-2] = 0.0; |
| 317 | 481 | mdecorde | for (int j = p-2; j >= k; j--) {
|
| 318 | 481 | mdecorde | double t = Math.hypot(s[j],f); |
| 319 | 481 | mdecorde | double cs = s[j]/t; |
| 320 | 481 | mdecorde | double sn = f/t; |
| 321 | 481 | mdecorde | s[j] = t; |
| 322 | 481 | mdecorde | if (j != k) {
|
| 323 | 481 | mdecorde | f = -sn*e[j-1]; |
| 324 | 481 | mdecorde | e[j-1] = cs*e[j-1]; |
| 325 | 481 | mdecorde | } |
| 326 | 481 | mdecorde | if (wantv) {
|
| 327 | 481 | mdecorde | for (int i = 0; i < n; i++) {
|
| 328 | 481 | mdecorde | t = cs*V[i][j] + sn*V[i][p-1]; |
| 329 | 481 | mdecorde | V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1]; |
| 330 | 481 | mdecorde | V[i][j] = t; |
| 331 | 481 | mdecorde | } |
| 332 | 481 | mdecorde | } |
| 333 | 481 | mdecorde | } |
| 334 | 481 | mdecorde | } |
| 335 | 481 | mdecorde | break; |
| 336 | 481 | mdecorde | |
| 337 | 481 | mdecorde | // Split at negligible s(k). |
| 338 | 481 | mdecorde | |
| 339 | 481 | mdecorde | case 2: {
|
| 340 | 481 | mdecorde | double f = e[k-1]; |
| 341 | 481 | mdecorde | e[k-1] = 0.0; |
| 342 | 481 | mdecorde | for (int j = k; j < p; j++) {
|
| 343 | 481 | mdecorde | double t = Math.hypot(s[j],f); |
| 344 | 481 | mdecorde | double cs = s[j]/t; |
| 345 | 481 | mdecorde | double sn = f/t; |
| 346 | 481 | mdecorde | s[j] = t; |
| 347 | 481 | mdecorde | f = -sn*e[j]; |
| 348 | 481 | mdecorde | e[j] = cs*e[j]; |
| 349 | 481 | mdecorde | if (wantu) {
|
| 350 | 481 | mdecorde | for (int i = 0; i < m; i++) {
|
| 351 | 481 | mdecorde | t = cs*U[i][j] + sn*U[i][k-1]; |
| 352 | 481 | mdecorde | U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1]; |
| 353 | 481 | mdecorde | U[i][j] = t; |
| 354 | 481 | mdecorde | } |
| 355 | 481 | mdecorde | } |
| 356 | 481 | mdecorde | } |
| 357 | 481 | mdecorde | } |
| 358 | 481 | mdecorde | break; |
| 359 | 481 | mdecorde | |
| 360 | 481 | mdecorde | // Perform one qr step. |
| 361 | 481 | mdecorde | |
| 362 | 481 | mdecorde | case 3: {
|
| 363 | 481 | mdecorde | |
| 364 | 481 | mdecorde | // Calculate the shift. |
| 365 | 481 | mdecorde | |
| 366 | 481 | mdecorde | double scale = Math.max(Math.max(Math.max(Math.max( |
| 367 | 481 | mdecorde | Math.abs(s[p-1]),Math.abs(s[p-2])),Math.abs(e[p-2])), |
| 368 | 481 | mdecorde | Math.abs(s[k])),Math.abs(e[k])); |
| 369 | 481 | mdecorde | double sp = s[p-1]/scale; |
| 370 | 481 | mdecorde | double spm1 = s[p-2]/scale; |
| 371 | 481 | mdecorde | double epm1 = e[p-2]/scale; |
| 372 | 481 | mdecorde | double sk = s[k]/scale; |
| 373 | 481 | mdecorde | double ek = e[k]/scale; |
| 374 | 481 | mdecorde | double b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0; |
| 375 | 481 | mdecorde | double c = (sp*epm1)*(sp*epm1); |
| 376 | 481 | mdecorde | double shift = 0.0; |
| 377 | 481 | mdecorde | if ((b != 0.0) | (c != 0.0)) {
|
| 378 | 481 | mdecorde | shift = Math.sqrt(b*b + c); |
| 379 | 481 | mdecorde | if (b < 0.0) {
|
| 380 | 481 | mdecorde | shift = -shift; |
| 381 | 481 | mdecorde | } |
| 382 | 481 | mdecorde | shift = c/(b + shift); |
| 383 | 481 | mdecorde | } |
| 384 | 481 | mdecorde | double f = (sk + sp)*(sk - sp) + shift; |
| 385 | 481 | mdecorde | double g = sk*ek; |
| 386 | 481 | mdecorde | |
| 387 | 481 | mdecorde | // Chase zeros. |
| 388 | 481 | mdecorde | |
| 389 | 481 | mdecorde | for (int j = k; j < p-1; j++) {
|
| 390 | 481 | mdecorde | double t = Math.hypot(f,g); |
| 391 | 481 | mdecorde | double cs = f/t; |
| 392 | 481 | mdecorde | double sn = g/t; |
| 393 | 481 | mdecorde | if (j != k) {
|
| 394 | 481 | mdecorde | e[j-1] = t; |
| 395 | 481 | mdecorde | } |
| 396 | 481 | mdecorde | f = cs*s[j] + sn*e[j]; |
| 397 | 481 | mdecorde | e[j] = cs*e[j] - sn*s[j]; |
| 398 | 481 | mdecorde | g = sn*s[j+1]; |
| 399 | 481 | mdecorde | s[j+1] = cs*s[j+1]; |
| 400 | 481 | mdecorde | if (wantv) {
|
| 401 | 481 | mdecorde | for (int i = 0; i < n; i++) {
|
| 402 | 481 | mdecorde | t = cs*V[i][j] + sn*V[i][j+1]; |
| 403 | 481 | mdecorde | V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1]; |
| 404 | 481 | mdecorde | V[i][j] = t; |
| 405 | 481 | mdecorde | } |
| 406 | 481 | mdecorde | } |
| 407 | 481 | mdecorde | t = Math.hypot(f,g); |
| 408 | 481 | mdecorde | cs = f/t; |
| 409 | 481 | mdecorde | sn = g/t; |
| 410 | 481 | mdecorde | s[j] = t; |
| 411 | 481 | mdecorde | f = cs*e[j] + sn*s[j+1]; |
| 412 | 481 | mdecorde | s[j+1] = -sn*e[j] + cs*s[j+1]; |
| 413 | 481 | mdecorde | g = sn*e[j+1]; |
| 414 | 481 | mdecorde | e[j+1] = cs*e[j+1]; |
| 415 | 481 | mdecorde | if (wantu && (j < m-1)) {
|
| 416 | 481 | mdecorde | for (int i = 0; i < m; i++) {
|
| 417 | 481 | mdecorde | t = cs*U[i][j] + sn*U[i][j+1]; |
| 418 | 481 | mdecorde | U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1]; |
| 419 | 481 | mdecorde | U[i][j] = t; |
| 420 | 481 | mdecorde | } |
| 421 | 481 | mdecorde | } |
| 422 | 481 | mdecorde | } |
| 423 | 481 | mdecorde | e[p-2] = f; |
| 424 | 481 | mdecorde | iter = iter + 1; |
| 425 | 481 | mdecorde | } |
| 426 | 481 | mdecorde | break; |
| 427 | 481 | mdecorde | |
| 428 | 481 | mdecorde | // Convergence. |
| 429 | 481 | mdecorde | |
| 430 | 481 | mdecorde | case 4: {
|
| 431 | 481 | mdecorde | |
| 432 | 481 | mdecorde | // Make the singular values positive. |
| 433 | 481 | mdecorde | |
| 434 | 481 | mdecorde | if (s[k] <= 0.0) {
|
| 435 | 481 | mdecorde | s[k] = (s[k] < 0.0 ? -s[k] : 0.0); |
| 436 | 481 | mdecorde | if (wantv) {
|
| 437 | 481 | mdecorde | for (int i = 0; i <= pp; i++) {
|
| 438 | 481 | mdecorde | V[i][k] = -V[i][k]; |
| 439 | 481 | mdecorde | } |
| 440 | 481 | mdecorde | } |
| 441 | 481 | mdecorde | } |
| 442 | 481 | mdecorde | |
| 443 | 481 | mdecorde | // Order the singular values. |
| 444 | 481 | mdecorde | |
| 445 | 481 | mdecorde | while (k < pp) {
|
| 446 | 481 | mdecorde | if (s[k] >= s[k+1]) {
|
| 447 | 481 | mdecorde | break; |
| 448 | 481 | mdecorde | } |
| 449 | 481 | mdecorde | double t = s[k]; |
| 450 | 481 | mdecorde | s[k] = s[k+1]; |
| 451 | 481 | mdecorde | s[k+1] = t; |
| 452 | 481 | mdecorde | if (wantv && (k < n-1)) {
|
| 453 | 481 | mdecorde | for (int i = 0; i < n; i++) {
|
| 454 | 481 | mdecorde | t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t; |
| 455 | 481 | mdecorde | } |
| 456 | 481 | mdecorde | } |
| 457 | 481 | mdecorde | if (wantu && (k < m-1)) {
|
| 458 | 481 | mdecorde | for (int i = 0; i < m; i++) {
|
| 459 | 481 | mdecorde | t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t; |
| 460 | 481 | mdecorde | } |
| 461 | 481 | mdecorde | } |
| 462 | 481 | mdecorde | k++; |
| 463 | 481 | mdecorde | } |
| 464 | 481 | mdecorde | iter = 0; |
| 465 | 481 | mdecorde | p--; |
| 466 | 481 | mdecorde | } |
| 467 | 481 | mdecorde | break; |
| 468 | 481 | mdecorde | } |
| 469 | 481 | mdecorde | } |
| 470 | 481 | mdecorde | } |
| 471 | 481 | mdecorde | |
| 472 | 481 | mdecorde | /* ------------------------ |
| 473 | 481 | mdecorde | Public Methods |
| 474 | 481 | mdecorde | * ------------------------ */ |
| 475 | 481 | mdecorde | |
| 476 | 481 | mdecorde | /** Return the left singular vectors |
| 477 | 481 | mdecorde | @return U |
| 478 | 481 | mdecorde | */ |
| 479 | 481 | mdecorde | |
| 480 | 481 | mdecorde | public Matrix getU () {
|
| 481 | 481 | mdecorde | return new Matrix(U,m,Math.min(m+1,n)); |
| 482 | 481 | mdecorde | } |
| 483 | 481 | mdecorde | |
| 484 | 481 | mdecorde | /** Return the right singular vectors |
| 485 | 481 | mdecorde | @return V |
| 486 | 481 | mdecorde | */ |
| 487 | 481 | mdecorde | |
| 488 | 481 | mdecorde | public Matrix getV () {
|
| 489 | 481 | mdecorde | return new Matrix(V,n,n); |
| 490 | 481 | mdecorde | } |
| 491 | 481 | mdecorde | |
| 492 | 481 | mdecorde | /** Return the one-dimensional array of singular values |
| 493 | 481 | mdecorde | @return diagonal of S. |
| 494 | 481 | mdecorde | */ |
| 495 | 481 | mdecorde | |
| 496 | 481 | mdecorde | public double[] getSingularValues () {
|
| 497 | 481 | mdecorde | return s; |
| 498 | 481 | mdecorde | } |
| 499 | 481 | mdecorde | |
| 500 | 481 | mdecorde | /** Return the diagonal matrix of singular values |
| 501 | 481 | mdecorde | @return S |
| 502 | 481 | mdecorde | */ |
| 503 | 481 | mdecorde | |
| 504 | 481 | mdecorde | public Matrix getS () {
|
| 505 | 481 | mdecorde | Matrix X = new Matrix(n,n); |
| 506 | 481 | mdecorde | double[][] S = X.getArray(); |
| 507 | 481 | mdecorde | for (int i = 0; i < n; i++) {
|
| 508 | 481 | mdecorde | for (int j = 0; j < n; j++) {
|
| 509 | 481 | mdecorde | S[i][j] = 0.0; |
| 510 | 481 | mdecorde | } |
| 511 | 481 | mdecorde | S[i][i] = this.s[i]; |
| 512 | 481 | mdecorde | } |
| 513 | 481 | mdecorde | return X; |
| 514 | 481 | mdecorde | } |
| 515 | 481 | mdecorde | |
| 516 | 481 | mdecorde | /** Two norm |
| 517 | 481 | mdecorde | @return max(S) |
| 518 | 481 | mdecorde | */ |
| 519 | 481 | mdecorde | |
| 520 | 481 | mdecorde | public double norm2 () {
|
| 521 | 481 | mdecorde | return s[0]; |
| 522 | 481 | mdecorde | } |
| 523 | 481 | mdecorde | |
| 524 | 481 | mdecorde | /** Two norm condition number |
| 525 | 481 | mdecorde | @return max(S)/min(S) |
| 526 | 481 | mdecorde | */ |
| 527 | 481 | mdecorde | |
| 528 | 481 | mdecorde | public double cond () {
|
| 529 | 481 | mdecorde | return s[0]/s[Math.min(m,n)-1]; |
| 530 | 481 | mdecorde | } |
| 531 | 481 | mdecorde | |
| 532 | 481 | mdecorde | /** Effective numerical matrix rank |
| 533 | 481 | mdecorde | @return Number of nonnegligible singular values. |
| 534 | 481 | mdecorde | */ |
| 535 | 481 | mdecorde | |
| 536 | 481 | mdecorde | public int rank () {
|
| 537 | 481 | mdecorde | double eps = Math.pow(2.0,-52.0); |
| 538 | 481 | mdecorde | double tol = Math.max(m,n)*s[0]*eps; |
| 539 | 481 | mdecorde | int r = 0; |
| 540 | 481 | mdecorde | for (int i = 0; i < s.length; i++) {
|
| 541 | 481 | mdecorde | if (s[i] > tol) {
|
| 542 | 481 | mdecorde | r++; |
| 543 | 481 | mdecorde | } |
| 544 | 481 | mdecorde | } |
| 545 | 481 | mdecorde | return r; |
| 546 | 481 | mdecorde | } |
| 547 | 481 | mdecorde | } |