Statistiques
| Révision :

root / tmp / org.txm.analec.rcp / src matt / JamaPlus / EigenvalueDecomposition.java @ 1331

Historique | Voir | Annoter | Télécharger (27,12 ko)

1 481 mdecorde
package JamaPlus;
2 481 mdecorde
import JamaPlus.util.*;
3 481 mdecorde
4 481 mdecorde
/** Eigenvalues and eigenvectors of a real matrix.
5 481 mdecorde
<P>
6 481 mdecorde
    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
7 481 mdecorde
    diagonal and the eigenvector matrix V is orthogonal.
8 481 mdecorde
    I.e. A = V.times(D.times(V.transpose())) and
9 481 mdecorde
    V.times(V.transpose()) equals the identity matrix.
10 481 mdecorde
<P>
11 481 mdecorde
    If A is not symmetric, then the eigenvalue matrix D is block diagonal
12 481 mdecorde
    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
13 481 mdecorde
    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The
14 481 mdecorde
    columns of V represent the eigenvectors in the sense that A*V = V*D,
15 481 mdecorde
    i.e. A.times(V) equals V.times(D).  The matrix V may be badly
16 481 mdecorde
    conditioned, or even singular, so the validity of the equation
17 481 mdecorde
    A = V*D*inverse(V) depends upon V.cond().
18 481 mdecorde
**/
19 481 mdecorde
20 481 mdecorde
public class EigenvalueDecomposition implements java.io.Serializable {
21 481 mdecorde
22 481 mdecorde
/* ------------------------
23 481 mdecorde
   Class variables
24 481 mdecorde
 * ------------------------ */
25 481 mdecorde
26 481 mdecorde
   /** Row and column dimension (square matrix).
27 481 mdecorde
   @serial matrix dimension.
28 481 mdecorde
   */
29 481 mdecorde
   private int n;
30 481 mdecorde
31 481 mdecorde
   /** Symmetry flag.
32 481 mdecorde
   @serial internal symmetry flag.
33 481 mdecorde
   */
34 481 mdecorde
   private boolean issymmetric;
35 481 mdecorde
36 481 mdecorde
   /** Arrays for internal storage of eigenvalues.
37 481 mdecorde
   @serial internal storage of eigenvalues.
38 481 mdecorde
   */
39 481 mdecorde
   private double[] d, e;
40 481 mdecorde
41 481 mdecorde
   /** Array for internal storage of eigenvectors.
42 481 mdecorde
   @serial internal storage of eigenvectors.
43 481 mdecorde
   */
44 481 mdecorde
   private double[][] V;
45 481 mdecorde
46 481 mdecorde
   /** Array for internal storage of nonsymmetric Hessenberg form.
47 481 mdecorde
   @serial internal storage of nonsymmetric Hessenberg form.
48 481 mdecorde
   */
49 481 mdecorde
   private double[][] H;
50 481 mdecorde
51 481 mdecorde
   /** Working storage for nonsymmetric algorithm.
52 481 mdecorde
   @serial working storage for nonsymmetric algorithm.
53 481 mdecorde
   */
54 481 mdecorde
   private double[] ort;
55 481 mdecorde
56 481 mdecorde
/* ------------------------
57 481 mdecorde
   Private Methods
58 481 mdecorde
 * ------------------------ */
59 481 mdecorde
60 481 mdecorde
   // Symmetric Householder reduction to tridiagonal form.
61 481 mdecorde
62 481 mdecorde
   private void tred2 () {
63 481 mdecorde
64 481 mdecorde
   //  This is derived from the Algol procedures tred2 by
65 481 mdecorde
   //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
66 481 mdecorde
   //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
67 481 mdecorde
   //  Fortran subroutine in EISPACK.
68 481 mdecorde
69 481 mdecorde
      for (int j = 0; j < n; j++) {
70 481 mdecorde
         d[j] = V[n-1][j];
71 481 mdecorde
      }
72 481 mdecorde
73 481 mdecorde
      // Householder reduction to tridiagonal form.
74 481 mdecorde
75 481 mdecorde
      for (int i = n-1; i > 0; i--) {
76 481 mdecorde
77 481 mdecorde
         // Scale to avoid under/overflow.
78 481 mdecorde
79 481 mdecorde
         double scale = 0.0;
80 481 mdecorde
         double h = 0.0;
81 481 mdecorde
         for (int k = 0; k < i; k++) {
82 481 mdecorde
            scale = scale + Math.abs(d[k]);
83 481 mdecorde
         }
84 481 mdecorde
         if (scale == 0.0) {
85 481 mdecorde
            e[i] = d[i-1];
86 481 mdecorde
            for (int j = 0; j < i; j++) {
87 481 mdecorde
               d[j] = V[i-1][j];
88 481 mdecorde
               V[i][j] = 0.0;
89 481 mdecorde
               V[j][i] = 0.0;
90 481 mdecorde
            }
91 481 mdecorde
         } else {
92 481 mdecorde
93 481 mdecorde
            // Generate Householder vector.
94 481 mdecorde
95 481 mdecorde
            for (int k = 0; k < i; k++) {
96 481 mdecorde
               d[k] /= scale;
97 481 mdecorde
               h += d[k] * d[k];
98 481 mdecorde
            }
99 481 mdecorde
            double f = d[i-1];
100 481 mdecorde
            double g = Math.sqrt(h);
101 481 mdecorde
            if (f > 0) {
102 481 mdecorde
               g = -g;
103 481 mdecorde
            }
104 481 mdecorde
            e[i] = scale * g;
105 481 mdecorde
            h = h - f * g;
106 481 mdecorde
            d[i-1] = f - g;
107 481 mdecorde
            for (int j = 0; j < i; j++) {
108 481 mdecorde
               e[j] = 0.0;
109 481 mdecorde
            }
110 481 mdecorde
111 481 mdecorde
            // Apply similarity transformation to remaining columns.
112 481 mdecorde
113 481 mdecorde
            for (int j = 0; j < i; j++) {
114 481 mdecorde
               f = d[j];
115 481 mdecorde
               V[j][i] = f;
116 481 mdecorde
               g = e[j] + V[j][j] * f;
117 481 mdecorde
               for (int k = j+1; k <= i-1; k++) {
118 481 mdecorde
                  g += V[k][j] * d[k];
119 481 mdecorde
                  e[k] += V[k][j] * f;
120 481 mdecorde
               }
121 481 mdecorde
               e[j] = g;
122 481 mdecorde
            }
123 481 mdecorde
            f = 0.0;
124 481 mdecorde
            for (int j = 0; j < i; j++) {
125 481 mdecorde
               e[j] /= h;
126 481 mdecorde
               f += e[j] * d[j];
127 481 mdecorde
            }
128 481 mdecorde
            double hh = f / (h + h);
129 481 mdecorde
            for (int j = 0; j < i; j++) {
130 481 mdecorde
               e[j] -= hh * d[j];
131 481 mdecorde
            }
132 481 mdecorde
            for (int j = 0; j < i; j++) {
133 481 mdecorde
               f = d[j];
134 481 mdecorde
               g = e[j];
135 481 mdecorde
               for (int k = j; k <= i-1; k++) {
136 481 mdecorde
                  V[k][j] -= (f * e[k] + g * d[k]);
137 481 mdecorde
               }
138 481 mdecorde
               d[j] = V[i-1][j];
139 481 mdecorde
               V[i][j] = 0.0;
140 481 mdecorde
            }
141 481 mdecorde
         }
142 481 mdecorde
         d[i] = h;
143 481 mdecorde
      }
144 481 mdecorde
145 481 mdecorde
      // Accumulate transformations.
146 481 mdecorde
147 481 mdecorde
      for (int i = 0; i < n-1; i++) {
148 481 mdecorde
         V[n-1][i] = V[i][i];
149 481 mdecorde
         V[i][i] = 1.0;
150 481 mdecorde
         double h = d[i+1];
151 481 mdecorde
         if (h != 0.0) {
152 481 mdecorde
            for (int k = 0; k <= i; k++) {
153 481 mdecorde
               d[k] = V[k][i+1] / h;
154 481 mdecorde
            }
155 481 mdecorde
            for (int j = 0; j <= i; j++) {
156 481 mdecorde
               double g = 0.0;
157 481 mdecorde
               for (int k = 0; k <= i; k++) {
158 481 mdecorde
                  g += V[k][i+1] * V[k][j];
159 481 mdecorde
               }
160 481 mdecorde
               for (int k = 0; k <= i; k++) {
161 481 mdecorde
                  V[k][j] -= g * d[k];
162 481 mdecorde
               }
163 481 mdecorde
            }
164 481 mdecorde
         }
165 481 mdecorde
         for (int k = 0; k <= i; k++) {
166 481 mdecorde
            V[k][i+1] = 0.0;
167 481 mdecorde
         }
168 481 mdecorde
      }
169 481 mdecorde
      for (int j = 0; j < n; j++) {
170 481 mdecorde
         d[j] = V[n-1][j];
171 481 mdecorde
         V[n-1][j] = 0.0;
172 481 mdecorde
      }
173 481 mdecorde
      V[n-1][n-1] = 1.0;
174 481 mdecorde
      e[0] = 0.0;
175 481 mdecorde
   }
176 481 mdecorde
177 481 mdecorde
   // Symmetric tridiagonal QL algorithm.
178 481 mdecorde
179 481 mdecorde
   private void tql2 () {
180 481 mdecorde
181 481 mdecorde
   //  This is derived from the Algol procedures tql2, by
182 481 mdecorde
   //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
183 481 mdecorde
   //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
184 481 mdecorde
   //  Fortran subroutine in EISPACK.
185 481 mdecorde
186 481 mdecorde
      for (int i = 1; i < n; i++) {
187 481 mdecorde
         e[i-1] = e[i];
188 481 mdecorde
      }
189 481 mdecorde
      e[n-1] = 0.0;
190 481 mdecorde
191 481 mdecorde
      double f = 0.0;
192 481 mdecorde
      double tst1 = 0.0;
193 481 mdecorde
      double eps = Math.pow(2.0,-52.0);
194 481 mdecorde
      for (int l = 0; l < n; l++) {
195 481 mdecorde
196 481 mdecorde
         // Find small subdiagonal element
197 481 mdecorde
198 481 mdecorde
         tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
199 481 mdecorde
         int m = l;
200 481 mdecorde
         while (m < n) {
201 481 mdecorde
            if (Math.abs(e[m]) <= eps*tst1) {
202 481 mdecorde
               break;
203 481 mdecorde
            }
204 481 mdecorde
            m++;
205 481 mdecorde
         }
206 481 mdecorde
207 481 mdecorde
         // If m == l, d[l] is an eigenvalue,
208 481 mdecorde
         // otherwise, iterate.
209 481 mdecorde
210 481 mdecorde
         if (m > l) {
211 481 mdecorde
            int iter = 0;
212 481 mdecorde
            do {
213 481 mdecorde
               iter = iter + 1;  // (Could check iteration count here.)
214 481 mdecorde
215 481 mdecorde
               // Compute implicit shift
216 481 mdecorde
217 481 mdecorde
               double g = d[l];
218 481 mdecorde
               double p = (d[l+1] - g) / (2.0 * e[l]);
219 481 mdecorde
               double r = Math.hypot(p,1.0);
220 481 mdecorde
               if (p < 0) {
221 481 mdecorde
                  r = -r;
222 481 mdecorde
               }
223 481 mdecorde
               d[l] = e[l] / (p + r);
224 481 mdecorde
               d[l+1] = e[l] * (p + r);
225 481 mdecorde
               double dl1 = d[l+1];
226 481 mdecorde
               double h = g - d[l];
227 481 mdecorde
               for (int i = l+2; i < n; i++) {
228 481 mdecorde
                  d[i] -= h;
229 481 mdecorde
               }
230 481 mdecorde
               f = f + h;
231 481 mdecorde
232 481 mdecorde
               // Implicit QL transformation.
233 481 mdecorde
234 481 mdecorde
               p = d[m];
235 481 mdecorde
               double c = 1.0;
236 481 mdecorde
               double c2 = c;
237 481 mdecorde
               double c3 = c;
238 481 mdecorde
               double el1 = e[l+1];
239 481 mdecorde
               double s = 0.0;
240 481 mdecorde
               double s2 = 0.0;
241 481 mdecorde
               for (int i = m-1; i >= l; i--) {
242 481 mdecorde
                  c3 = c2;
243 481 mdecorde
                  c2 = c;
244 481 mdecorde
                  s2 = s;
245 481 mdecorde
                  g = c * e[i];
246 481 mdecorde
                  h = c * p;
247 481 mdecorde
                  r = Math.hypot(p,e[i]);
248 481 mdecorde
                  e[i+1] = s * r;
249 481 mdecorde
                  s = e[i] / r;
250 481 mdecorde
                  c = p / r;
251 481 mdecorde
                  p = c * d[i] - s * g;
252 481 mdecorde
                  d[i+1] = h + s * (c * g + s * d[i]);
253 481 mdecorde
254 481 mdecorde
                  // Accumulate transformation.
255 481 mdecorde
256 481 mdecorde
                  for (int k = 0; k < n; k++) {
257 481 mdecorde
                     h = V[k][i+1];
258 481 mdecorde
                     V[k][i+1] = s * V[k][i] + c * h;
259 481 mdecorde
                     V[k][i] = c * V[k][i] - s * h;
260 481 mdecorde
                  }
261 481 mdecorde
               }
262 481 mdecorde
               p = -s * s2 * c3 * el1 * e[l] / dl1;
263 481 mdecorde
               e[l] = s * p;
264 481 mdecorde
               d[l] = c * p;
265 481 mdecorde
266 481 mdecorde
               // Check for convergence.
267 481 mdecorde
268 481 mdecorde
            } while (Math.abs(e[l]) > eps*tst1);
269 481 mdecorde
         }
270 481 mdecorde
         d[l] = d[l] + f;
271 481 mdecorde
         e[l] = 0.0;
272 481 mdecorde
      }
273 481 mdecorde
274 481 mdecorde
      // Sort eigenvalues and corresponding vectors.
275 481 mdecorde
276 481 mdecorde
      for (int i = 0; i < n-1; i++) {
277 481 mdecorde
         int k = i;
278 481 mdecorde
         double p = d[i];
279 481 mdecorde
         for (int j = i+1; j < n; j++) {
280 481 mdecorde
            if (d[j] < p) {
281 481 mdecorde
               k = j;
282 481 mdecorde
               p = d[j];
283 481 mdecorde
            }
284 481 mdecorde
         }
285 481 mdecorde
         if (k != i) {
286 481 mdecorde
            d[k] = d[i];
287 481 mdecorde
            d[i] = p;
288 481 mdecorde
            for (int j = 0; j < n; j++) {
289 481 mdecorde
               p = V[j][i];
290 481 mdecorde
               V[j][i] = V[j][k];
291 481 mdecorde
               V[j][k] = p;
292 481 mdecorde
            }
293 481 mdecorde
         }
294 481 mdecorde
      }
295 481 mdecorde
   }
296 481 mdecorde
297 481 mdecorde
   // Nonsymmetric reduction to Hessenberg form.
298 481 mdecorde
299 481 mdecorde
   private void orthes () {
300 481 mdecorde
301 481 mdecorde
      //  This is derived from the Algol procedures orthes and ortran,
302 481 mdecorde
      //  by Martin and Wilkinson, Handbook for Auto. Comp.,
303 481 mdecorde
      //  Vol.ii-Linear Algebra, and the corresponding
304 481 mdecorde
      //  Fortran subroutines in EISPACK.
305 481 mdecorde
306 481 mdecorde
      int low = 0;
307 481 mdecorde
      int high = n-1;
308 481 mdecorde
309 481 mdecorde
      for (int m = low+1; m <= high-1; m++) {
310 481 mdecorde
311 481 mdecorde
         // Scale column.
312 481 mdecorde
313 481 mdecorde
         double scale = 0.0;
314 481 mdecorde
         for (int i = m; i <= high; i++) {
315 481 mdecorde
            scale = scale + Math.abs(H[i][m-1]);
316 481 mdecorde
         }
317 481 mdecorde
         if (scale != 0.0) {
318 481 mdecorde
319 481 mdecorde
            // Compute Householder transformation.
320 481 mdecorde
321 481 mdecorde
            double h = 0.0;
322 481 mdecorde
            for (int i = high; i >= m; i--) {
323 481 mdecorde
               ort[i] = H[i][m-1]/scale;
324 481 mdecorde
               h += ort[i] * ort[i];
325 481 mdecorde
            }
326 481 mdecorde
            double g = Math.sqrt(h);
327 481 mdecorde
            if (ort[m] > 0) {
328 481 mdecorde
               g = -g;
329 481 mdecorde
            }
330 481 mdecorde
            h = h - ort[m] * g;
331 481 mdecorde
            ort[m] = ort[m] - g;
332 481 mdecorde
333 481 mdecorde
            // Apply Householder similarity transformation
334 481 mdecorde
            // H = (I-u*u'/h)*H*(I-u*u')/h)
335 481 mdecorde
336 481 mdecorde
            for (int j = m; j < n; j++) {
337 481 mdecorde
               double f = 0.0;
338 481 mdecorde
               for (int i = high; i >= m; i--) {
339 481 mdecorde
                  f += ort[i]*H[i][j];
340 481 mdecorde
               }
341 481 mdecorde
               f = f/h;
342 481 mdecorde
               for (int i = m; i <= high; i++) {
343 481 mdecorde
                  H[i][j] -= f*ort[i];
344 481 mdecorde
               }
345 481 mdecorde
           }
346 481 mdecorde
347 481 mdecorde
           for (int i = 0; i <= high; i++) {
348 481 mdecorde
               double f = 0.0;
349 481 mdecorde
               for (int j = high; j >= m; j--) {
350 481 mdecorde
                  f += ort[j]*H[i][j];
351 481 mdecorde
               }
352 481 mdecorde
               f = f/h;
353 481 mdecorde
               for (int j = m; j <= high; j++) {
354 481 mdecorde
                  H[i][j] -= f*ort[j];
355 481 mdecorde
               }
356 481 mdecorde
            }
357 481 mdecorde
            ort[m] = scale*ort[m];
358 481 mdecorde
            H[m][m-1] = scale*g;
359 481 mdecorde
         }
360 481 mdecorde
      }
361 481 mdecorde
362 481 mdecorde
      // Accumulate transformations (Algol's ortran).
363 481 mdecorde
364 481 mdecorde
      for (int i = 0; i < n; i++) {
365 481 mdecorde
         for (int j = 0; j < n; j++) {
366 481 mdecorde
            V[i][j] = (i == j ? 1.0 : 0.0);
367 481 mdecorde
         }
368 481 mdecorde
      }
369 481 mdecorde
370 481 mdecorde
      for (int m = high-1; m >= low+1; m--) {
371 481 mdecorde
         if (H[m][m-1] != 0.0) {
372 481 mdecorde
            for (int i = m+1; i <= high; i++) {
373 481 mdecorde
               ort[i] = H[i][m-1];
374 481 mdecorde
            }
375 481 mdecorde
            for (int j = m; j <= high; j++) {
376 481 mdecorde
               double g = 0.0;
377 481 mdecorde
               for (int i = m; i <= high; i++) {
378 481 mdecorde
                  g += ort[i] * V[i][j];
379 481 mdecorde
               }
380 481 mdecorde
               // Double division avoids possible underflow
381 481 mdecorde
               g = (g / ort[m]) / H[m][m-1];
382 481 mdecorde
               for (int i = m; i <= high; i++) {
383 481 mdecorde
                  V[i][j] += g * ort[i];
384 481 mdecorde
               }
385 481 mdecorde
            }
386 481 mdecorde
         }
387 481 mdecorde
      }
388 481 mdecorde
   }
389 481 mdecorde
390 481 mdecorde
391 481 mdecorde
   // Complex scalar division.
392 481 mdecorde
393 481 mdecorde
   private transient double cdivr, cdivi;
394 481 mdecorde
   private void cdiv(double xr, double xi, double yr, double yi) {
395 481 mdecorde
      double r,d;
396 481 mdecorde
      if (Math.abs(yr) > Math.abs(yi)) {
397 481 mdecorde
         r = yi/yr;
398 481 mdecorde
         d = yr + r*yi;
399 481 mdecorde
         cdivr = (xr + r*xi)/d;
400 481 mdecorde
         cdivi = (xi - r*xr)/d;
401 481 mdecorde
      } else {
402 481 mdecorde
         r = yr/yi;
403 481 mdecorde
         d = yi + r*yr;
404 481 mdecorde
         cdivr = (r*xr + xi)/d;
405 481 mdecorde
         cdivi = (r*xi - xr)/d;
406 481 mdecorde
      }
407 481 mdecorde
   }
408 481 mdecorde
409 481 mdecorde
410 481 mdecorde
   // Nonsymmetric reduction from Hessenberg to real Schur form.
411 481 mdecorde
412 481 mdecorde
   private void hqr2 () {
413 481 mdecorde
414 481 mdecorde
      //  This is derived from the Algol procedure hqr2,
415 481 mdecorde
      //  by Martin and Wilkinson, Handbook for Auto. Comp.,
416 481 mdecorde
      //  Vol.ii-Linear Algebra, and the corresponding
417 481 mdecorde
      //  Fortran subroutine in EISPACK.
418 481 mdecorde
419 481 mdecorde
      // Initialize
420 481 mdecorde
421 481 mdecorde
      int nn = this.n;
422 481 mdecorde
      int n = nn-1;
423 481 mdecorde
      int low = 0;
424 481 mdecorde
      int high = nn-1;
425 481 mdecorde
      double eps = Math.pow(2.0,-52.0);
426 481 mdecorde
      double exshift = 0.0;
427 481 mdecorde
      double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
428 481 mdecorde
429 481 mdecorde
      // Store roots isolated by balanc and compute matrix norm
430 481 mdecorde
431 481 mdecorde
      double norm = 0.0;
432 481 mdecorde
      for (int i = 0; i < nn; i++) {
433 481 mdecorde
         if (i < low | i > high) {
434 481 mdecorde
            d[i] = H[i][i];
435 481 mdecorde
            e[i] = 0.0;
436 481 mdecorde
         }
437 481 mdecorde
         for (int j = Math.max(i-1,0); j < nn; j++) {
438 481 mdecorde
            norm = norm + Math.abs(H[i][j]);
439 481 mdecorde
         }
440 481 mdecorde
      }
441 481 mdecorde
442 481 mdecorde
      // Outer loop over eigenvalue index
443 481 mdecorde
444 481 mdecorde
      int iter = 0;
445 481 mdecorde
      while (n >= low) {
446 481 mdecorde
447 481 mdecorde
         // Look for single small sub-diagonal element
448 481 mdecorde
449 481 mdecorde
         int l = n;
450 481 mdecorde
         while (l > low) {
451 481 mdecorde
            s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
452 481 mdecorde
            if (s == 0.0) {
453 481 mdecorde
               s = norm;
454 481 mdecorde
            }
455 481 mdecorde
            if (Math.abs(H[l][l-1]) < eps * s) {
456 481 mdecorde
               break;
457 481 mdecorde
            }
458 481 mdecorde
            l--;
459 481 mdecorde
         }
460 481 mdecorde
461 481 mdecorde
         // Check for convergence
462 481 mdecorde
         // One root found
463 481 mdecorde
464 481 mdecorde
         if (l == n) {
465 481 mdecorde
            H[n][n] = H[n][n] + exshift;
466 481 mdecorde
            d[n] = H[n][n];
467 481 mdecorde
            e[n] = 0.0;
468 481 mdecorde
            n--;
469 481 mdecorde
            iter = 0;
470 481 mdecorde
471 481 mdecorde
         // Two roots found
472 481 mdecorde
473 481 mdecorde
         } else if (l == n-1) {
474 481 mdecorde
            w = H[n][n-1] * H[n-1][n];
475 481 mdecorde
            p = (H[n-1][n-1] - H[n][n]) / 2.0;
476 481 mdecorde
            q = p * p + w;
477 481 mdecorde
            z = Math.sqrt(Math.abs(q));
478 481 mdecorde
            H[n][n] = H[n][n] + exshift;
479 481 mdecorde
            H[n-1][n-1] = H[n-1][n-1] + exshift;
480 481 mdecorde
            x = H[n][n];
481 481 mdecorde
482 481 mdecorde
            // Real pair
483 481 mdecorde
484 481 mdecorde
            if (q >= 0) {
485 481 mdecorde
               if (p >= 0) {
486 481 mdecorde
                  z = p + z;
487 481 mdecorde
               } else {
488 481 mdecorde
                  z = p - z;
489 481 mdecorde
               }
490 481 mdecorde
               d[n-1] = x + z;
491 481 mdecorde
               d[n] = d[n-1];
492 481 mdecorde
               if (z != 0.0) {
493 481 mdecorde
                  d[n] = x - w / z;
494 481 mdecorde
               }
495 481 mdecorde
               e[n-1] = 0.0;
496 481 mdecorde
               e[n] = 0.0;
497 481 mdecorde
               x = H[n][n-1];
498 481 mdecorde
               s = Math.abs(x) + Math.abs(z);
499 481 mdecorde
               p = x / s;
500 481 mdecorde
               q = z / s;
501 481 mdecorde
               r = Math.sqrt(p * p+q * q);
502 481 mdecorde
               p = p / r;
503 481 mdecorde
               q = q / r;
504 481 mdecorde
505 481 mdecorde
               // Row modification
506 481 mdecorde
507 481 mdecorde
               for (int j = n-1; j < nn; j++) {
508 481 mdecorde
                  z = H[n-1][j];
509 481 mdecorde
                  H[n-1][j] = q * z + p * H[n][j];
510 481 mdecorde
                  H[n][j] = q * H[n][j] - p * z;
511 481 mdecorde
               }
512 481 mdecorde
513 481 mdecorde
               // Column modification
514 481 mdecorde
515 481 mdecorde
               for (int i = 0; i <= n; i++) {
516 481 mdecorde
                  z = H[i][n-1];
517 481 mdecorde
                  H[i][n-1] = q * z + p * H[i][n];
518 481 mdecorde
                  H[i][n] = q * H[i][n] - p * z;
519 481 mdecorde
               }
520 481 mdecorde
521 481 mdecorde
               // Accumulate transformations
522 481 mdecorde
523 481 mdecorde
               for (int i = low; i <= high; i++) {
524 481 mdecorde
                  z = V[i][n-1];
525 481 mdecorde
                  V[i][n-1] = q * z + p * V[i][n];
526 481 mdecorde
                  V[i][n] = q * V[i][n] - p * z;
527 481 mdecorde
               }
528 481 mdecorde
529 481 mdecorde
            // Complex pair
530 481 mdecorde
531 481 mdecorde
            } else {
532 481 mdecorde
               d[n-1] = x + p;
533 481 mdecorde
               d[n] = x + p;
534 481 mdecorde
               e[n-1] = z;
535 481 mdecorde
               e[n] = -z;
536 481 mdecorde
            }
537 481 mdecorde
            n = n - 2;
538 481 mdecorde
            iter = 0;
539 481 mdecorde
540 481 mdecorde
         // No convergence yet
541 481 mdecorde
542 481 mdecorde
         } else {
543 481 mdecorde
544 481 mdecorde
            // Form shift
545 481 mdecorde
546 481 mdecorde
            x = H[n][n];
547 481 mdecorde
            y = 0.0;
548 481 mdecorde
            w = 0.0;
549 481 mdecorde
            if (l < n) {
550 481 mdecorde
               y = H[n-1][n-1];
551 481 mdecorde
               w = H[n][n-1] * H[n-1][n];
552 481 mdecorde
            }
553 481 mdecorde
554 481 mdecorde
            // Wilkinson's original ad hoc shift
555 481 mdecorde
556 481 mdecorde
            if (iter == 10) {
557 481 mdecorde
               exshift += x;
558 481 mdecorde
               for (int i = low; i <= n; i++) {
559 481 mdecorde
                  H[i][i] -= x;
560 481 mdecorde
               }
561 481 mdecorde
               s = Math.abs(H[n][n-1]) + Math.abs(H[n-1][n-2]);
562 481 mdecorde
               x = y = 0.75 * s;
563 481 mdecorde
               w = -0.4375 * s * s;
564 481 mdecorde
            }
565 481 mdecorde
566 481 mdecorde
            // MATLAB's new ad hoc shift
567 481 mdecorde
568 481 mdecorde
            if (iter == 30) {
569 481 mdecorde
                s = (y - x) / 2.0;
570 481 mdecorde
                s = s * s + w;
571 481 mdecorde
                if (s > 0) {
572 481 mdecorde
                    s = Math.sqrt(s);
573 481 mdecorde
                    if (y < x) {
574 481 mdecorde
                       s = -s;
575 481 mdecorde
                    }
576 481 mdecorde
                    s = x - w / ((y - x) / 2.0 + s);
577 481 mdecorde
                    for (int i = low; i <= n; i++) {
578 481 mdecorde
                       H[i][i] -= s;
579 481 mdecorde
                    }
580 481 mdecorde
                    exshift += s;
581 481 mdecorde
                    x = y = w = 0.964;
582 481 mdecorde
                }
583 481 mdecorde
            }
584 481 mdecorde
585 481 mdecorde
            iter = iter + 1;   // (Could check iteration count here.)
586 481 mdecorde
587 481 mdecorde
            // Look for two consecutive small sub-diagonal elements
588 481 mdecorde
589 481 mdecorde
            int m = n-2;
590 481 mdecorde
            while (m >= l) {
591 481 mdecorde
               z = H[m][m];
592 481 mdecorde
               r = x - z;
593 481 mdecorde
               s = y - z;
594 481 mdecorde
               p = (r * s - w) / H[m+1][m] + H[m][m+1];
595 481 mdecorde
               q = H[m+1][m+1] - z - r - s;
596 481 mdecorde
               r = H[m+2][m+1];
597 481 mdecorde
               s = Math.abs(p) + Math.abs(q) + Math.abs(r);
598 481 mdecorde
               p = p / s;
599 481 mdecorde
               q = q / s;
600 481 mdecorde
               r = r / s;
601 481 mdecorde
               if (m == l) {
602 481 mdecorde
                  break;
603 481 mdecorde
               }
604 481 mdecorde
               if (Math.abs(H[m][m-1]) * (Math.abs(q) + Math.abs(r)) <
605 481 mdecorde
                  eps * (Math.abs(p) * (Math.abs(H[m-1][m-1]) + Math.abs(z) +
606 481 mdecorde
                  Math.abs(H[m+1][m+1])))) {
607 481 mdecorde
                     break;
608 481 mdecorde
               }
609 481 mdecorde
               m--;
610 481 mdecorde
            }
611 481 mdecorde
612 481 mdecorde
            for (int i = m+2; i <= n; i++) {
613 481 mdecorde
               H[i][i-2] = 0.0;
614 481 mdecorde
               if (i > m+2) {
615 481 mdecorde
                  H[i][i-3] = 0.0;
616 481 mdecorde
               }
617 481 mdecorde
            }
618 481 mdecorde
619 481 mdecorde
            // Double QR step involving rows l:n and columns m:n
620 481 mdecorde
621 481 mdecorde
            for (int k = m; k <= n-1; k++) {
622 481 mdecorde
               boolean notlast = (k != n-1);
623 481 mdecorde
               if (k != m) {
624 481 mdecorde
                  p = H[k][k-1];
625 481 mdecorde
                  q = H[k+1][k-1];
626 481 mdecorde
                  r = (notlast ? H[k+2][k-1] : 0.0);
627 481 mdecorde
                  x = Math.abs(p) + Math.abs(q) + Math.abs(r);
628 481 mdecorde
                  if (x != 0.0) {
629 481 mdecorde
                     p = p / x;
630 481 mdecorde
                     q = q / x;
631 481 mdecorde
                     r = r / x;
632 481 mdecorde
                  }
633 481 mdecorde
               }
634 481 mdecorde
               if (x == 0.0) {
635 481 mdecorde
                  break;
636 481 mdecorde
               }
637 481 mdecorde
               s = Math.sqrt(p * p + q * q + r * r);
638 481 mdecorde
               if (p < 0) {
639 481 mdecorde
                  s = -s;
640 481 mdecorde
               }
641 481 mdecorde
               if (s != 0) {
642 481 mdecorde
                  if (k != m) {
643 481 mdecorde
                     H[k][k-1] = -s * x;
644 481 mdecorde
                  } else if (l != m) {
645 481 mdecorde
                     H[k][k-1] = -H[k][k-1];
646 481 mdecorde
                  }
647 481 mdecorde
                  p = p + s;
648 481 mdecorde
                  x = p / s;
649 481 mdecorde
                  y = q / s;
650 481 mdecorde
                  z = r / s;
651 481 mdecorde
                  q = q / p;
652 481 mdecorde
                  r = r / p;
653 481 mdecorde
654 481 mdecorde
                  // Row modification
655 481 mdecorde
656 481 mdecorde
                  for (int j = k; j < nn; j++) {
657 481 mdecorde
                     p = H[k][j] + q * H[k+1][j];
658 481 mdecorde
                     if (notlast) {
659 481 mdecorde
                        p = p + r * H[k+2][j];
660 481 mdecorde
                        H[k+2][j] = H[k+2][j] - p * z;
661 481 mdecorde
                     }
662 481 mdecorde
                     H[k][j] = H[k][j] - p * x;
663 481 mdecorde
                     H[k+1][j] = H[k+1][j] - p * y;
664 481 mdecorde
                  }
665 481 mdecorde
666 481 mdecorde
                  // Column modification
667 481 mdecorde
668 481 mdecorde
                  for (int i = 0; i <= Math.min(n,k+3); i++) {
669 481 mdecorde
                     p = x * H[i][k] + y * H[i][k+1];
670 481 mdecorde
                     if (notlast) {
671 481 mdecorde
                        p = p + z * H[i][k+2];
672 481 mdecorde
                        H[i][k+2] = H[i][k+2] - p * r;
673 481 mdecorde
                     }
674 481 mdecorde
                     H[i][k] = H[i][k] - p;
675 481 mdecorde
                     H[i][k+1] = H[i][k+1] - p * q;
676 481 mdecorde
                  }
677 481 mdecorde
678 481 mdecorde
                  // Accumulate transformations
679 481 mdecorde
680 481 mdecorde
                  for (int i = low; i <= high; i++) {
681 481 mdecorde
                     p = x * V[i][k] + y * V[i][k+1];
682 481 mdecorde
                     if (notlast) {
683 481 mdecorde
                        p = p + z * V[i][k+2];
684 481 mdecorde
                        V[i][k+2] = V[i][k+2] - p * r;
685 481 mdecorde
                     }
686 481 mdecorde
                     V[i][k] = V[i][k] - p;
687 481 mdecorde
                     V[i][k+1] = V[i][k+1] - p * q;
688 481 mdecorde
                  }
689 481 mdecorde
               }  // (s != 0)
690 481 mdecorde
            }  // k loop
691 481 mdecorde
         }  // check convergence
692 481 mdecorde
      }  // while (n >= low)
693 481 mdecorde
694 481 mdecorde
      // Backsubstitute to find vectors of upper triangular form
695 481 mdecorde
696 481 mdecorde
      if (norm == 0.0) {
697 481 mdecorde
         return;
698 481 mdecorde
      }
699 481 mdecorde
700 481 mdecorde
      for (n = nn-1; n >= 0; n--) {
701 481 mdecorde
         p = d[n];
702 481 mdecorde
         q = e[n];
703 481 mdecorde
704 481 mdecorde
         // Real vector
705 481 mdecorde
706 481 mdecorde
         if (q == 0) {
707 481 mdecorde
            int l = n;
708 481 mdecorde
            H[n][n] = 1.0;
709 481 mdecorde
            for (int i = n-1; i >= 0; i--) {
710 481 mdecorde
               w = H[i][i] - p;
711 481 mdecorde
               r = 0.0;
712 481 mdecorde
               for (int j = l; j <= n; j++) {
713 481 mdecorde
                  r = r + H[i][j] * H[j][n];
714 481 mdecorde
               }
715 481 mdecorde
               if (e[i] < 0.0) {
716 481 mdecorde
                  z = w;
717 481 mdecorde
                  s = r;
718 481 mdecorde
               } else {
719 481 mdecorde
                  l = i;
720 481 mdecorde
                  if (e[i] == 0.0) {
721 481 mdecorde
                     if (w != 0.0) {
722 481 mdecorde
                        H[i][n] = -r / w;
723 481 mdecorde
                     } else {
724 481 mdecorde
                        H[i][n] = -r / (eps * norm);
725 481 mdecorde
                     }
726 481 mdecorde
727 481 mdecorde
                  // Solve real equations
728 481 mdecorde
729 481 mdecorde
                  } else {
730 481 mdecorde
                     x = H[i][i+1];
731 481 mdecorde
                     y = H[i+1][i];
732 481 mdecorde
                     q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
733 481 mdecorde
                     t = (x * s - z * r) / q;
734 481 mdecorde
                     H[i][n] = t;
735 481 mdecorde
                     if (Math.abs(x) > Math.abs(z)) {
736 481 mdecorde
                        H[i+1][n] = (-r - w * t) / x;
737 481 mdecorde
                     } else {
738 481 mdecorde
                        H[i+1][n] = (-s - y * t) / z;
739 481 mdecorde
                     }
740 481 mdecorde
                  }
741 481 mdecorde
742 481 mdecorde
                  // Overflow control
743 481 mdecorde
744 481 mdecorde
                  t = Math.abs(H[i][n]);
745 481 mdecorde
                  if ((eps * t) * t > 1) {
746 481 mdecorde
                     for (int j = i; j <= n; j++) {
747 481 mdecorde
                        H[j][n] = H[j][n] / t;
748 481 mdecorde
                     }
749 481 mdecorde
                  }
750 481 mdecorde
               }
751 481 mdecorde
            }
752 481 mdecorde
753 481 mdecorde
         // Complex vector
754 481 mdecorde
755 481 mdecorde
         } else if (q < 0) {
756 481 mdecorde
            int l = n-1;
757 481 mdecorde
758 481 mdecorde
            // Last vector component imaginary so matrix is triangular
759 481 mdecorde
760 481 mdecorde
            if (Math.abs(H[n][n-1]) > Math.abs(H[n-1][n])) {
761 481 mdecorde
               H[n-1][n-1] = q / H[n][n-1];
762 481 mdecorde
               H[n-1][n] = -(H[n][n] - p) / H[n][n-1];
763 481 mdecorde
            } else {
764 481 mdecorde
               cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q);
765 481 mdecorde
               H[n-1][n-1] = cdivr;
766 481 mdecorde
               H[n-1][n] = cdivi;
767 481 mdecorde
            }
768 481 mdecorde
            H[n][n-1] = 0.0;
769 481 mdecorde
            H[n][n] = 1.0;
770 481 mdecorde
            for (int i = n-2; i >= 0; i--) {
771 481 mdecorde
               double ra,sa,vr,vi;
772 481 mdecorde
               ra = 0.0;
773 481 mdecorde
               sa = 0.0;
774 481 mdecorde
               for (int j = l; j <= n; j++) {
775 481 mdecorde
                  ra = ra + H[i][j] * H[j][n-1];
776 481 mdecorde
                  sa = sa + H[i][j] * H[j][n];
777 481 mdecorde
               }
778 481 mdecorde
               w = H[i][i] - p;
779 481 mdecorde
780 481 mdecorde
               if (e[i] < 0.0) {
781 481 mdecorde
                  z = w;
782 481 mdecorde
                  r = ra;
783 481 mdecorde
                  s = sa;
784 481 mdecorde
               } else {
785 481 mdecorde
                  l = i;
786 481 mdecorde
                  if (e[i] == 0) {
787 481 mdecorde
                     cdiv(-ra,-sa,w,q);
788 481 mdecorde
                     H[i][n-1] = cdivr;
789 481 mdecorde
                     H[i][n] = cdivi;
790 481 mdecorde
                  } else {
791 481 mdecorde
792 481 mdecorde
                     // Solve complex equations
793 481 mdecorde
794 481 mdecorde
                     x = H[i][i+1];
795 481 mdecorde
                     y = H[i+1][i];
796 481 mdecorde
                     vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
797 481 mdecorde
                     vi = (d[i] - p) * 2.0 * q;
798 481 mdecorde
                     if (vr == 0.0 & vi == 0.0) {
799 481 mdecorde
                        vr = eps * norm * (Math.abs(w) + Math.abs(q) +
800 481 mdecorde
                        Math.abs(x) + Math.abs(y) + Math.abs(z));
801 481 mdecorde
                     }
802 481 mdecorde
                     cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
803 481 mdecorde
                     H[i][n-1] = cdivr;
804 481 mdecorde
                     H[i][n] = cdivi;
805 481 mdecorde
                     if (Math.abs(x) > (Math.abs(z) + Math.abs(q))) {
806 481 mdecorde
                        H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x;
807 481 mdecorde
                        H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x;
808 481 mdecorde
                     } else {
809 481 mdecorde
                        cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q);
810 481 mdecorde
                        H[i+1][n-1] = cdivr;
811 481 mdecorde
                        H[i+1][n] = cdivi;
812 481 mdecorde
                     }
813 481 mdecorde
                  }
814 481 mdecorde
815 481 mdecorde
                  // Overflow control
816 481 mdecorde
817 481 mdecorde
                  t = Math.max(Math.abs(H[i][n-1]),Math.abs(H[i][n]));
818 481 mdecorde
                  if ((eps * t) * t > 1) {
819 481 mdecorde
                     for (int j = i; j <= n; j++) {
820 481 mdecorde
                        H[j][n-1] = H[j][n-1] / t;
821 481 mdecorde
                        H[j][n] = H[j][n] / t;
822 481 mdecorde
                     }
823 481 mdecorde
                  }
824 481 mdecorde
               }
825 481 mdecorde
            }
826 481 mdecorde
         }
827 481 mdecorde
      }
828 481 mdecorde
829 481 mdecorde
      // Vectors of isolated roots
830 481 mdecorde
831 481 mdecorde
      for (int i = 0; i < nn; i++) {
832 481 mdecorde
         if (i < low | i > high) {
833 481 mdecorde
            for (int j = i; j < nn; j++) {
834 481 mdecorde
               V[i][j] = H[i][j];
835 481 mdecorde
            }
836 481 mdecorde
         }
837 481 mdecorde
      }
838 481 mdecorde
839 481 mdecorde
      // Back transformation to get eigenvectors of original matrix
840 481 mdecorde
841 481 mdecorde
      for (int j = nn-1; j >= low; j--) {
842 481 mdecorde
         for (int i = low; i <= high; i++) {
843 481 mdecorde
            z = 0.0;
844 481 mdecorde
            for (int k = low; k <= Math.min(j,high); k++) {
845 481 mdecorde
               z = z + V[i][k] * H[k][j];
846 481 mdecorde
            }
847 481 mdecorde
            V[i][j] = z;
848 481 mdecorde
         }
849 481 mdecorde
      }
850 481 mdecorde
   }
851 481 mdecorde
852 481 mdecorde
853 481 mdecorde
/* ------------------------
854 481 mdecorde
   Constructor
855 481 mdecorde
 * ------------------------ */
856 481 mdecorde
857 481 mdecorde
   /** Check for symmetry, then construct the eigenvalue decomposition
858 481 mdecorde
   @param A    Square matrix
859 481 mdecorde
   @return     Structure to access D and V.
860 481 mdecorde
   */
861 481 mdecorde
862 481 mdecorde
   public EigenvalueDecomposition (Matrix Arg) {
863 481 mdecorde
      double[][] A = Arg.getArray();
864 481 mdecorde
      n = Arg.getColumnDimension();
865 481 mdecorde
      V = new double[n][n];
866 481 mdecorde
      d = new double[n];
867 481 mdecorde
      e = new double[n];
868 481 mdecorde
869 481 mdecorde
      issymmetric = true;
870 481 mdecorde
      for (int j = 0; (j < n) & issymmetric; j++) {
871 481 mdecorde
         for (int i = 0; (i < n) & issymmetric; i++) {
872 481 mdecorde
            issymmetric = (A[i][j] == A[j][i]);
873 481 mdecorde
         }
874 481 mdecorde
      }
875 481 mdecorde
876 481 mdecorde
      if (issymmetric) {
877 481 mdecorde
         for (int i = 0; i < n; i++) {
878 481 mdecorde
            for (int j = 0; j < n; j++) {
879 481 mdecorde
               V[i][j] = A[i][j];
880 481 mdecorde
            }
881 481 mdecorde
         }
882 481 mdecorde
883 481 mdecorde
         // Tridiagonalize.
884 481 mdecorde
         tred2();
885 481 mdecorde
886 481 mdecorde
         // Diagonalize.
887 481 mdecorde
         tql2();
888 481 mdecorde
889 481 mdecorde
      } else {
890 481 mdecorde
         H = new double[n][n];
891 481 mdecorde
         ort = new double[n];
892 481 mdecorde
893 481 mdecorde
         for (int j = 0; j < n; j++) {
894 481 mdecorde
            for (int i = 0; i < n; i++) {
895 481 mdecorde
               H[i][j] = A[i][j];
896 481 mdecorde
            }
897 481 mdecorde
         }
898 481 mdecorde
899 481 mdecorde
         // Reduce to Hessenberg form.
900 481 mdecorde
         orthes();
901 481 mdecorde
902 481 mdecorde
         // Reduce Hessenberg to real Schur form.
903 481 mdecorde
         hqr2();
904 481 mdecorde
      }
905 481 mdecorde
   }
906 481 mdecorde
907 481 mdecorde
/* ------------------------
908 481 mdecorde
   Public Methods
909 481 mdecorde
 * ------------------------ */
910 481 mdecorde
911 481 mdecorde
   /** Return the eigenvector matrix
912 481 mdecorde
   @return     V
913 481 mdecorde
   */
914 481 mdecorde
915 481 mdecorde
   public Matrix getV () {
916 481 mdecorde
      return new Matrix(V,n,n);
917 481 mdecorde
   }
918 481 mdecorde
919 481 mdecorde
   /** Return the real parts of the eigenvalues
920 481 mdecorde
   @return     real(diag(D))
921 481 mdecorde
   */
922 481 mdecorde
923 481 mdecorde
   public double[] getRealEigenvalues () {
924 481 mdecorde
      return d;
925 481 mdecorde
   }
926 481 mdecorde
927 481 mdecorde
   /** Return the imaginary parts of the eigenvalues
928 481 mdecorde
   @return     imag(diag(D))
929 481 mdecorde
   */
930 481 mdecorde
931 481 mdecorde
   public double[] getImagEigenvalues () {
932 481 mdecorde
      return e;
933 481 mdecorde
   }
934 481 mdecorde
935 481 mdecorde
   /** Return the block diagonal eigenvalue matrix
936 481 mdecorde
   @return     D
937 481 mdecorde
   */
938 481 mdecorde
939 481 mdecorde
   public Matrix getD () {
940 481 mdecorde
      Matrix X = new Matrix(n,n);
941 481 mdecorde
      double[][] D = X.getArray();
942 481 mdecorde
      for (int i = 0; i < n; i++) {
943 481 mdecorde
         for (int j = 0; j < n; j++) {
944 481 mdecorde
            D[i][j] = 0.0;
945 481 mdecorde
         }
946 481 mdecorde
         D[i][i] = d[i];
947 481 mdecorde
         if (e[i] > 0) {
948 481 mdecorde
            D[i][i+1] = e[i];
949 481 mdecorde
         } else if (e[i] < 0) {
950 481 mdecorde
            D[i][i-1] = e[i];
951 481 mdecorde
         }
952 481 mdecorde
      }
953 481 mdecorde
      return X;
954 481 mdecorde
   }
955 481 mdecorde
}