root / tmp / org.txm.analec.rcp / src matt / JamaPlus / LUDecomposition.java @ 1113
Historique | Voir | Annoter | Télécharger (8,29 ko)
1 |
package JamaPlus; |
---|---|
2 |
|
3 |
/** LU Decomposition.
|
4 |
<P>
|
5 |
For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
|
6 |
unit lower triangular matrix L, an n-by-n upper triangular matrix U,
|
7 |
and a permutation vector piv of length m so that A(piv,:) = L*U.
|
8 |
If m < n, then L is m-by-m and U is m-by-n.
|
9 |
<P>
|
10 |
The LU decompostion with pivoting always exists, even if the matrix is
|
11 |
singular, so the constructor will never fail. The primary use of the
|
12 |
LU decomposition is in the solution of square systems of simultaneous
|
13 |
linear equations. This will fail if isNonsingular() returns false.
|
14 |
*/
|
15 |
|
16 |
public class LUDecomposition implements java.io.Serializable { |
17 |
|
18 |
/* ------------------------
|
19 |
Class variables
|
20 |
* ------------------------ */
|
21 |
|
22 |
/** Array for internal storage of decomposition.
|
23 |
@serial internal array storage.
|
24 |
*/
|
25 |
private double[][] LU; |
26 |
|
27 |
/** Row and column dimensions, and pivot sign.
|
28 |
@serial column dimension.
|
29 |
@serial row dimension.
|
30 |
@serial pivot sign.
|
31 |
*/
|
32 |
private int m, n, pivsign; |
33 |
|
34 |
/** Internal storage of pivot vector.
|
35 |
@serial pivot vector.
|
36 |
*/
|
37 |
private int[] piv; |
38 |
|
39 |
/* ------------------------
|
40 |
Constructor
|
41 |
* ------------------------ */
|
42 |
|
43 |
/** LU Decomposition
|
44 |
@param A Rectangular matrix
|
45 |
@return Structure to access L, U and piv.
|
46 |
*/
|
47 |
|
48 |
public LUDecomposition (Matrix A) {
|
49 |
|
50 |
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
|
51 |
|
52 |
LU = A.getArrayCopy(); |
53 |
m = A.getRowDimension(); |
54 |
n = A.getColumnDimension(); |
55 |
piv = new int[m]; |
56 |
for (int i = 0; i < m; i++) { |
57 |
piv[i] = i; |
58 |
} |
59 |
pivsign = 1;
|
60 |
double[] LUrowi; |
61 |
double[] LUcolj = new double[m]; |
62 |
|
63 |
// Outer loop.
|
64 |
|
65 |
for (int j = 0; j < n; j++) { |
66 |
|
67 |
// Make a copy of the j-th column to localize references.
|
68 |
|
69 |
for (int i = 0; i < m; i++) { |
70 |
LUcolj[i] = LU[i][j]; |
71 |
} |
72 |
|
73 |
// Apply previous transformations.
|
74 |
|
75 |
for (int i = 0; i < m; i++) { |
76 |
LUrowi = LU[i]; |
77 |
|
78 |
// Most of the time is spent in the following dot product.
|
79 |
|
80 |
int kmax = Math.min(i,j); |
81 |
double s = 0.0; |
82 |
for (int k = 0; k < kmax; k++) { |
83 |
s += LUrowi[k]*LUcolj[k]; |
84 |
} |
85 |
|
86 |
LUrowi[j] = LUcolj[i] -= s; |
87 |
} |
88 |
|
89 |
// Find pivot and exchange if necessary.
|
90 |
|
91 |
int p = j;
|
92 |
for (int i = j+1; i < m; i++) { |
93 |
if (Math.abs(LUcolj[i]) > Math.abs(LUcolj[p])) { |
94 |
p = i; |
95 |
} |
96 |
} |
97 |
if (p != j) {
|
98 |
for (int k = 0; k < n; k++) { |
99 |
double t = LU[p][k]; LU[p][k] = LU[j][k]; LU[j][k] = t;
|
100 |
} |
101 |
int k = piv[p]; piv[p] = piv[j]; piv[j] = k;
|
102 |
pivsign = -pivsign; |
103 |
} |
104 |
|
105 |
// Compute multipliers.
|
106 |
|
107 |
if (j < m & LU[j][j] != 0.0) { |
108 |
for (int i = j+1; i < m; i++) { |
109 |
LU[i][j] /= LU[j][j]; |
110 |
} |
111 |
} |
112 |
} |
113 |
} |
114 |
|
115 |
/* ------------------------
|
116 |
Temporary, experimental code.
|
117 |
------------------------ *\
|
118 |
|
119 |
\** LU Decomposition, computed by Gaussian elimination.
|
120 |
<P>
|
121 |
This constructor computes L and U with the "daxpy"-based elimination
|
122 |
algorithm used in LINPACK and MATLAB. In Java, we suspect the dot-product,
|
123 |
Crout algorithm will be faster. We have temporarily included this
|
124 |
constructor until timing experiments confirm this suspicion.
|
125 |
<P>
|
126 |
@param A Rectangular matrix
|
127 |
@param linpackflag Use Gaussian elimination. Actual value ignored.
|
128 |
@return Structure to access L, U and piv.
|
129 |
*\
|
130 |
|
131 |
public LUDecomposition (Matrix A, int linpackflag) {
|
132 |
// Initialize.
|
133 |
LU = A.getArrayCopy();
|
134 |
m = A.getRowDimension();
|
135 |
n = A.getColumnDimension();
|
136 |
piv = new int[m];
|
137 |
for (int i = 0; i < m; i++) {
|
138 |
piv[i] = i;
|
139 |
}
|
140 |
pivsign = 1;
|
141 |
// Main loop.
|
142 |
for (int k = 0; k < n; k++) {
|
143 |
// Find pivot.
|
144 |
int p = k;
|
145 |
for (int i = k+1; i < m; i++) {
|
146 |
if (Math.abs(LU[i][k]) > Math.abs(LU[p][k])) {
|
147 |
p = i;
|
148 |
}
|
149 |
}
|
150 |
// Exchange if necessary.
|
151 |
if (p != k) {
|
152 |
for (int j = 0; j < n; j++) {
|
153 |
double t = LU[p][j]; LU[p][j] = LU[k][j]; LU[k][j] = t;
|
154 |
}
|
155 |
int t = piv[p]; piv[p] = piv[k]; piv[k] = t;
|
156 |
pivsign = -pivsign;
|
157 |
}
|
158 |
// Compute multipliers and eliminate k-th column.
|
159 |
if (LU[k][k] != 0.0) {
|
160 |
for (int i = k+1; i < m; i++) {
|
161 |
LU[i][k] /= LU[k][k];
|
162 |
for (int j = k+1; j < n; j++) {
|
163 |
LU[i][j] -= LU[i][k]*LU[k][j];
|
164 |
}
|
165 |
}
|
166 |
}
|
167 |
}
|
168 |
}
|
169 |
|
170 |
\* ------------------------
|
171 |
End of temporary code.
|
172 |
* ------------------------ */
|
173 |
|
174 |
/* ------------------------
|
175 |
Public Methods
|
176 |
* ------------------------ */
|
177 |
|
178 |
/** Is the matrix nonsingular?
|
179 |
@return true if U, and hence A, is nonsingular.
|
180 |
*/
|
181 |
|
182 |
public boolean isNonsingular () { |
183 |
for (int j = 0; j < n; j++) { |
184 |
if (LU[j][j] == 0) |
185 |
return false; |
186 |
} |
187 |
return true; |
188 |
} |
189 |
|
190 |
/** Return lower triangular factor
|
191 |
@return L
|
192 |
*/
|
193 |
|
194 |
public Matrix getL () {
|
195 |
Matrix X = new Matrix(m,n);
|
196 |
double[][] L = X.getArray(); |
197 |
for (int i = 0; i < m; i++) { |
198 |
for (int j = 0; j < n; j++) { |
199 |
if (i > j) {
|
200 |
L[i][j] = LU[i][j]; |
201 |
} else if (i == j) { |
202 |
L[i][j] = 1.0;
|
203 |
} else {
|
204 |
L[i][j] = 0.0;
|
205 |
} |
206 |
} |
207 |
} |
208 |
return X;
|
209 |
} |
210 |
|
211 |
/** Return upper triangular factor
|
212 |
@return U
|
213 |
*/
|
214 |
|
215 |
public Matrix getU () {
|
216 |
Matrix X = new Matrix(n,n);
|
217 |
double[][] U = X.getArray(); |
218 |
for (int i = 0; i < n; i++) { |
219 |
for (int j = 0; j < n; j++) { |
220 |
if (i <= j) {
|
221 |
U[i][j] = LU[i][j]; |
222 |
} else {
|
223 |
U[i][j] = 0.0;
|
224 |
} |
225 |
} |
226 |
} |
227 |
return X;
|
228 |
} |
229 |
|
230 |
/** Return pivot permutation vector
|
231 |
@return piv
|
232 |
*/
|
233 |
|
234 |
public int[] getPivot () { |
235 |
int[] p = new int[m]; |
236 |
for (int i = 0; i < m; i++) { |
237 |
p[i] = piv[i]; |
238 |
} |
239 |
return p;
|
240 |
} |
241 |
|
242 |
/** Return pivot permutation vector as a one-dimensional double array
|
243 |
@return (double) piv
|
244 |
*/
|
245 |
|
246 |
public double[] getDoublePivot () { |
247 |
double[] vals = new double[m]; |
248 |
for (int i = 0; i < m; i++) { |
249 |
vals[i] = (double) piv[i];
|
250 |
} |
251 |
return vals;
|
252 |
} |
253 |
|
254 |
/** Determinant
|
255 |
@return det(A)
|
256 |
@exception IllegalArgumentException Matrix must be square
|
257 |
*/
|
258 |
|
259 |
public double det () { |
260 |
if (m != n) {
|
261 |
throw new IllegalArgumentException("Matrix must be square."); |
262 |
} |
263 |
double d = (double) pivsign; |
264 |
for (int j = 0; j < n; j++) { |
265 |
d *= LU[j][j]; |
266 |
} |
267 |
return d;
|
268 |
} |
269 |
|
270 |
/** Solve A*X = B
|
271 |
@param B A Matrix with as many rows as A and any number of columns.
|
272 |
@return X so that L*U*X = B(piv,:)
|
273 |
@exception IllegalArgumentException Matrix row dimensions must agree.
|
274 |
@exception RuntimeException Matrix is singular.
|
275 |
*/
|
276 |
|
277 |
public Matrix solve (Matrix B) {
|
278 |
if (B.getRowDimension() != m) {
|
279 |
throw new IllegalArgumentException("Matrix row dimensions must agree."); |
280 |
} |
281 |
if (!this.isNonsingular()) { |
282 |
throw new RuntimeException("Matrix is singular."); |
283 |
} |
284 |
|
285 |
// Copy right hand side with pivoting
|
286 |
int nx = B.getColumnDimension();
|
287 |
Matrix Xmat = B.getMatrix(piv,0,nx-1); |
288 |
double[][] X = Xmat.getArray(); |
289 |
|
290 |
// Solve L*Y = B(piv,:)
|
291 |
for (int k = 0; k < n; k++) { |
292 |
for (int i = k+1; i < n; i++) { |
293 |
for (int j = 0; j < nx; j++) { |
294 |
X[i][j] -= X[k][j]*LU[i][k]; |
295 |
} |
296 |
} |
297 |
} |
298 |
// Solve U*X = Y;
|
299 |
for (int k = n-1; k >= 0; k--) { |
300 |
for (int j = 0; j < nx; j++) { |
301 |
X[k][j] /= LU[k][k]; |
302 |
} |
303 |
for (int i = 0; i < k; i++) { |
304 |
for (int j = 0; j < nx; j++) { |
305 |
X[i][j] -= X[k][j]*LU[i][k]; |
306 |
} |
307 |
} |
308 |
} |
309 |
return Xmat;
|
310 |
} |
311 |
} |