root / tmp / org.txm.analec.rcp / src / JamaPlus / QRDecomposition.java @ 1005
Historique | Voir | Annoter | Télécharger (5,92 ko)
| 1 |
package JamaPlus; |
|---|---|
| 2 |
import JamaPlus.util.*; |
| 3 |
|
| 4 |
/** QR Decomposition.
|
| 5 |
<P>
|
| 6 |
For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
|
| 7 |
orthogonal matrix Q and an n-by-n upper triangular matrix R so that
|
| 8 |
A = Q*R.
|
| 9 |
<P>
|
| 10 |
The QR decompostion always exists, even if the matrix does not have
|
| 11 |
full rank, so the constructor will never fail. The primary use of the
|
| 12 |
QR decomposition is in the least squares solution of nonsquare systems
|
| 13 |
of simultaneous linear equations. This will fail if isFullRank()
|
| 14 |
returns false.
|
| 15 |
*/
|
| 16 |
|
| 17 |
public class QRDecomposition implements java.io.Serializable { |
| 18 |
|
| 19 |
/* ------------------------
|
| 20 |
Class variables
|
| 21 |
* ------------------------ */
|
| 22 |
|
| 23 |
/** Array for internal storage of decomposition.
|
| 24 |
@serial internal array storage.
|
| 25 |
*/
|
| 26 |
private double[][] QR; |
| 27 |
|
| 28 |
/** Row and column dimensions.
|
| 29 |
@serial column dimension.
|
| 30 |
@serial row dimension.
|
| 31 |
*/
|
| 32 |
private int m, n; |
| 33 |
|
| 34 |
/** Array for internal storage of diagonal of R.
|
| 35 |
@serial diagonal of R.
|
| 36 |
*/
|
| 37 |
private double[] Rdiag; |
| 38 |
|
| 39 |
/* ------------------------
|
| 40 |
Constructor
|
| 41 |
* ------------------------ */
|
| 42 |
|
| 43 |
/** QR Decomposition, computed by Householder reflections.
|
| 44 |
@param A Rectangular matrix
|
| 45 |
@return Structure to access R and the Householder vectors and compute Q.
|
| 46 |
*/
|
| 47 |
|
| 48 |
public QRDecomposition (Matrix A) {
|
| 49 |
// Initialize.
|
| 50 |
QR = A.getArrayCopy(); |
| 51 |
m = A.getRowDimension(); |
| 52 |
n = A.getColumnDimension(); |
| 53 |
Rdiag = new double[n]; |
| 54 |
|
| 55 |
// Main loop.
|
| 56 |
for (int k = 0; k < n; k++) { |
| 57 |
// Compute 2-norm of k-th column without under/overflow.
|
| 58 |
double nrm = 0; |
| 59 |
for (int i = k; i < m; i++) { |
| 60 |
nrm = Math.hypot(nrm,QR[i][k]);
|
| 61 |
} |
| 62 |
|
| 63 |
if (nrm != 0.0) { |
| 64 |
// Form k-th Householder vector.
|
| 65 |
if (QR[k][k] < 0) { |
| 66 |
nrm = -nrm; |
| 67 |
} |
| 68 |
for (int i = k; i < m; i++) { |
| 69 |
QR[i][k] /= nrm; |
| 70 |
} |
| 71 |
QR[k][k] += 1.0;
|
| 72 |
|
| 73 |
// Apply transformation to remaining columns.
|
| 74 |
for (int j = k+1; j < n; j++) { |
| 75 |
double s = 0.0; |
| 76 |
for (int i = k; i < m; i++) { |
| 77 |
s += QR[i][k]*QR[i][j]; |
| 78 |
} |
| 79 |
s = -s/QR[k][k]; |
| 80 |
for (int i = k; i < m; i++) { |
| 81 |
QR[i][j] += s*QR[i][k]; |
| 82 |
} |
| 83 |
} |
| 84 |
} |
| 85 |
Rdiag[k] = -nrm; |
| 86 |
} |
| 87 |
} |
| 88 |
|
| 89 |
/* ------------------------
|
| 90 |
Public Methods
|
| 91 |
* ------------------------ */
|
| 92 |
|
| 93 |
/** Is the matrix full rank?
|
| 94 |
@return true if R, and hence A, has full rank.
|
| 95 |
*/
|
| 96 |
|
| 97 |
public boolean isFullRank () { |
| 98 |
for (int j = 0; j < n; j++) { |
| 99 |
if (Rdiag[j] == 0) |
| 100 |
return false; |
| 101 |
} |
| 102 |
return true; |
| 103 |
} |
| 104 |
|
| 105 |
/** Return the Householder vectors
|
| 106 |
@return Lower trapezoidal matrix whose columns define the reflections
|
| 107 |
*/
|
| 108 |
|
| 109 |
public Matrix getH () {
|
| 110 |
Matrix X = new Matrix(m,n);
|
| 111 |
double[][] H = X.getArray(); |
| 112 |
for (int i = 0; i < m; i++) { |
| 113 |
for (int j = 0; j < n; j++) { |
| 114 |
if (i >= j) {
|
| 115 |
H[i][j] = QR[i][j]; |
| 116 |
} else {
|
| 117 |
H[i][j] = 0.0;
|
| 118 |
} |
| 119 |
} |
| 120 |
} |
| 121 |
return X;
|
| 122 |
} |
| 123 |
|
| 124 |
/** Return the upper triangular factor
|
| 125 |
@return R
|
| 126 |
*/
|
| 127 |
|
| 128 |
public Matrix getR () {
|
| 129 |
Matrix X = new Matrix(n,n);
|
| 130 |
double[][] R = X.getArray(); |
| 131 |
for (int i = 0; i < n; i++) { |
| 132 |
for (int j = 0; j < n; j++) { |
| 133 |
if (i < j) {
|
| 134 |
R[i][j] = QR[i][j]; |
| 135 |
} else if (i == j) { |
| 136 |
R[i][j] = Rdiag[i]; |
| 137 |
} else {
|
| 138 |
R[i][j] = 0.0;
|
| 139 |
} |
| 140 |
} |
| 141 |
} |
| 142 |
return X;
|
| 143 |
} |
| 144 |
|
| 145 |
/** Generate and return the (economy-sized) orthogonal factor
|
| 146 |
@return Q
|
| 147 |
*/
|
| 148 |
|
| 149 |
public Matrix getQ () {
|
| 150 |
Matrix X = new Matrix(m,n);
|
| 151 |
double[][] Q = X.getArray(); |
| 152 |
for (int k = n-1; k >= 0; k--) { |
| 153 |
for (int i = 0; i < m; i++) { |
| 154 |
Q[i][k] = 0.0;
|
| 155 |
} |
| 156 |
Q[k][k] = 1.0;
|
| 157 |
for (int j = k; j < n; j++) { |
| 158 |
if (QR[k][k] != 0) { |
| 159 |
double s = 0.0; |
| 160 |
for (int i = k; i < m; i++) { |
| 161 |
s += QR[i][k]*Q[i][j]; |
| 162 |
} |
| 163 |
s = -s/QR[k][k]; |
| 164 |
for (int i = k; i < m; i++) { |
| 165 |
Q[i][j] += s*QR[i][k]; |
| 166 |
} |
| 167 |
} |
| 168 |
} |
| 169 |
} |
| 170 |
return X;
|
| 171 |
} |
| 172 |
|
| 173 |
/** Least squares solution of A*X = B
|
| 174 |
@param B A Matrix with as many rows as A and any number of columns.
|
| 175 |
@return X that minimizes the two norm of Q*R*X-B.
|
| 176 |
@exception IllegalArgumentException Matrix row dimensions must agree.
|
| 177 |
@exception RuntimeException Matrix is rank deficient.
|
| 178 |
*/
|
| 179 |
|
| 180 |
public Matrix solve (Matrix B) {
|
| 181 |
if (B.getRowDimension() != m) {
|
| 182 |
throw new IllegalArgumentException("Matrix row dimensions must agree."); |
| 183 |
} |
| 184 |
if (!this.isFullRank()) { |
| 185 |
throw new RuntimeException("Matrix is rank deficient."); |
| 186 |
} |
| 187 |
|
| 188 |
// Copy right hand side
|
| 189 |
int nx = B.getColumnDimension();
|
| 190 |
double[][] X = B.getArrayCopy(); |
| 191 |
|
| 192 |
// Compute Y = transpose(Q)*B
|
| 193 |
for (int k = 0; k < n; k++) { |
| 194 |
for (int j = 0; j < nx; j++) { |
| 195 |
double s = 0.0; |
| 196 |
for (int i = k; i < m; i++) { |
| 197 |
s += QR[i][k]*X[i][j]; |
| 198 |
} |
| 199 |
s = -s/QR[k][k]; |
| 200 |
for (int i = k; i < m; i++) { |
| 201 |
X[i][j] += s*QR[i][k]; |
| 202 |
} |
| 203 |
} |
| 204 |
} |
| 205 |
// Solve R*X = Y;
|
| 206 |
for (int k = n-1; k >= 0; k--) { |
| 207 |
for (int j = 0; j < nx; j++) { |
| 208 |
X[k][j] /= Rdiag[k]; |
| 209 |
} |
| 210 |
for (int i = 0; i < k; i++) { |
| 211 |
for (int j = 0; j < nx; j++) { |
| 212 |
X[i][j] -= X[k][j]*QR[i][k]; |
| 213 |
} |
| 214 |
} |
| 215 |
} |
| 216 |
return (new Matrix(X,n,nx).getMatrix(0,n-1,0,nx-1)); |
| 217 |
} |
| 218 |
} |