root / ase / visualize / primiplotter.py @ 7
Historique | Voir | Annoter | Télécharger (34,75 ko)
| 1 |
"""An experimental package for making plots during a simulation.
|
|---|---|
| 2 |
|
| 3 |
A PrimiPlotter can plot a list of atoms on one or more output devices.
|
| 4 |
"""
|
| 5 |
|
| 6 |
from numpy import * |
| 7 |
from ase.visualize.colortable import color_table |
| 8 |
import ase.data |
| 9 |
import sys, os, time, weakref |
| 10 |
|
| 11 |
class PrimiPlotterBase: |
| 12 |
"Base class for PrimiPlotter and Povrayplotter."
|
| 13 |
#def set_dimensions(self, dims):
|
| 14 |
# "Set the size of the canvas (a 2-tuple)."
|
| 15 |
# self.dims = dims
|
| 16 |
|
| 17 |
def set_rotation(self, rotation): |
| 18 |
"Set the rotation angles (in degrees)."
|
| 19 |
self.angles[:] = array(rotation) * (pi/180) |
| 20 |
|
| 21 |
def set_radii(self, radii): |
| 22 |
"""Set the atomic radii. Give an array or a single number."""
|
| 23 |
self.radius = radii
|
| 24 |
|
| 25 |
def set_colors(self, colors): |
| 26 |
"""Explicitly set the colors of the atoms."""
|
| 27 |
self.colors = colors
|
| 28 |
|
| 29 |
def set_color_function(self, colors): |
| 30 |
"""Set a color function, to be used to color the atoms."""
|
| 31 |
if callable(colors): |
| 32 |
self.colorfunction = colors
|
| 33 |
else:
|
| 34 |
raise TypeError, "The color function is not callable." |
| 35 |
|
| 36 |
def set_invisible(self, inv): |
| 37 |
"""Choose invisible atoms."""
|
| 38 |
self.invisible = inv
|
| 39 |
|
| 40 |
def set_invisibility_function(self, invfunc): |
| 41 |
"""Set an invisibility function."""
|
| 42 |
if callable(invfunc): |
| 43 |
self.invisibilityfunction = invfunc
|
| 44 |
else:
|
| 45 |
raise TypeError, "The invisibility function is not callable." |
| 46 |
|
| 47 |
def set_cut(self, xmin=None, xmax=None, ymin=None, ymax=None, |
| 48 |
zmin=None, zmax=None): |
| 49 |
self.cut = {"xmin":xmin, "xmax":xmax, "ymin":ymin, "ymax":ymax, |
| 50 |
"zmin":zmin, "zmax":zmax} |
| 51 |
|
| 52 |
def update(self, newatoms = None): |
| 53 |
"""Cause a plot (respecting the interval setting).
|
| 54 |
|
| 55 |
update causes a plot to be made. If the interval variable was
|
| 56 |
specified when the plotter was create, it will only produce a
|
| 57 |
plot with that interval. update takes an optional argument,
|
| 58 |
newatoms, which can be used to replace the list of atoms with
|
| 59 |
a new one.
|
| 60 |
"""
|
| 61 |
if newatoms is not None: |
| 62 |
self.atoms = newatoms
|
| 63 |
if self.skipnext <= 0: |
| 64 |
self.plot()
|
| 65 |
self.skipnext = self.interval |
| 66 |
self.skipnext -= 1 |
| 67 |
|
| 68 |
def set_log(self, log): |
| 69 |
"""Sets a file for logging.
|
| 70 |
|
| 71 |
log may be an open file or a filename.
|
| 72 |
"""
|
| 73 |
if hasattr(log, "write"): |
| 74 |
self.logfile = log
|
| 75 |
self.ownlogfile = False |
| 76 |
else:
|
| 77 |
self.logfile = open(log, "w") |
| 78 |
self.ownlogfile = True |
| 79 |
|
| 80 |
def log(self, message): |
| 81 |
"""logs a message to the file set by set_log."""
|
| 82 |
if self.logfile is not None: |
| 83 |
self.logfile.write(message+"\n") |
| 84 |
self.logfile.flush()
|
| 85 |
self._verb(message)
|
| 86 |
|
| 87 |
def _verb(self, txt): |
| 88 |
if self.verbose: |
| 89 |
sys.stderr.write(txt+"\n")
|
| 90 |
|
| 91 |
def _starttimer(self): |
| 92 |
self.starttime = time.time()
|
| 93 |
|
| 94 |
def _stoptimer(self): |
| 95 |
elapsedtime = time.time() - self.starttime
|
| 96 |
self.totaltime = self.totaltime + elapsedtime |
| 97 |
print "plotting time %s sec (total %s sec)" % (elapsedtime, |
| 98 |
self.totaltime)
|
| 99 |
|
| 100 |
def _getpositions(self): |
| 101 |
return self.atoms.get_positions() |
| 102 |
|
| 103 |
def _getradii(self): |
| 104 |
if self.radius is not None: |
| 105 |
if hasattr(self.radius, "shape"): |
| 106 |
return self.radius # User has specified an array |
| 107 |
else:
|
| 108 |
return self.radius * ones(len(self.atoms), float) |
| 109 |
# No radii specified. Try getting them from the atoms.
|
| 110 |
try:
|
| 111 |
return self.atoms.get_atomic_radii() |
| 112 |
except AttributeError: |
| 113 |
try:
|
| 114 |
z = self._getatomicnumbers()
|
| 115 |
except AttributeError: |
| 116 |
pass
|
| 117 |
else:
|
| 118 |
return ase.data.covalent_radii[z]
|
| 119 |
# No radius available. Defaulting to 1.0
|
| 120 |
return ones(len(self.atoms), float) |
| 121 |
|
| 122 |
def _getatomicnumbers(self): |
| 123 |
return self.atoms.get_atomic_numbers() |
| 124 |
|
| 125 |
def _getcolors(self): |
| 126 |
# Try any explicitly given colors
|
| 127 |
if self.colors is not None: |
| 128 |
if type(self.colors) == type({}): |
| 129 |
self.log("Explicit colors dictionary") |
| 130 |
return _colorsfromdict(self.colors, |
| 131 |
asarray(self.atoms.get_tags(),int)) |
| 132 |
else:
|
| 133 |
self.log("Explicit colors") |
| 134 |
return self.colors |
| 135 |
# Try the color function, if given
|
| 136 |
if self.colorfunction is not None: |
| 137 |
self.log("Calling color function.") |
| 138 |
return self.colorfunction(self.atoms) |
| 139 |
# Maybe the atoms know their own colors
|
| 140 |
try:
|
| 141 |
c = self.atoms.get_colors()
|
| 142 |
except AttributeError: |
| 143 |
c = None
|
| 144 |
if c is not None: |
| 145 |
if type(c) == type({}): |
| 146 |
self.log("Color dictionary from atoms.get_colors()") |
| 147 |
return _colorsfromdict(c, asarray(self.atoms.get_tags(),int)) |
| 148 |
else:
|
| 149 |
self.log("Colors from atoms.get_colors()") |
| 150 |
return c
|
| 151 |
# Default to white atoms
|
| 152 |
self.log("No colors: using white") |
| 153 |
return ones(len(self.atoms), float) |
| 154 |
|
| 155 |
def _getinvisible(self): |
| 156 |
if self.invisible is not None: |
| 157 |
inv = self.invisible
|
| 158 |
else:
|
| 159 |
inv = zeros(len(self.atoms)) |
| 160 |
if self.invisibilityfunction: |
| 161 |
inv = logical_or(inv, self.invisibilityfunction(self.atoms)) |
| 162 |
r = self._getpositions()
|
| 163 |
if len(r) > len(inv): |
| 164 |
# This will happen in parallel simulations due to ghost atoms.
|
| 165 |
# They are invisible. Hmm, this may cause trouble.
|
| 166 |
i2 = ones(len(r))
|
| 167 |
i2[:len(inv)] = inv
|
| 168 |
inv = i2 |
| 169 |
del i2
|
| 170 |
if self.cut["xmin"] is not None: |
| 171 |
inv = logical_or(inv, less(r[:,0], self.cut["xmin"])) |
| 172 |
if self.cut["xmax"] is not None: |
| 173 |
inv = logical_or(inv, greater(r[:,0], self.cut["xmax"])) |
| 174 |
if self.cut["ymin"] is not None: |
| 175 |
inv = logical_or(inv, less(r[:,1], self.cut["ymin"])) |
| 176 |
if self.cut["ymax"] is not None: |
| 177 |
inv = logical_or(inv, greater(r[:,1], self.cut["ymax"])) |
| 178 |
if self.cut["zmin"] is not None: |
| 179 |
inv = logical_or(inv, less(r[:,2], self.cut["zmin"])) |
| 180 |
if self.cut["zmax"] is not None: |
| 181 |
inv = logical_or(inv, greater(r[:,2], self.cut["zmax"])) |
| 182 |
return inv
|
| 183 |
|
| 184 |
def __del__(self): |
| 185 |
if self.ownlogfile: |
| 186 |
self.logfile.close()
|
| 187 |
|
| 188 |
class PrimiPlotter(PrimiPlotterBase): |
| 189 |
"""Primitive PostScript-based plots during a simulation.
|
| 190 |
|
| 191 |
The PrimiPlotter plots atoms during simulations, extracting the
|
| 192 |
relevant information from the list of atoms. It is created using
|
| 193 |
the list of atoms as an argument to the constructor. Then one or
|
| 194 |
more output devices must be attached using set_output(device). The
|
| 195 |
list of supported output devices is at the end.
|
| 196 |
|
| 197 |
The atoms are plotted as circles. The system is first rotated
|
| 198 |
using the angles specified by set_rotation([vx, vy, vz]). The
|
| 199 |
rotation is vx degrees around the x axis (positive from the y
|
| 200 |
toward the z axis), then vy degrees around the y axis (from x
|
| 201 |
toward z), then vz degrees around the z axis (from x toward y).
|
| 202 |
The rotation matrix is the same as the one used by RasMol.
|
| 203 |
|
| 204 |
Per default, the system is scaled so it fits within the canvas
|
| 205 |
(autoscale mode). Autoscale mode is enabled and disables using
|
| 206 |
autoscale("on") or autoscale("off"). A manual scale factor can be
|
| 207 |
set with set_scale(scale), this implies autoscale("off"). The
|
| 208 |
scale factor (from the last autoscale event or from set_scale) can
|
| 209 |
be obtained with get_scale(). Finally, an explicit autoscaling can
|
| 210 |
be triggered with autoscale("now"), this is mainly useful before
|
| 211 |
calling get_scale or before disabling further autoscaling.
|
| 212 |
Finally, a relative scaling factor can be set with
|
| 213 |
SetRelativeScaling(), it is multiplied to the usual scale factor
|
| 214 |
(from autoscale or from set_scale). This is probably only useful in
|
| 215 |
connection with autoscaling.
|
| 216 |
|
| 217 |
The radii of the atoms are obtained from the first of the following
|
| 218 |
methods which work:
|
| 219 |
|
| 220 |
1. If the radii are specified using PrimiPlotter.set_radii(r),
|
| 221 |
they are used. Must be an array, or a single number.
|
| 222 |
|
| 223 |
2. If the atoms has a get_atomic_radii() method, it is used. This is
|
| 224 |
unlikely.
|
| 225 |
|
| 226 |
3. If the atoms has a get_atomic_numbers() method, the
|
| 227 |
corresponding covalent radii are extracted from the
|
| 228 |
ASE.ChemicalElements module.
|
| 229 |
|
| 230 |
4. If all else fails, the radius is set to 1.0 Angstrom.
|
| 231 |
|
| 232 |
The atoms are colored using the first of the following methods
|
| 233 |
which work.
|
| 234 |
|
| 235 |
1. If colors are explicitly set using PrimiPlotter.set_colors(),
|
| 236 |
they are used.
|
| 237 |
|
| 238 |
2. If these colors are specified as a dictionary, the tags
|
| 239 |
(from atoms.get_tags()) are used as an index into the
|
| 240 |
dictionary to get the actual colors of the atoms.
|
| 241 |
|
| 242 |
3. If a color function has been set using
|
| 243 |
PrimiPlotter.set_color_function(), it is called with the atoms
|
| 244 |
as an argument, and is expected to return an array of colors.
|
| 245 |
|
| 246 |
4. If the atoms have a get_colors() method, it is used to get the
|
| 247 |
colors.
|
| 248 |
|
| 249 |
5. If these colors are specified as a dictionary, the tags
|
| 250 |
(from atoms.get_tags()) are used as an index into the
|
| 251 |
dictionary to get the actual colors of the atoms.
|
| 252 |
|
| 253 |
6. If all else fails, the atoms will be white.
|
| 254 |
|
| 255 |
The colors are specified as an array of colors, one color per
|
| 256 |
atom. Each color is either a real number from 0.0 to 1.0,
|
| 257 |
specifying a grayscale (0.0 = black, 1.0 = white), or an array of
|
| 258 |
three numbers from 0.0 to 1.0, specifying RGB values. The colors
|
| 259 |
of all atoms are thus a Numerical Python N-vector or a 3xN matrix.
|
| 260 |
|
| 261 |
In cases 1a and 3a above, the keys of the dictionary are integers,
|
| 262 |
and the values are either numbers (grayscales) or 3-vectors (RGB
|
| 263 |
values), or strings with X11 color names, which are then
|
| 264 |
translated to RGB values. Only in case 1a and 3a are strings
|
| 265 |
recognized as colors.
|
| 266 |
|
| 267 |
Some atoms may be invisible, and thus left out of the plot.
|
| 268 |
Invisible atoms are determined from the following algorithm.
|
| 269 |
Unlike the radius or the coloring, all points below are tried and
|
| 270 |
if an atom is invisible by any criterion, it is left out of the plot.
|
| 271 |
|
| 272 |
1. All atoms are visible.
|
| 273 |
|
| 274 |
2. If PrimiPlotter.set_invisible() has be used to specify invisible
|
| 275 |
atoms, any atoms for which the value is non-zero becomes invisible.
|
| 276 |
|
| 277 |
3. If an invisiblility function has been set with
|
| 278 |
PrimiPlotter.set_invisibility_function(), it is called with the
|
| 279 |
atoms as argument. It is expected to return an integer per
|
| 280 |
atom, any non-zero value makes that atom invisible.
|
| 281 |
|
| 282 |
4. If a cut has been specified using set_cut, any atom outside the
|
| 283 |
cut is made invisible.
|
| 284 |
|
| 285 |
Note that invisible atoms are still included in the algorithm for
|
| 286 |
positioning and scaling the plot.
|
| 287 |
|
| 288 |
|
| 289 |
The following output devices are implemented.
|
| 290 |
|
| 291 |
PostScriptFile(prefix): Create PS files names prefix0000.ps etc.
|
| 292 |
|
| 293 |
PnmFile(prefix): Similar, but makes PNM files.
|
| 294 |
|
| 295 |
GifFile(prefix): Similar, but makes GIF files.
|
| 296 |
|
| 297 |
JpegFile(prefix): Similar, but makes JPEG files.
|
| 298 |
|
| 299 |
X11Window(): Show the plot in an X11 window using ghostscript.
|
| 300 |
|
| 301 |
Output devices writing to files take an extra optional argument to
|
| 302 |
the constructor, compress, specifying if the output file should be
|
| 303 |
gzipped. This is not allowed for some (already compressed) file
|
| 304 |
formats.
|
| 305 |
|
| 306 |
Instead of a filename prefix, a filename containing a % can be
|
| 307 |
used. In that case the filename is expected to expand to a real
|
| 308 |
filename when used with the Python string formatting operator (%)
|
| 309 |
with the frame number as argument. Avoid generating spaces in the
|
| 310 |
file names: use e.g. %03d instead of %3d.
|
| 311 |
"""
|
| 312 |
def __init__(self, atoms, verbose=0, timing=0, interval=1, initframe=0): |
| 313 |
"""
|
| 314 |
|
| 315 |
Parameters to the constructor:
|
| 316 |
|
| 317 |
atoms: The atoms to be plottet.
|
| 318 |
|
| 319 |
verbose = 0: Write progress information to stderr.
|
| 320 |
|
| 321 |
timing = 0: Collect timing information.
|
| 322 |
|
| 323 |
interval = 1: If specified, a plot is only made every
|
| 324 |
interval'th time update() is called. Deprecated, normally you
|
| 325 |
should use the interval argument when attaching the plotter to
|
| 326 |
e.g. the dynamics.
|
| 327 |
|
| 328 |
initframe = 0: Initial frame number, i.e. the number of the
|
| 329 |
first plot.
|
| 330 |
|
| 331 |
"""
|
| 332 |
self.atoms = atoms
|
| 333 |
self.outputdevice = []
|
| 334 |
self.angles = zeros(3, float) |
| 335 |
self.dims = (512, 512) |
| 336 |
self.verbose = verbose
|
| 337 |
self.timing = timing
|
| 338 |
self.totaltime = 0.0 |
| 339 |
self.radius = None |
| 340 |
self.colors = None |
| 341 |
self.colorfunction = None |
| 342 |
self.n = initframe
|
| 343 |
self.interval = interval
|
| 344 |
self.skipnext = 0 # Number of calls to update before anything happens. |
| 345 |
self.a_scale = 1 |
| 346 |
self.relativescale = 1.0 |
| 347 |
self.invisible = None |
| 348 |
self.invisibilityfunction = None |
| 349 |
self.set_cut() # No cut |
| 350 |
self.isparallel = 0 |
| 351 |
self.logfile = None |
| 352 |
self.ownlogfile = False |
| 353 |
|
| 354 |
def set_output(self, device): |
| 355 |
self.outputdevice.append(device)
|
| 356 |
device.set_dimensions(self.dims)
|
| 357 |
device.set_owner(weakref.proxy(self))
|
| 358 |
|
| 359 |
def set_dimensions(self, dims): |
| 360 |
"Set the size of the canvas (a 2-tuple)."
|
| 361 |
if self.outputdevice: |
| 362 |
raise RuntimeError("Cannot set dimensions after an output device has been specified.") |
| 363 |
self.dims = dims
|
| 364 |
|
| 365 |
def autoscale(self, mode): |
| 366 |
if mode == "on": |
| 367 |
self.a_scale = 1 |
| 368 |
elif mode == "off": |
| 369 |
self.a_scale = 0 |
| 370 |
elif mode == "now": |
| 371 |
coords = self._rotate(self.atoms.get_positions()) |
| 372 |
radii = self._getradii()
|
| 373 |
self._autoscale(coords, radii)
|
| 374 |
else:
|
| 375 |
raise ValueError, "Unknown autoscale mode: ",+str(mode) |
| 376 |
|
| 377 |
def set_scale(self, scale): |
| 378 |
self.autoscale("off") |
| 379 |
self.scale = scale
|
| 380 |
|
| 381 |
def get_scale(self): |
| 382 |
return self.scale |
| 383 |
|
| 384 |
def set_relative_scale(self, rscale = 1.0): |
| 385 |
self.relativescale = rscale
|
| 386 |
|
| 387 |
def plot(self): |
| 388 |
"""Create a plot now. Does not respect the interval timer.
|
| 389 |
|
| 390 |
This method makes a plot unconditionally. It does not look at
|
| 391 |
the interval variable, nor is this plot taken into account in
|
| 392 |
the counting done by the update() method if an interval
|
| 393 |
variable was specified.
|
| 394 |
"""
|
| 395 |
if self.timing: |
| 396 |
self._starttimer()
|
| 397 |
self.log("PrimiPlotter: Starting plot at " |
| 398 |
+ time.strftime("%a, %d %b %Y %H:%M:%S"))
|
| 399 |
colors = self._getcolors()
|
| 400 |
invisible = self._getinvisible()
|
| 401 |
coords = self._rotate(self._getpositions()) |
| 402 |
radii = self._getradii()
|
| 403 |
if self.a_scale: |
| 404 |
self._autoscale(coords,radii)
|
| 405 |
scale = self.scale * self.relativescale |
| 406 |
coords = scale * coords |
| 407 |
center = self._getcenter(coords)
|
| 408 |
offset = array(self.dims + (0.0,))/2.0 - center |
| 409 |
coords = coords + offset |
| 410 |
self.log("Scale is %f and size is (%d, %d)" |
| 411 |
% (scale, self.dims[0], self.dims[1])) |
| 412 |
self.log("Physical size of plot is %f Angstrom times %f Angstrom" |
| 413 |
% (self.dims[0] / scale, self.dims[1] / scale)) |
| 414 |
|
| 415 |
self._verb("Sorting.") |
| 416 |
order = argsort(coords[:,2])
|
| 417 |
coords = coords[order] ### take(coords, order)
|
| 418 |
radii = radii[order] ### take(radii, order)
|
| 419 |
colors = colors[order] ### take(colors, order)
|
| 420 |
invisible = invisible[order] ### take(invisible, order)
|
| 421 |
if self.isparallel: |
| 422 |
id = arange(len(coords))[order] ### take(arange(len(coords)), order) |
| 423 |
else:
|
| 424 |
id = None
|
| 425 |
|
| 426 |
radii = radii * scale |
| 427 |
selector = self._computevisibility(coords, radii, invisible, id) |
| 428 |
coords = compress(selector, coords, 0)
|
| 429 |
radii = compress(selector, radii) |
| 430 |
colors = compress(selector, colors, 0)
|
| 431 |
self._makeoutput(scale, coords, radii, colors)
|
| 432 |
self.log("PrimiPlotter: Finished plotting at " |
| 433 |
+ time.strftime("%a, %d %b %Y %H:%M:%S"))
|
| 434 |
self.log("\n\n") |
| 435 |
if self.timing: |
| 436 |
self._stoptimer()
|
| 437 |
|
| 438 |
def _computevisibility(self, coords, rad, invisible, id, zoom = 1): |
| 439 |
xy = coords[:,:2]
|
| 440 |
typradius = sum(rad) / len(rad) |
| 441 |
if typradius < 4.0: |
| 442 |
self.log("Refining visibility check.") |
| 443 |
if zoom >= 16: |
| 444 |
raise RuntimeError, "Cannot check visibility - too deep recursion." |
| 445 |
return self._computevisibility(xy*2, rad*2, invisible, id, zoom*2) |
| 446 |
else:
|
| 447 |
self.log("Visibility(r_typ = %.1f pixels)" % (typradius,)) |
| 448 |
dims = array(self.dims) * zoom
|
| 449 |
maxr = int(ceil(max(rad))) + 2 |
| 450 |
canvas = zeros((dims[0] + 4*maxr, dims[1] + 4*maxr), int8) |
| 451 |
# Atoms are only invisible if they are within the canvas, or closer
|
| 452 |
# to its edge than their radius
|
| 453 |
visible = (greater(xy[:,0], -rad) * less(xy[:,0], dims[0]+rad) |
| 454 |
* greater(xy[:,1], -rad) * less(xy[:,1], dims[1]+rad) |
| 455 |
* logical_not(invisible)) |
| 456 |
# Atoms are visible if not hidden behind other atoms
|
| 457 |
xy = floor(xy + 2*maxr + 0.5).astype(int) |
| 458 |
masks = {}
|
| 459 |
for i in xrange(len(rad)-1, -1, -1): |
| 460 |
if (i % 100000) == 0 and i: |
| 461 |
self._verb(str(i)) |
| 462 |
if not visible[i]: |
| 463 |
continue
|
| 464 |
x, y = xy[i] |
| 465 |
r = rad[i] |
| 466 |
try:
|
| 467 |
mask, invmask, rn = masks[r] |
| 468 |
except KeyError: |
| 469 |
rn = int(ceil(r))
|
| 470 |
nmask = 2*rn+1 |
| 471 |
mask = (arange(nmask) - rn)**2
|
| 472 |
mask = less(mask[:,newaxis]+mask[newaxis,:], r*r).astype(int8) |
| 473 |
invmask = equal(mask, 0).astype(int8)
|
| 474 |
masks[r] = (mask, invmask, rn) |
| 475 |
window = logical_or(canvas[x-rn:x+rn+1, y-rn:y+rn+1], invmask) |
| 476 |
hidden = alltrue(window.flat) |
| 477 |
if hidden:
|
| 478 |
visible[i] = 0
|
| 479 |
else:
|
| 480 |
canvas[x-rn:x+rn+1, y-rn:y+rn+1] = logical_or(canvas[x-rn:x+rn+1, y-rn:y+rn+1], mask) |
| 481 |
self.log("%d visible, %d hidden out of %d" % |
| 482 |
(sum(visible), len(visible) - sum(visible), len(visible))) |
| 483 |
return visible
|
| 484 |
|
| 485 |
def _rotate(self, positions): |
| 486 |
self.log("Rotation angles: %f %f %f" % tuple(self.angles)) |
| 487 |
mat = dot(dot(_rot(self.angles[2], 2), |
| 488 |
_rot(self.angles[1], 1)), |
| 489 |
_rot(self.angles[0]+pi, 0)) |
| 490 |
return dot(positions, mat)
|
| 491 |
|
| 492 |
def _getcenter(self, coords): |
| 493 |
return array((max(coords[:,0]) + min(coords[:,0]), |
| 494 |
max(coords[:,1]) + min(coords[:,1]), 0.0)) / 2.0 |
| 495 |
|
| 496 |
def _autoscale(self, coords, radii): |
| 497 |
x = coords[:,0]
|
| 498 |
y = coords[:,1]
|
| 499 |
maxradius = max(radii)
|
| 500 |
deltax = max(x) - min(x) + 2*maxradius |
| 501 |
deltay = max(y) - min(y) + 2*maxradius |
| 502 |
scalex = self.dims[0] / deltax |
| 503 |
scaley = self.dims[1] / deltay |
| 504 |
self.scale = 0.95 * min(scalex, scaley) |
| 505 |
self.log("Autoscale: %f" % self.scale) |
| 506 |
|
| 507 |
def _makeoutput(self, scale, coords, radii, colors): |
| 508 |
for device in self.outputdevice: |
| 509 |
device.inform_about_scale(scale) |
| 510 |
device.plot(self.n, coords, radii, colors)
|
| 511 |
self.n = self.n + 1 |
| 512 |
|
| 513 |
|
| 514 |
class ParallelPrimiPlotter(PrimiPlotter): |
| 515 |
"""A version of PrimiPlotter for parallel ASAP simulations.
|
| 516 |
|
| 517 |
Used like PrimiPlotter, but only the output devices on the master
|
| 518 |
node are used. Most of the processing is distributed on the
|
| 519 |
nodes, but the actual output is only done on the master. See the
|
| 520 |
PrimiPlotter docstring for details.
|
| 521 |
"""
|
| 522 |
def __init__(self, *args, **kwargs): |
| 523 |
apply(PrimiPlotter.__init__, (self,)+args, kwargs) |
| 524 |
self.isparallel = 1 |
| 525 |
import Scientific.MPI |
| 526 |
self.MPI = Scientific.MPI
|
| 527 |
self.mpi = Scientific.MPI.world
|
| 528 |
if self.mpi is None: |
| 529 |
raise RuntimeError, "MPI is not available." |
| 530 |
self.master = self.mpi.rank == 0 |
| 531 |
self.mpitag = 42 # Reduce chance of collision with other modules. |
| 532 |
|
| 533 |
def set_output(self, device): |
| 534 |
if self.master: |
| 535 |
PrimiPlotter.set_output(self, device)
|
| 536 |
|
| 537 |
def set_log(self, log): |
| 538 |
if self.master: |
| 539 |
PrimiPlotter.set_log(self, log)
|
| 540 |
|
| 541 |
def _getpositions(self): |
| 542 |
realpos = self.atoms.get_positions()
|
| 543 |
ghostpos = self.atoms.GetGhostCartesianPositions()
|
| 544 |
self.numberofrealatoms = len(realpos) |
| 545 |
self.numberofghostatoms = len(ghostpos) |
| 546 |
return concatenate((realpos, ghostpos))
|
| 547 |
|
| 548 |
def _getatomicnumbers(self): |
| 549 |
realz = self.atoms.get_atomic_numbers()
|
| 550 |
ghostz = self.atoms.GetGhostAtomicNumbers()
|
| 551 |
return concatenate((realz, ghostz))
|
| 552 |
|
| 553 |
def _getradius(self): |
| 554 |
r = PrimiPlotter._getradius(self)
|
| 555 |
if len(r) == self.numberofrealatoms + self.numberofghostatoms: |
| 556 |
# Must have calculated radii from atomic numbers
|
| 557 |
return r
|
| 558 |
else:
|
| 559 |
assert len(r) == self.numberofrealatoms |
| 560 |
# Heuristic: use minimum r for the ghosts
|
| 561 |
ghostr = min(r) * ones(self.numberofghostatoms, float) |
| 562 |
return concatenate((r, ghostr))
|
| 563 |
|
| 564 |
def _getcenter(self, coords): |
| 565 |
# max(x) and min(x) only works for rank-1 arrays in Numeric version 17.
|
| 566 |
maximal = maximum.reduce(coords[:,0:2]) |
| 567 |
minimal = minimum.reduce(coords[:,0:2]) |
| 568 |
recvmax = zeros(2, maximal.typecode())
|
| 569 |
recvmin = zeros(2, minimal.typecode())
|
| 570 |
self.mpi.allreduce(maximal, recvmax, self.MPI.max) |
| 571 |
self.mpi.allreduce(minimal, recvmin, self.MPI.min) |
| 572 |
maxx, maxy = recvmax |
| 573 |
minx, miny = recvmin |
| 574 |
return array([maxx + minx, maxy + miny, 0.0]) / 2.0 |
| 575 |
|
| 576 |
def _computevisibility(self, xy, rad, invisible, id, zoom = 1): |
| 577 |
# Find visible atoms, allowing ghost atoms to hide real atoms.
|
| 578 |
v = PrimiPlotter._computevisibility(self, xy, rad, invisible, id, zoom) |
| 579 |
# Then remove ghost atoms
|
| 580 |
return v * less(id, self.numberofrealatoms) |
| 581 |
|
| 582 |
def _autoscale(self, coords, radii): |
| 583 |
self._verb("Autoscale") |
| 584 |
n = len(self.atoms) |
| 585 |
x = coords[:n,0]
|
| 586 |
y = coords[:n,1]
|
| 587 |
assert len(x) == len(self.atoms) |
| 588 |
maximal = array([max(x), max(y), max(radii[:n])]) |
| 589 |
minimal = array([min(x), min(y)]) |
| 590 |
recvmax = zeros(3, maximal.typecode())
|
| 591 |
recvmin = zeros(2, minimal.typecode())
|
| 592 |
self.mpi.allreduce(maximal, recvmax, self.MPI.max) |
| 593 |
self.mpi.allreduce(minimal, recvmin, self.MPI.min) |
| 594 |
maxx, maxy, maxradius = recvmax |
| 595 |
minx, miny = recvmin |
| 596 |
deltax = maxx - minx + 2*maxradius
|
| 597 |
deltay = maxy - miny + 2*maxradius
|
| 598 |
scalex = self.dims[0] / deltax |
| 599 |
scaley = self.dims[1] / deltay |
| 600 |
self.scale = 0.95 * min(scalex, scaley) |
| 601 |
self.log("Autoscale: %f" % self.scale) |
| 602 |
|
| 603 |
def _getcolors(self): |
| 604 |
col = PrimiPlotter._getcolors(self)
|
| 605 |
nghost = len(self.atoms.GetGhostCartesianPositions()) |
| 606 |
newcolshape = (nghost + col.shape[0],) + col.shape[1:] |
| 607 |
newcol = zeros(newcolshape, col.typecode()) |
| 608 |
newcol[:len(col)] = col
|
| 609 |
return newcol
|
| 610 |
|
| 611 |
def _makeoutput(self, scale, coords, radii, colors): |
| 612 |
if len(colors.shape) == 1: |
| 613 |
# Greyscales
|
| 614 |
ncol = 1
|
| 615 |
else:
|
| 616 |
ncol = colors.shape[1] # 1 or 3. |
| 617 |
assert ncol == 3 # RGB values |
| 618 |
# If one processor says RGB, all must convert
|
| 619 |
ncolthis = array([ncol]) |
| 620 |
ncolmax = zeros((1,), ncolthis.typecode())
|
| 621 |
self.mpi.allreduce(ncolthis, ncolmax, self.MPI.max) |
| 622 |
ncolmax = ncolmax[0]
|
| 623 |
if ncolmax > ncol:
|
| 624 |
assert ncol == 1 |
| 625 |
colors = colors[:,newaxis] + zeros(ncolmax)[newaxis,:] |
| 626 |
ncol = ncolmax |
| 627 |
assert colors.shape == (len(coords), ncol) |
| 628 |
# Now send data from slaves to master
|
| 629 |
data = zeros((len(coords)+1, 4+ncol), float) |
| 630 |
data[:-1,:3] = coords |
| 631 |
data[:-1,3] = radii |
| 632 |
data[-1,-1] = 4+ncol # Used to communicate shape |
| 633 |
if ncol == 1: |
| 634 |
data[:-1,4] = colors |
| 635 |
else:
|
| 636 |
data[:-1,4:] = colors |
| 637 |
if not self.master: |
| 638 |
self.mpi.send(data, 0, self.mpitag) |
| 639 |
else:
|
| 640 |
total = [data[:-1]] # Last row is the dimensions. |
| 641 |
n = len(coords)
|
| 642 |
colsmin = colsmax = 4+ncol
|
| 643 |
for proc in range(1, self.mpi.size): |
| 644 |
self._verb("Receiving from processor "+str(proc)) |
| 645 |
fdat = self.mpi.receive(float, proc, self.mpitag)[0] |
| 646 |
fdat.shape = (-1, fdat[-1]) |
| 647 |
fdat = fdat[:-1] # Last row is the dimensions. |
| 648 |
total.append(fdat) |
| 649 |
n = n + len(fdat)
|
| 650 |
if fdat.shape[1] < colsmin: |
| 651 |
colsmin = fdat.shape[1]
|
| 652 |
if fdat.shape[1] > colsmax: |
| 653 |
colsmax = fdat.shape[1]
|
| 654 |
self._verb("Merging data") |
| 655 |
# Some processors may have only greyscales whereas others
|
| 656 |
# may have RGB. That will cause difficulties.
|
| 657 |
trouble = colsmax != colsmin |
| 658 |
data = zeros((n, colsmax), float)
|
| 659 |
if trouble:
|
| 660 |
assert data.shape[1] == 7 |
| 661 |
else:
|
| 662 |
assert data.shape[1] == 7 or data.shape[1] == 5 |
| 663 |
i = 0
|
| 664 |
for d in total: |
| 665 |
if not trouble or d.shape[1] == 7: |
| 666 |
data[i:i+len(d)] = d
|
| 667 |
else:
|
| 668 |
assert d.shape[1] == 5 |
| 669 |
data[i:i+len(d), :5] = d |
| 670 |
data[i:i+len(d), 5] = d[4] |
| 671 |
data[i:i+len(d), 6] = d[4] |
| 672 |
i = i + len(d)
|
| 673 |
assert i == len(data) |
| 674 |
# Now all data is on the master
|
| 675 |
self._verb("Sorting merged data") |
| 676 |
order = argsort(data[:,2])
|
| 677 |
data = data[order] ### take(data, order)
|
| 678 |
coords = data[:,:3]
|
| 679 |
radii = data[:,3]
|
| 680 |
if data.shape[1] == 5: |
| 681 |
colors = data[:,4]
|
| 682 |
else:
|
| 683 |
colors = data[:,4:]
|
| 684 |
PrimiPlotter._makeoutput(self, scale, coords, radii, colors)
|
| 685 |
|
| 686 |
class _PostScriptDevice: |
| 687 |
"""PostScript based output device."""
|
| 688 |
offset = (0,0) # Will be changed by some classes |
| 689 |
def __init__(self): |
| 690 |
self.scale = 1 |
| 691 |
self.linewidth = 1 |
| 692 |
self.outline = 1 |
| 693 |
|
| 694 |
def set_dimensions(self, dims): |
| 695 |
self.dims = dims
|
| 696 |
|
| 697 |
def set_owner(self, owner): |
| 698 |
self.owner = owner
|
| 699 |
|
| 700 |
def inform_about_scale(self, scale): |
| 701 |
self.linewidth = 0.1 * scale |
| 702 |
|
| 703 |
def set_outline(self, value): |
| 704 |
self.outline = value
|
| 705 |
return self # Can chain these calls in set_output() |
| 706 |
|
| 707 |
def plot(self, *args, **kargs): |
| 708 |
self.Doplot(self.PSplot, *args, **kargs) |
| 709 |
|
| 710 |
def plotArray(self, *args, **kargs): |
| 711 |
self.Doplot(self.PSplotArray, *args, **kargs) |
| 712 |
|
| 713 |
def PSplot(self, file, n, coords, r, colors, noshowpage=0): |
| 714 |
xy = coords[:,:2]
|
| 715 |
assert(len(xy) == len(r) and len(xy) == len(colors)) |
| 716 |
if len(colors.shape) == 1: |
| 717 |
gray = 1
|
| 718 |
else:
|
| 719 |
gray = 0
|
| 720 |
assert(colors.shape[1] == 3) |
| 721 |
file.write("%!PS-Adobe-2.0\n") |
| 722 |
file.write("%%Creator: Primiplot\n") |
| 723 |
file.write("%%Pages: 1\n") |
| 724 |
file.write("%%%%BoundingBox: %d %d %d %d\n" % |
| 725 |
(self.offset + (self.offset[0] + self.dims[0], |
| 726 |
self.offset[1] + self.dims[1]))) |
| 727 |
file.write("%%EndComments\n") |
| 728 |
file.write("\n") |
| 729 |
file.write("% Enforce BoundingBox\n") |
| 730 |
file.write("%d %d moveto %d 0 rlineto 0 %d rlineto -%d 0 rlineto\n" % |
| 731 |
((self.offset + self.dims + (self.dims[0],)))) |
| 732 |
file.write("closepath clip newpath\n\n") |
| 733 |
file.write("%f %f scale\n" % (2*(1.0/self.scale,))) |
| 734 |
file.write("%d %d translate\n" % (self.scale * self.offset[0], |
| 735 |
self.scale * self.offset[1])) |
| 736 |
file.write("\n") |
| 737 |
if gray:
|
| 738 |
if self.outline: |
| 739 |
file.write("/circ { 0 360 arc gsave setgray fill grestore stroke } def\n") |
| 740 |
else:
|
| 741 |
file.write("/circ { 0 360 arc setgray fill } def\n") |
| 742 |
else:
|
| 743 |
if self.outline: |
| 744 |
file.write("/circ { 0 360 arc gsave setrgbcolor fill grestore stroke } def\n") |
| 745 |
else:
|
| 746 |
file.write("/circ { 0 360 arc setrgbcolor fill } def\n") |
| 747 |
file.write("%f setlinewidth 0.0 setgray\n" % |
| 748 |
(self.linewidth * self.scale,)) |
| 749 |
|
| 750 |
if gray:
|
| 751 |
data = zeros((len(xy), 4), float) |
| 752 |
data[:,0] = colors
|
| 753 |
data[:,1:3] = (self.scale * xy) |
| 754 |
data[:,3] = (self.scale * r) |
| 755 |
for point in data: |
| 756 |
file.write("%.3f %.2f %.2f %.2f circ\n" % tuple(point)) |
| 757 |
else:
|
| 758 |
data = zeros((len(xy), 6), float) |
| 759 |
data[:,0:3] = colors |
| 760 |
data[:,3:5] = (self.scale * xy) |
| 761 |
data[:,5] = (self.scale * r) |
| 762 |
for point in data: |
| 763 |
file.write("%.3f %.3f %.3f %.2f %.2f %.2f circ\n" % tuple(point)) |
| 764 |
if not noshowpage: |
| 765 |
file.write("showpage\n") |
| 766 |
|
| 767 |
def PSplotArray(self, file, n, data, noshowpage=0): |
| 768 |
assert(len(data.shape) == 3) |
| 769 |
assert(data.shape[0] == self.dims[1] and data.shape[1] == self.dims[0]) |
| 770 |
data = clip((256*data).astype(int), 0, 255) |
| 771 |
file.write("%!PS-Adobe-2.0\n") |
| 772 |
file.write("%%Creator: Fieldplotter\n") |
| 773 |
file.write("%%Pages: 1\n") |
| 774 |
file.write("%%%%BoundingBox: %d %d %d %d\n" % |
| 775 |
(self.offset + (self.offset[0] + self.dims[0], |
| 776 |
self.offset[1] + self.dims[1]))) |
| 777 |
file.write("%%EndComments\n") |
| 778 |
file.write("\n") |
| 779 |
file.write("%d %d translate\n" % self.offset) |
| 780 |
file.write("%f %f scale\n" % self.dims) |
| 781 |
file.write("\n") |
| 782 |
file.write("% String holding a single line\n") |
| 783 |
file.write("/pictline %d string def\n" %(data.shape[1]*data.shape[2],)) |
| 784 |
file.write("\n") |
| 785 |
file.write("%d %d 8\n" % self.dims) |
| 786 |
file.write("[%d 0 0 %d 0 0]\n" % self.dims) |
| 787 |
file.write("{currentfile pictline readhexstring pop}\n") |
| 788 |
file.write("false %d colorimage\n" % (data.shape[2],)) |
| 789 |
file.write("\n") |
| 790 |
s = ""
|
| 791 |
for d in data.flat: |
| 792 |
s += ("%02X" % d)
|
| 793 |
if len(s) >= 72: |
| 794 |
file.write(s+"\n") |
| 795 |
s = ""
|
| 796 |
file.write(s+"\n") |
| 797 |
file.write("\n") |
| 798 |
if not noshowpage: |
| 799 |
file.write("showpage\n") |
| 800 |
|
| 801 |
class _PostScriptToFile(_PostScriptDevice): |
| 802 |
"""Output device for PS files."""
|
| 803 |
compr_suffix = None
|
| 804 |
def __init__(self, prefix, compress = 0): |
| 805 |
self.compress = compress
|
| 806 |
if "'" in prefix: |
| 807 |
raise ValueError, "Filename may not contain a quote ('): "+prefix |
| 808 |
if "%" in prefix: |
| 809 |
# Assume the user knows what (s)he is doing
|
| 810 |
self.filenames = prefix
|
| 811 |
else:
|
| 812 |
self.filenames = prefix + "%04d" + self.suffix |
| 813 |
if compress:
|
| 814 |
if self.compr_suffix is None: |
| 815 |
raise RuntimeError, "Compression not supported." |
| 816 |
self.filenames = self.filenames + self.compr_suffix |
| 817 |
_PostScriptDevice.__init__(self)
|
| 818 |
|
| 819 |
class PostScriptFile(_PostScriptToFile): |
| 820 |
suffix = ".ps"
|
| 821 |
compr_suffix = ".gz"
|
| 822 |
offset = (50,50) |
| 823 |
# Inherits __init__
|
| 824 |
|
| 825 |
def Doplot(self, plotmethod, n, *args, **kargs): |
| 826 |
filename = self.filenames % (n,)
|
| 827 |
self.owner.log("Output to PostScript file "+filename) |
| 828 |
if self.compress: |
| 829 |
file = os.popen("gzip > '"+filename+"'", "w") |
| 830 |
else:
|
| 831 |
file = open(filename, "w") |
| 832 |
apply(plotmethod, (file, n)+args, kargs) |
| 833 |
file.close()
|
| 834 |
|
| 835 |
class _PS_via_PnmFile(_PostScriptToFile): |
| 836 |
gscmd = "gs -q -sDEVICE=pnmraw -sOutputFile=- -dDEVICEWIDTH=%d -dDEVICEHEIGHT=%d - "
|
| 837 |
# Inherits __init__
|
| 838 |
|
| 839 |
def Doplot(self, plotmethod, n, *args, **kargs): |
| 840 |
filename = self.filenames % (n,)
|
| 841 |
self.owner.log("Output to bitmapped file " + filename) |
| 842 |
cmd = self.gscmd + self.converter |
| 843 |
if self.compress: |
| 844 |
cmd = cmd + "| gzip "
|
| 845 |
|
| 846 |
cmd = (cmd+" > '%s'") % (self.dims[0], self.dims[1], filename) |
| 847 |
file = os.popen(cmd, "w")
|
| 848 |
apply(plotmethod, (file, n)+args, kargs) |
| 849 |
file.close()
|
| 850 |
|
| 851 |
class PnmFile(_PS_via_PnmFile): |
| 852 |
suffix = ".pnm"
|
| 853 |
compr_suffix = ".gz"
|
| 854 |
converter = ""
|
| 855 |
|
| 856 |
class GifFile(_PS_via_PnmFile): |
| 857 |
suffix = ".gif"
|
| 858 |
converter = "| ppmquant -floyd 256 2>/dev/null | ppmtogif 2>/dev/null"
|
| 859 |
|
| 860 |
class JpegFile(_PS_via_PnmFile): |
| 861 |
suffix = ".jpeg"
|
| 862 |
converter = "| ppmtojpeg --smooth=5"
|
| 863 |
|
| 864 |
class X11Window(_PostScriptDevice): |
| 865 |
"""Shows the plot in an X11 window."""
|
| 866 |
#Inherits __init__
|
| 867 |
gscmd = "gs -q -sDEVICE=x11 -dDEVICEWIDTH=%d -dDEVICEHEIGHT=%d -r72x72 -"
|
| 868 |
def Doplot(self, plotmethod, n, *args, **kargs): |
| 869 |
self.owner.log("Output to X11 window") |
| 870 |
try:
|
| 871 |
file = self.pipe
|
| 872 |
self.pipe.write("showpage\n") |
| 873 |
except AttributeError: |
| 874 |
filename = self.gscmd % tuple(self.dims) |
| 875 |
file = os.popen(filename, "w")
|
| 876 |
self.pipe = file |
| 877 |
kargs["noshowpage"] = 1 |
| 878 |
apply(plotmethod, (file, n)+args, kargs) |
| 879 |
file.write("flushpage\n") |
| 880 |
file.flush()
|
| 881 |
|
| 882 |
# Helper functions
|
| 883 |
def _rot(v, axis): |
| 884 |
ax1, ax2 = ((1, 2), (0, 2), (0, 1))[axis] |
| 885 |
c, s = cos(v), sin(v) |
| 886 |
m = zeros((3,3), float) |
| 887 |
m[axis,axis] = 1.0
|
| 888 |
m[ax1,ax1] = c |
| 889 |
m[ax2,ax2] = c |
| 890 |
m[ax1,ax2] = s |
| 891 |
m[ax2,ax1] = -s |
| 892 |
return m
|
| 893 |
|
| 894 |
def _colorsfromdict(dict, cls): |
| 895 |
"""Extract colors from dictionary using cls as key."""
|
| 896 |
assert(type(dict) == type({})) |
| 897 |
# Allow local modifications, to replace strings with rgb values.
|
| 898 |
dict = dict.copy()
|
| 899 |
isgray, isrgb = 0, 0 |
| 900 |
for k in dict.keys(): |
| 901 |
v = dict[k]
|
| 902 |
if type(v) == type("string"): |
| 903 |
v = color_table[v] |
| 904 |
dict[k] = v
|
| 905 |
try:
|
| 906 |
if len(v) == 3: |
| 907 |
isrgb = 1 # Assume it is an RGB value |
| 908 |
if not hasattr(v, "shape"): |
| 909 |
dict[k] = array(v) # Convert to array |
| 910 |
else:
|
| 911 |
raise RuntimeError, "Unrecognized color object "+repr(v) |
| 912 |
except TypeError: |
| 913 |
isgray = 1 # Assume it is a number |
| 914 |
if isgray and isrgb: |
| 915 |
# Convert all to RGB
|
| 916 |
for k in dict.keys(): |
| 917 |
v = dict[k]
|
| 918 |
if not hasattr(v, "shape"): |
| 919 |
dict[k] = v * ones(3, float) |
| 920 |
# Now the dictionary is ready
|
| 921 |
if isrgb:
|
| 922 |
colors = zeros((len(cls),3), float) |
| 923 |
else:
|
| 924 |
colors = zeros((len(cls),), float) |
| 925 |
for i in xrange(len(cls)): |
| 926 |
colors[i] = dict[cls[i]]
|
| 927 |
return colors
|
| 928 |
|