root / ase / transport / stm.py @ 7
Historique | Voir | Annoter | Télécharger (7,29 ko)
| 1 |
import numpy as np |
|---|---|
| 2 |
from ase.transport.tools import dagger |
| 3 |
from ase.transport.selfenergy import LeadSelfEnergy |
| 4 |
from ase.transport.greenfunction import GreenFunction |
| 5 |
import time |
| 6 |
from gpaw.mpi import world |
| 7 |
|
| 8 |
|
| 9 |
class STM: |
| 10 |
def __init__(self, h1, s1, h2, s2 ,h10, s10, h20, s20, eta1, eta2, w=0.5, pdos=[], logfile = None): |
| 11 |
"""XXX
|
| 12 |
|
| 13 |
1. Tip
|
| 14 |
2. Surface
|
| 15 |
|
| 16 |
h1: ndarray
|
| 17 |
Hamiltonian and overlap matrix for the isolated tip
|
| 18 |
calculation. Note, h1 should contain (at least) one
|
| 19 |
principal layer.
|
| 20 |
|
| 21 |
h2: ndarray
|
| 22 |
Same as h1 but for the surface.
|
| 23 |
|
| 24 |
h10: ndarray
|
| 25 |
periodic part of the tip. must include two and only
|
| 26 |
two principal layers.
|
| 27 |
|
| 28 |
h20: ndarray
|
| 29 |
same as h10, but for the surface
|
| 30 |
|
| 31 |
The s* are the corresponding overlap matrices. eta1, and eta
|
| 32 |
2 are (finite) infinitesimals. """
|
| 33 |
|
| 34 |
self.pl1 = len(h10) // 2 #principal layer size for the tip |
| 35 |
self.pl2 = len(h20) // 2 #principal layer size for the surface |
| 36 |
self.h1 = h1
|
| 37 |
self.s1 = s1
|
| 38 |
self.h2 = h2
|
| 39 |
self.s2 = s2
|
| 40 |
self.h10 = h10
|
| 41 |
self.s10 = s10
|
| 42 |
self.h20 = h20
|
| 43 |
self.s20 = s20
|
| 44 |
self.eta1 = eta1
|
| 45 |
self.eta2 = eta2
|
| 46 |
self.w = w #asymmetry of the applied bias (0.5=>symmetric) |
| 47 |
self.pdos = []
|
| 48 |
self.log = logfile
|
| 49 |
|
| 50 |
def initialize(self, energies, bias=0): |
| 51 |
"""
|
| 52 |
energies: list of energies
|
| 53 |
for which the transmission function should be evaluated.
|
| 54 |
bias.
|
| 55 |
Will precalculate the surface greenfunctions of the tip and
|
| 56 |
surface.
|
| 57 |
"""
|
| 58 |
self.bias = bias
|
| 59 |
self.energies = energies
|
| 60 |
nenergies = len(energies)
|
| 61 |
pl1, pl2 = self.pl1, self.pl2 |
| 62 |
nbf1, nbf2 = len(self.h1), len(self.h2) |
| 63 |
|
| 64 |
#periodic part of the tip
|
| 65 |
hs1_dii = self.h10[:pl1, :pl1], self.s10[:pl1, :pl1] |
| 66 |
hs1_dij = self.h10[:pl1, pl1:2*pl1], self.s10[:pl1, pl1:2*pl1] |
| 67 |
#coupling betwen per. and non. per part of the tip
|
| 68 |
h1_im = np.zeros((pl1, nbf1), complex)
|
| 69 |
s1_im = np.zeros((pl1, nbf1), complex)
|
| 70 |
h1_im[:pl1, :pl1], s1_im[:pl1, :pl1] = hs1_dij |
| 71 |
hs1_dim = [h1_im, s1_im] |
| 72 |
|
| 73 |
#periodic part the surface
|
| 74 |
hs2_dii = self.h20[:pl2, :pl2], self.s20[:pl2, :pl2] |
| 75 |
hs2_dij = self.h20[pl2:2*pl2, :pl2], self.s20[pl2:2*pl2, :pl2] |
| 76 |
#coupling betwen per. and non. per part of the surface
|
| 77 |
h2_im = np.zeros((pl2, nbf2), complex)
|
| 78 |
s2_im = np.zeros((pl2, nbf2), complex)
|
| 79 |
h2_im[-pl2:, -pl2:], s2_im[-pl2:, -pl2:] = hs2_dij |
| 80 |
hs2_dim = [h2_im, s2_im] |
| 81 |
|
| 82 |
#tip and surface greenfunction
|
| 83 |
self.selfenergy1 = LeadSelfEnergy(hs1_dii, hs1_dij, hs1_dim, self.eta1) |
| 84 |
self.selfenergy2 = LeadSelfEnergy(hs2_dii, hs2_dij, hs2_dim, self.eta2) |
| 85 |
self.greenfunction1 = GreenFunction(self.h1-self.bias*self.w*self.s1, self.s1, |
| 86 |
[self.selfenergy1], self.eta1) |
| 87 |
self.greenfunction2 = GreenFunction(self.h2-self.bias*(self.w-1)*self.s2, self.s2, |
| 88 |
[self.selfenergy2], self.eta2) |
| 89 |
|
| 90 |
#Shift the bands due to the bias.
|
| 91 |
bias_shift1 = -bias * self.w
|
| 92 |
bias_shift2 = -bias * (self.w - 1) |
| 93 |
self.selfenergy1.set_bias(bias_shift1)
|
| 94 |
self.selfenergy2.set_bias(bias_shift2)
|
| 95 |
|
| 96 |
#tip and surface greenfunction matrices.
|
| 97 |
nbf1_small = nbf1 #XXX Change this for efficiency in the future
|
| 98 |
nbf2_small = nbf2 #XXX -||-
|
| 99 |
coupling_list1 = range(nbf1_small)# XXX -||- |
| 100 |
coupling_list2 = range(nbf2_small)# XXX -||- |
| 101 |
self.gft1_emm = np.zeros((nenergies, nbf1_small, nbf1_small), complex) |
| 102 |
self.gft2_emm = np.zeros((nenergies, nbf2_small, nbf2_small), complex) |
| 103 |
|
| 104 |
for e, energy in enumerate(self.energies): |
| 105 |
if self.log != None: # and world.rank == 0: |
| 106 |
T = time.localtime() |
| 107 |
self.log.write(' %d:%02d:%02d, ' % (T[3], T[4], T[5]) + |
| 108 |
'%d, %d, %02f\n' % (world.rank, e, energy))
|
| 109 |
gft1_mm = self.greenfunction1.retarded(energy)[coupling_list1]
|
| 110 |
gft1_mm = np.take(gft1_mm, coupling_list1, axis=1)
|
| 111 |
|
| 112 |
gft2_mm = self.greenfunction2.retarded(energy)[coupling_list2]
|
| 113 |
gft2_mm = np.take(gft2_mm, coupling_list2, axis=1)
|
| 114 |
|
| 115 |
self.gft1_emm[e] = gft1_mm
|
| 116 |
self.gft2_emm[e] = gft2_mm
|
| 117 |
|
| 118 |
if self.log != None and world.rank == 0: |
| 119 |
self.log.flush()
|
| 120 |
|
| 121 |
def get_transmission(self, v_12, v_11_2=None, v_22_1=None): |
| 122 |
"""XXX
|
| 123 |
|
| 124 |
v_12:
|
| 125 |
coupling between tip and surface
|
| 126 |
v_11_2:
|
| 127 |
correction to "on-site" tip elements due to the
|
| 128 |
surface (eq.16). Is only included to first order.
|
| 129 |
v_22_1:
|
| 130 |
corretion to "on-site" surface elements due to he
|
| 131 |
tip (eq.17). Is only included to first order.
|
| 132 |
"""
|
| 133 |
|
| 134 |
dim0 = v_12.shape[0]
|
| 135 |
dim1 = v_12.shape[1]
|
| 136 |
|
| 137 |
nenergies = len(self.energies) |
| 138 |
T_e = np.empty(nenergies,float)
|
| 139 |
v_21 = dagger(v_12) |
| 140 |
for e, energy in enumerate(self.energies): |
| 141 |
gft1 = self.gft1_emm[e]
|
| 142 |
if v_11_2!=None: |
| 143 |
gf1 = np.dot(v_11_2, np.dot(gft1, v_11_2)) |
| 144 |
gf1 += gft1 #eq. 16
|
| 145 |
else:
|
| 146 |
gf1 = gft1 |
| 147 |
|
| 148 |
gft2 = self.gft2_emm[e]
|
| 149 |
if v_22_1!=None: |
| 150 |
gf2 = np.dot(v_22_1,np.dot(gft2, v_22_1)) |
| 151 |
gf2 += gft2 #eq. 17
|
| 152 |
else:
|
| 153 |
gf2 = gft2 |
| 154 |
|
| 155 |
a1 = (gf1 - dagger(gf1)) |
| 156 |
a2 = (gf2 - dagger(gf2)) |
| 157 |
self.v_12 = v_12
|
| 158 |
self.a2 = a2
|
| 159 |
self.v_21 = v_21
|
| 160 |
self.a1 = a1
|
| 161 |
v12_a2 = np.dot(v_12, a2[:dim1]) |
| 162 |
v21_a1 = np.dot(v_21, a1[-dim0:]) |
| 163 |
self.v12_a2 = v12_a2
|
| 164 |
self.v21_a1 = v21_a1
|
| 165 |
T = -np.trace(np.dot(v12_a2[:,:dim1], v21_a1[:,-dim0:])) #eq. 11
|
| 166 |
T_e[e] = T |
| 167 |
self.T_e = T_e
|
| 168 |
return T_e
|
| 169 |
|
| 170 |
|
| 171 |
def get_current(self, bias, v_12, v_11_2=None, v_22_1=None): |
| 172 |
"""Very simple function to calculate the current.
|
| 173 |
|
| 174 |
Asummes zero temperature.
|
| 175 |
|
| 176 |
bias: type? XXX
|
| 177 |
bias voltage (V)
|
| 178 |
|
| 179 |
v_12: XXX
|
| 180 |
coupling between tip and surface.
|
| 181 |
|
| 182 |
v_11_2:
|
| 183 |
correction to onsite elements of the tip
|
| 184 |
due to the potential of the surface.
|
| 185 |
v_22_1:
|
| 186 |
correction to onsite elements of the surface
|
| 187 |
due to the potential of the tip.
|
| 188 |
"""
|
| 189 |
energies = self.energies
|
| 190 |
T_e = self.get_transmission(v_12, v_11_2, v_22_1)
|
| 191 |
bias_window = -np.array([bias * self.w, bias * (self.w - 1)]) |
| 192 |
bias_window.sort() |
| 193 |
self.bias_window = bias_window
|
| 194 |
#print 'bias window', np.around(bias_window,3)
|
| 195 |
#print 'Shift of tip lead do to the bias:', self.selfenergy1.bias
|
| 196 |
#print 'Shift of surface lead do to the bias:', self.selfenergy2.bias
|
| 197 |
i1 = sum(energies < bias_window[0]) |
| 198 |
i2 = sum(energies < bias_window[1]) |
| 199 |
step = 1
|
| 200 |
if i2 < i1:
|
| 201 |
step = -1
|
| 202 |
|
| 203 |
return np.sign(bias)*np.trapz(x=energies[i1:i2:step], y=T_e[i1:i2:step])
|
| 204 |
|
| 205 |
|
| 206 |
|
| 207 |
|
| 208 |
|
| 209 |
|