root / ase / visualize / vtk / grid.py @ 7
Historique | Voir | Annoter | Télécharger (10,83 ko)
| 1 | 1 | tkerber | |
|---|---|---|---|
| 2 | 1 | tkerber | import numpy as np |
| 3 | 1 | tkerber | |
| 4 | 1 | tkerber | from vtk import vtkPointData, vtkDataArray, vtkUnstructuredGrid, vtkPoints, \ |
| 5 | 1 | tkerber | vtkIdList, vtkStructuredPoints |
| 6 | 1 | tkerber | from ase.visualize.vtk.cell import vtkUnitCellModule |
| 7 | 1 | tkerber | from ase.visualize.vtk.data import vtkDataArrayFromNumPyBuffer, \ |
| 8 | 1 | tkerber | vtkDoubleArrayFromNumPyArray, \
|
| 9 | 1 | tkerber | vtkDoubleArrayFromNumPyMultiArray
|
| 10 | 1 | tkerber | |
| 11 | 1 | tkerber | # -------------------------------------------------------------------
|
| 12 | 1 | tkerber | |
| 13 | 1 | tkerber | class vtkBaseGrid: |
| 14 | 1 | tkerber | def __init__(self, npoints, cell): |
| 15 | 1 | tkerber | self.npoints = npoints
|
| 16 | 1 | tkerber | |
| 17 | 1 | tkerber | # Make sure cell argument is correct type
|
| 18 | 1 | tkerber | assert isinstance(cell, vtkUnitCellModule) |
| 19 | 1 | tkerber | self.cell = cell
|
| 20 | 1 | tkerber | |
| 21 | 1 | tkerber | self.vtk_pointdata = None |
| 22 | 1 | tkerber | |
| 23 | 1 | tkerber | def set_point_data(self, vtk_pointdata): |
| 24 | 1 | tkerber | if self.vtk_pointdata is not None: |
| 25 | 1 | tkerber | raise RuntimeError('VTK point data already present.') |
| 26 | 1 | tkerber | |
| 27 | 1 | tkerber | assert isinstance(vtk_pointdata, vtkPointData) |
| 28 | 1 | tkerber | self.vtk_pointdata = vtk_pointdata
|
| 29 | 1 | tkerber | #self.vtk_pointdata.SetCopyScalars(False)
|
| 30 | 1 | tkerber | #self.vtk_pointdata.SetCopyVectors(False)
|
| 31 | 1 | tkerber | #self.vtk_pointdata.SetCopyNormals(False)
|
| 32 | 1 | tkerber | |
| 33 | 1 | tkerber | def get_point_data(self): |
| 34 | 1 | tkerber | if self.vtk_pointdata is None: |
| 35 | 1 | tkerber | raise RuntimeError('VTK point data missing.') |
| 36 | 1 | tkerber | |
| 37 | 1 | tkerber | return self.vtk_pointdata |
| 38 | 1 | tkerber | |
| 39 | 1 | tkerber | def get_number_of_points(self): |
| 40 | 1 | tkerber | return self.npoints |
| 41 | 1 | tkerber | |
| 42 | 1 | tkerber | def add_scalar_data_array(self, data, name=None, active=True): |
| 43 | 1 | tkerber | |
| 44 | 1 | tkerber | # Are we converting from NumPy buffer to VTK array?
|
| 45 | 1 | tkerber | if isinstance(data, vtkDataArray): |
| 46 | 1 | tkerber | vtk_sda = data |
| 47 | 1 | tkerber | elif isinstance(data, vtkDataArrayFromNumPyBuffer): |
| 48 | 1 | tkerber | vtk_sda = data.get_output() |
| 49 | 1 | tkerber | else:
|
| 50 | 1 | tkerber | raise ValueError('Data is not a valid scalar data array.') |
| 51 | 1 | tkerber | |
| 52 | 1 | tkerber | del data
|
| 53 | 1 | tkerber | |
| 54 | 1 | tkerber | assert vtk_sda.GetNumberOfComponents() == 1 |
| 55 | 1 | tkerber | assert vtk_sda.GetNumberOfTuples() == self.npoints |
| 56 | 1 | tkerber | |
| 57 | 1 | tkerber | if name is not None: |
| 58 | 1 | tkerber | vtk_sda.SetName(name) |
| 59 | 1 | tkerber | |
| 60 | 1 | tkerber | # Add VTK array to VTK point data
|
| 61 | 1 | tkerber | self.vtk_pointdata.AddArray(vtk_sda)
|
| 62 | 1 | tkerber | |
| 63 | 1 | tkerber | if active:
|
| 64 | 1 | tkerber | self.vtk_pointdata.SetActiveScalars(name)
|
| 65 | 1 | tkerber | |
| 66 | 1 | tkerber | return vtk_sda
|
| 67 | 1 | tkerber | |
| 68 | 1 | tkerber | def add_vector_data_array(self, data, name=None, active=True): |
| 69 | 1 | tkerber | |
| 70 | 1 | tkerber | # Are we converting from NumPy buffer to VTK array?
|
| 71 | 1 | tkerber | if isinstance(data, vtkDataArray): |
| 72 | 1 | tkerber | vtk_vda = data |
| 73 | 1 | tkerber | elif isinstance(data, vtkDataArrayFromNumPyBuffer): |
| 74 | 1 | tkerber | vtk_vda = data.get_output() |
| 75 | 1 | tkerber | else:
|
| 76 | 1 | tkerber | raise ValueError('Data is not a valid vector data array.') |
| 77 | 1 | tkerber | |
| 78 | 1 | tkerber | del data
|
| 79 | 1 | tkerber | |
| 80 | 1 | tkerber | assert vtk_vda.GetNumberOfComponents() == 3 |
| 81 | 1 | tkerber | assert vtk_vda.GetNumberOfTuples() == self.npoints |
| 82 | 1 | tkerber | |
| 83 | 1 | tkerber | if name is not None: |
| 84 | 1 | tkerber | vtk_vda.SetName(name) |
| 85 | 1 | tkerber | |
| 86 | 1 | tkerber | # Add VTK array to VTK point data
|
| 87 | 1 | tkerber | self.vtk_pointdata.AddArray(vtk_vda)
|
| 88 | 1 | tkerber | |
| 89 | 1 | tkerber | if active:
|
| 90 | 1 | tkerber | self.vtk_pointdata.SetActiveVectors(name)
|
| 91 | 1 | tkerber | |
| 92 | 1 | tkerber | return vtk_vda
|
| 93 | 1 | tkerber | |
| 94 | 1 | tkerber | # -------------------------------------------------------------------
|
| 95 | 1 | tkerber | |
| 96 | 1 | tkerber | class vtkAtomicPositions(vtkBaseGrid): |
| 97 | 1 | tkerber | """Provides an interface for adding ``Atoms``-centered data to VTK
|
| 98 | 1 | tkerber | modules. Atomic positions, e.g. obtained using atoms.get_positions(),
|
| 99 | 1 | tkerber | constitute an unstructured grid in VTK, to which scalar and vector
|
| 100 | 1 | tkerber | can be added as point data sets.
|
| 101 | 1 | tkerber |
|
| 102 | 1 | tkerber | Just like ``Atoms``, instances of ``vtkAtomicPositions`` can be divided
|
| 103 | 1 | tkerber | into subsets, which makes it easy to select atoms and add properties.
|
| 104 | 1 | tkerber |
|
| 105 | 1 | tkerber | Example:
|
| 106 | 1 | tkerber |
|
| 107 | 1 | tkerber | >>> cell = vtkUnitCellModule(atoms)
|
| 108 | 1 | tkerber | >>> apos = vtkAtomicPositions(atoms.get_positions(), cell)
|
| 109 | 1 | tkerber | >>> apos.add_scalar_property(atoms.get_charges(), 'charges')
|
| 110 | 1 | tkerber | >>> apos.add_vector_property(atoms.get_forces(), 'forces')
|
| 111 | 1 | tkerber |
|
| 112 | 1 | tkerber | """
|
| 113 | 1 | tkerber | def __init__(self, pos, cell): |
| 114 | 1 | tkerber | """Construct basic VTK-representation of a set of atomic positions.
|
| 115 | 1 | tkerber |
|
| 116 | 1 | tkerber | pos: NumPy array of dtype float and shape ``(n,3)``
|
| 117 | 1 | tkerber | Cartesian positions of the atoms.
|
| 118 | 1 | tkerber | cell: Instance of vtkUnitCellModule of subclass thereof
|
| 119 | 1 | tkerber | Holds information equivalent to that of atoms.get_cell().
|
| 120 | 1 | tkerber |
|
| 121 | 1 | tkerber | """
|
| 122 | 1 | tkerber | # Make sure position argument is a valid array
|
| 123 | 1 | tkerber | if not isinstance(pos, np.ndarray): |
| 124 | 1 | tkerber | pos = np.array(pos) |
| 125 | 1 | tkerber | |
| 126 | 1 | tkerber | assert pos.dtype == float and pos.shape[1:] == (3,) |
| 127 | 1 | tkerber | |
| 128 | 1 | tkerber | vtkBaseGrid.__init__(self, len(pos), cell) |
| 129 | 1 | tkerber | |
| 130 | 1 | tkerber | # Convert positions to VTK array
|
| 131 | 1 | tkerber | npy2da = vtkDoubleArrayFromNumPyArray(pos) |
| 132 | 1 | tkerber | vtk_pda = npy2da.get_output() |
| 133 | 1 | tkerber | del npy2da
|
| 134 | 1 | tkerber | |
| 135 | 1 | tkerber | # Transfer atomic positions to VTK points
|
| 136 | 1 | tkerber | self.vtk_pts = vtkPoints()
|
| 137 | 1 | tkerber | self.vtk_pts.SetData(vtk_pda)
|
| 138 | 1 | tkerber | |
| 139 | 1 | tkerber | # Create a VTK unstructured grid of these points
|
| 140 | 1 | tkerber | self.vtk_ugd = vtkUnstructuredGrid()
|
| 141 | 1 | tkerber | self.vtk_ugd.SetWholeBoundingBox(self.cell.get_bounding_box()) |
| 142 | 1 | tkerber | self.vtk_ugd.SetPoints(self.vtk_pts) |
| 143 | 1 | tkerber | |
| 144 | 1 | tkerber | # Extract the VTK point data set
|
| 145 | 1 | tkerber | self.set_point_data(self.vtk_ugd.GetPointData()) |
| 146 | 1 | tkerber | |
| 147 | 1 | tkerber | def get_points(self, subset=None): |
| 148 | 1 | tkerber | """Return (subset of) vtkPoints containing atomic positions.
|
| 149 | 1 | tkerber |
|
| 150 | 1 | tkerber | subset=None: list of int
|
| 151 | 1 | tkerber | A list of indices into the atomic positions; ignored if None.
|
| 152 | 1 | tkerber |
|
| 153 | 1 | tkerber | """
|
| 154 | 1 | tkerber | if subset is None: |
| 155 | 1 | tkerber | return self.vtk_pts |
| 156 | 1 | tkerber | |
| 157 | 1 | tkerber | # Create a list of indices from the subset
|
| 158 | 1 | tkerber | vtk_il = vtkIdList() |
| 159 | 1 | tkerber | for i in subset: |
| 160 | 1 | tkerber | vtk_il.InsertNextId(i) |
| 161 | 1 | tkerber | |
| 162 | 1 | tkerber | # Allocate VTK points for subset
|
| 163 | 1 | tkerber | vtk_subpts = vtkPoints() |
| 164 | 1 | tkerber | vtk_subpts.SetDataType(self.vtk_pts.GetDataType())
|
| 165 | 1 | tkerber | vtk_subpts.SetNumberOfPoints(vtk_il.GetNumberOfIds()) |
| 166 | 1 | tkerber | |
| 167 | 1 | tkerber | # Transfer subset of VTK points
|
| 168 | 1 | tkerber | self.vtk_pts.GetPoints(vtk_il, vtk_subpts)
|
| 169 | 1 | tkerber | |
| 170 | 1 | tkerber | return vtk_subpts
|
| 171 | 1 | tkerber | |
| 172 | 1 | tkerber | def get_unstructured_grid(self, subset=None): |
| 173 | 1 | tkerber | """Return (subset of) an unstructured grid of the atomic positions.
|
| 174 | 1 | tkerber |
|
| 175 | 1 | tkerber | subset=None: list of int
|
| 176 | 1 | tkerber | A list of indices into the atomic positions; ignored if None.
|
| 177 | 1 | tkerber |
|
| 178 | 1 | tkerber | """
|
| 179 | 1 | tkerber | if subset is None: |
| 180 | 1 | tkerber | return self.vtk_ugd |
| 181 | 1 | tkerber | |
| 182 | 1 | tkerber | # Get subset of VTK points
|
| 183 | 1 | tkerber | vtk_subpts = self.get_points(subset)
|
| 184 | 1 | tkerber | |
| 185 | 1 | tkerber | # Create a VTK unstructured grid of these points
|
| 186 | 1 | tkerber | vtk_subugd = vtkUnstructuredGrid() |
| 187 | 1 | tkerber | vtk_subugd.SetWholeBoundingBox(self.cell.get_bounding_box())
|
| 188 | 1 | tkerber | vtk_subugd.SetPoints(vtk_subpts) |
| 189 | 1 | tkerber | |
| 190 | 1 | tkerber | return vtk_subugd
|
| 191 | 1 | tkerber | |
| 192 | 1 | tkerber | def add_scalar_property(self, data, name=None, active=True): |
| 193 | 1 | tkerber | """Add VTK-representation of scalar data at the atomic positions.
|
| 194 | 1 | tkerber |
|
| 195 | 1 | tkerber | data: NumPy array of dtype float and shape ``(n,)``
|
| 196 | 1 | tkerber | Scalar values corresponding to the atomic positions.
|
| 197 | 1 | tkerber | name=None: str
|
| 198 | 1 | tkerber | Unique identifier for the scalar data.
|
| 199 | 1 | tkerber | active=True: bool
|
| 200 | 1 | tkerber | Flag indicating whether to use as active scalar data.
|
| 201 | 1 | tkerber |
|
| 202 | 1 | tkerber | """
|
| 203 | 1 | tkerber | # Make sure data argument is a valid array
|
| 204 | 1 | tkerber | if not isinstance(data, np.ndarray): |
| 205 | 1 | tkerber | data = np.array(data) |
| 206 | 1 | tkerber | |
| 207 | 1 | tkerber | assert data.dtype == float and data.shape == (self.npoints,) |
| 208 | 1 | tkerber | |
| 209 | 1 | tkerber | # Convert scalar properties to VTK array
|
| 210 | 1 | tkerber | npa2da = vtkDoubleArrayFromNumPyArray(data) |
| 211 | 1 | tkerber | return vtkBaseGrid.add_scalar_data_array(self, npa2da, name, active) |
| 212 | 1 | tkerber | |
| 213 | 1 | tkerber | def add_vector_property(self, data, name=None, active=True): |
| 214 | 1 | tkerber | """Add VTK-representation of vector data at the atomic positions.
|
| 215 | 1 | tkerber |
|
| 216 | 1 | tkerber | data: NumPy array of dtype float and shape ``(n,3)``
|
| 217 | 1 | tkerber | Vector components corresponding to the atomic positions.
|
| 218 | 1 | tkerber | name=None: str
|
| 219 | 1 | tkerber | Unique identifier for the vector data.
|
| 220 | 1 | tkerber | active=True: bool
|
| 221 | 1 | tkerber | Flag indicating whether to use as active vector data.
|
| 222 | 1 | tkerber |
|
| 223 | 1 | tkerber | """
|
| 224 | 1 | tkerber | # Make sure data argument is a valid array
|
| 225 | 1 | tkerber | if not isinstance(data, np.ndarray): |
| 226 | 1 | tkerber | data = np.array(data) |
| 227 | 1 | tkerber | |
| 228 | 1 | tkerber | assert data.dtype == float and data.shape == (self.npoints,3,) |
| 229 | 1 | tkerber | |
| 230 | 1 | tkerber | # Convert vector properties to VTK array
|
| 231 | 1 | tkerber | npa2da = vtkDoubleArrayFromNumPyArray(data) |
| 232 | 1 | tkerber | return vtkBaseGrid.add_vector_data_array(self, npa2da, name, active) |
| 233 | 1 | tkerber | |
| 234 | 1 | tkerber | # -------------------------------------------------------------------
|
| 235 | 1 | tkerber | |
| 236 | 1 | tkerber | class vtkVolumeGrid(vtkBaseGrid): |
| 237 | 1 | tkerber | def __init__(self, elements, cell, origin=None): |
| 238 | 1 | tkerber | |
| 239 | 1 | tkerber | # Make sure element argument is a valid array
|
| 240 | 1 | tkerber | if not isinstance(elements, np.ndarray): |
| 241 | 1 | tkerber | elements = np.array(elements) |
| 242 | 1 | tkerber | |
| 243 | 1 | tkerber | assert elements.dtype == int and elements.shape == (3,) |
| 244 | 1 | tkerber | self.elements = elements
|
| 245 | 1 | tkerber | |
| 246 | 1 | tkerber | vtkBaseGrid.__init__(self, np.prod(self.elements), cell) |
| 247 | 1 | tkerber | |
| 248 | 1 | tkerber | # Create a VTK grid of structured points
|
| 249 | 1 | tkerber | self.vtk_spts = vtkStructuredPoints()
|
| 250 | 1 | tkerber | self.vtk_spts.SetWholeBoundingBox(self.cell.get_bounding_box()) |
| 251 | 1 | tkerber | self.vtk_spts.SetDimensions(self.elements) |
| 252 | 1 | tkerber | self.vtk_spts.SetSpacing(self.get_grid_spacing()) |
| 253 | 1 | tkerber | |
| 254 | 1 | tkerber | if origin is not None: |
| 255 | 1 | tkerber | self.vtk_spts.SetOrigin(origin)
|
| 256 | 1 | tkerber | |
| 257 | 1 | tkerber | # Extract the VTK point data set
|
| 258 | 1 | tkerber | self.set_point_data(self.vtk_spts.GetPointData()) |
| 259 | 1 | tkerber | |
| 260 | 1 | tkerber | def get_grid_spacing(self): |
| 261 | 1 | tkerber | # Periodic boundary conditions leave out one boundary along an axis
|
| 262 | 1 | tkerber | # Zero/fixed boundary conditions leave out both boundaries of an axis
|
| 263 | 1 | tkerber | return self.cell.get_size()/(self.elements+1.0-self.cell.get_pbc()) |
| 264 | 1 | tkerber | |
| 265 | 1 | tkerber | def get_relaxation_factor(self): |
| 266 | 1 | tkerber | # The relaxation factor is a floating point value between zero and one.
|
| 267 | 1 | tkerber | # It expresses the need for smoothening (relaxation) e.g. of isosurfaces
|
| 268 | 1 | tkerber | # due to coarse grid spacings. Larger grid spacing -> larger relaxation.
|
| 269 | 1 | tkerber | x = self.get_grid_spacing().mean()/self.cell.get_characteristic_length() |
| 270 | 1 | tkerber | |
| 271 | 1 | tkerber | # The relaxation function f(x) satisfies the following requirements
|
| 272 | 1 | tkerber | # f(x) -> 0 for x -> 0+ and f(x) -> b for x -> inf
|
| 273 | 1 | tkerber | # f'(x) -> a for x -> 0+ and f'(x) -> 0 for x -> inf
|
| 274 | 1 | tkerber | |
| 275 | 1 | tkerber | # Furthermore, it is a rescaling of arctan, hence we know
|
| 276 | 1 | tkerber | # f(x) = 2 b arctan(a pi x / 2 b) / pi
|
| 277 | 1 | tkerber | |
| 278 | 1 | tkerber | # Our reference point is x = r for which medium relaxion is needed
|
| 279 | 1 | tkerber | # f(r) = b/2 <=> r = 2 b / a pi <=> a = 2 b / r pi
|
| 280 | 1 | tkerber | r = 0.025 # corresponding to 0.2 Ang grid spacing in 8 Ang cell |
| 281 | 1 | tkerber | b = 0.5
|
| 282 | 1 | tkerber | f = 2*b*np.arctan(x/r)/np.pi
|
| 283 | 1 | tkerber | |
| 284 | 1 | tkerber | if f > 0.1: |
| 285 | 1 | tkerber | return f.round(1) |
| 286 | 1 | tkerber | else:
|
| 287 | 1 | tkerber | return None |
| 288 | 1 | tkerber | |
| 289 | 1 | tkerber | def get_structured_points(self): |
| 290 | 1 | tkerber | return self.vtk_spts |
| 291 | 1 | tkerber | |
| 292 | 1 | tkerber | def add_scalar_field(self, data, name=None, active=True): |
| 293 | 1 | tkerber | |
| 294 | 1 | tkerber | # Make sure data argument is a valid array
|
| 295 | 1 | tkerber | if not isinstance(data, np.ndarray): |
| 296 | 1 | tkerber | data = np.array(data) |
| 297 | 1 | tkerber | |
| 298 | 1 | tkerber | assert data.dtype == float and data.shape == tuple(self.elements) |
| 299 | 1 | tkerber | |
| 300 | 1 | tkerber | # Convert scalar field to VTK array
|
| 301 | 1 | tkerber | npa2da = vtkDoubleArrayFromNumPyMultiArray(data[...,np.newaxis]) |
| 302 | 1 | tkerber | return vtkBaseGrid.add_scalar_data_array(self, npa2da, name, active) |
| 303 | 1 | tkerber | |
| 304 | 1 | tkerber | def add_vector_field(self, data, name=None, active=True): |
| 305 | 1 | tkerber | |
| 306 | 1 | tkerber | # Make sure data argument is a valid array
|
| 307 | 1 | tkerber | if not isinstance(data, np.ndarray): |
| 308 | 1 | tkerber | data = np.array(data) |
| 309 | 1 | tkerber | |
| 310 | 1 | tkerber | assert data.dtype == float and data.shape == tuple(self.elements)+(3,) |
| 311 | 1 | tkerber | |
| 312 | 1 | tkerber | # Convert vector field to VTK array
|
| 313 | 1 | tkerber | npa2da = vtkDoubleArrayFromNumPyMultiArray(data) |
| 314 | 1 | tkerber | return vtkBaseGrid.add_vector_data_array(self, npa2da, name, active) |