root / ase / utils / linesearch.py @ 7
Historique | Voir | Annoter | Télécharger (13,96 ko)
| 1 | 1 | tkerber | import numpy as np |
|---|---|---|---|
| 2 | 1 | tkerber | import __builtin__ |
| 3 | 1 | tkerber | pymin = __builtin__.min |
| 4 | 1 | tkerber | pymax = __builtin__.max |
| 5 | 1 | tkerber | |
| 6 | 1 | tkerber | class LineSearch: |
| 7 | 1 | tkerber | def __init__(self, xtol=1e-14): |
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | self.xtol = xtol
|
| 10 | 1 | tkerber | self.task = 'START' |
| 11 | 1 | tkerber | self.isave = np.zeros((2,), np.intc) |
| 12 | 1 | tkerber | self.dsave = np.zeros((13,), float) |
| 13 | 1 | tkerber | self.fc = 0 |
| 14 | 1 | tkerber | self.gc = 0 |
| 15 | 1 | tkerber | self.case = 0 |
| 16 | 1 | tkerber | self.old_stp = 0 |
| 17 | 1 | tkerber | |
| 18 | 1 | tkerber | def _line_search(self, func, myfprime, xk, pk, gfk, old_fval, old_old_fval, |
| 19 | 1 | tkerber | maxstep=.2, c1=.23, c2=0.46, xtrapl=1.1, xtrapu=4., |
| 20 | 1 | tkerber | stpmax=50., stpmin=1e-8, args=()): |
| 21 | 1 | tkerber | self.stpmin = stpmin
|
| 22 | 1 | tkerber | self.pk = pk
|
| 23 | 1 | tkerber | p_size = np.sqrt((pk **2).sum())
|
| 24 | 1 | tkerber | self.stpmax = stpmax
|
| 25 | 1 | tkerber | self.xtrapl = xtrapl
|
| 26 | 1 | tkerber | self.xtrapu = xtrapu
|
| 27 | 1 | tkerber | self.maxstep = maxstep
|
| 28 | 1 | tkerber | phi0 = old_fval |
| 29 | 1 | tkerber | derphi0 = np.dot(gfk,pk) |
| 30 | 1 | tkerber | self.dim = len(pk) |
| 31 | 1 | tkerber | self.gms = np.sqrt(self.dim) * maxstep |
| 32 | 1 | tkerber | #alpha1 = pymin(maxstep,1.01*2*(phi0-old_old_fval)/derphi0)
|
| 33 | 1 | tkerber | alpha1 = 1.
|
| 34 | 1 | tkerber | self.no_update = False |
| 35 | 1 | tkerber | |
| 36 | 1 | tkerber | if isinstance(myfprime,type(())): |
| 37 | 1 | tkerber | eps = myfprime[1]
|
| 38 | 1 | tkerber | fprime = myfprime[0]
|
| 39 | 1 | tkerber | newargs = (f,eps) + args |
| 40 | 1 | tkerber | gradient = False
|
| 41 | 1 | tkerber | else:
|
| 42 | 1 | tkerber | fprime = myfprime |
| 43 | 1 | tkerber | newargs = args |
| 44 | 1 | tkerber | gradient = True
|
| 45 | 1 | tkerber | |
| 46 | 1 | tkerber | fval = old_fval |
| 47 | 1 | tkerber | gval = gfk |
| 48 | 1 | tkerber | self.steps=[]
|
| 49 | 1 | tkerber | |
| 50 | 1 | tkerber | while 1: |
| 51 | 1 | tkerber | stp = self.step(alpha1, phi0, derphi0, c1, c2,
|
| 52 | 1 | tkerber | self.xtol,
|
| 53 | 1 | tkerber | self.isave, self.dsave) |
| 54 | 1 | tkerber | |
| 55 | 1 | tkerber | if self.task[:2] == 'FG': |
| 56 | 1 | tkerber | alpha1 = stp |
| 57 | 1 | tkerber | fval = func(xk + stp * pk, *args) |
| 58 | 1 | tkerber | self.fc += 1 |
| 59 | 1 | tkerber | gval = fprime(xk + stp * pk, *newargs) |
| 60 | 1 | tkerber | if gradient: self.gc += 1 |
| 61 | 1 | tkerber | else: self.fc += len(xk) + 1 |
| 62 | 1 | tkerber | phi0 = fval |
| 63 | 1 | tkerber | derphi0 = np.dot(gval,pk) |
| 64 | 1 | tkerber | self.old_stp = alpha1
|
| 65 | 1 | tkerber | if self.no_update == True: |
| 66 | 1 | tkerber | break
|
| 67 | 1 | tkerber | else:
|
| 68 | 1 | tkerber | break
|
| 69 | 1 | tkerber | |
| 70 | 1 | tkerber | if self.task[:5] == 'ERROR' or self.task[1:4] == 'WARN': |
| 71 | 1 | tkerber | stp = None # failed |
| 72 | 1 | tkerber | return stp, fval, old_fval, self.no_update |
| 73 | 1 | tkerber | |
| 74 | 1 | tkerber | def step(self, stp, f, g, c1, c2, xtol, isave, dsave): |
| 75 | 1 | tkerber | if self.task[:5] == 'START': |
| 76 | 1 | tkerber | # Check the input arguments for errors.
|
| 77 | 1 | tkerber | if stp < self.stpmin: |
| 78 | 1 | tkerber | self.task = 'ERROR: STP .LT. minstep' |
| 79 | 1 | tkerber | if stp > self.stpmax: |
| 80 | 1 | tkerber | self.task = 'ERROR: STP .GT. maxstep' |
| 81 | 1 | tkerber | if g >= 0: |
| 82 | 1 | tkerber | self.task = 'ERROR: INITIAL G >= 0' |
| 83 | 1 | tkerber | if c1 < 0: |
| 84 | 1 | tkerber | self.task = 'ERROR: c1 .LT. 0' |
| 85 | 1 | tkerber | if c2 < 0: |
| 86 | 1 | tkerber | self.task = 'ERROR: c2 .LT. 0' |
| 87 | 1 | tkerber | if xtol < 0: |
| 88 | 1 | tkerber | self.task = 'ERROR: XTOL .LT. 0' |
| 89 | 1 | tkerber | if self.stpmin < 0: |
| 90 | 1 | tkerber | self.task = 'ERROR: minstep .LT. 0' |
| 91 | 1 | tkerber | if self.stpmax < self.stpmin: |
| 92 | 1 | tkerber | self.task = 'ERROR: maxstep .LT. minstep' |
| 93 | 1 | tkerber | if self.task[:5] == 'ERROR': |
| 94 | 1 | tkerber | return stp
|
| 95 | 1 | tkerber | |
| 96 | 1 | tkerber | # Initialize local variables.
|
| 97 | 1 | tkerber | self.bracket = False |
| 98 | 1 | tkerber | stage = 1
|
| 99 | 1 | tkerber | finit = f |
| 100 | 1 | tkerber | ginit = g |
| 101 | 1 | tkerber | gtest = c1 * ginit |
| 102 | 1 | tkerber | width = self.stpmax - self.stpmin |
| 103 | 1 | tkerber | width1 = width / .5
|
| 104 | 1 | tkerber | # The variables stx, fx, gx contain the values of the step,
|
| 105 | 1 | tkerber | # function, and derivative at the best step.
|
| 106 | 1 | tkerber | # The variables sty, fy, gy contain the values of the step,
|
| 107 | 1 | tkerber | # function, and derivative at sty.
|
| 108 | 1 | tkerber | # The variables stp, f, g contain the values of the step,
|
| 109 | 1 | tkerber | # function, and derivative at stp.
|
| 110 | 1 | tkerber | stx = 0
|
| 111 | 1 | tkerber | fx = finit |
| 112 | 1 | tkerber | gx = ginit |
| 113 | 1 | tkerber | sty = 0
|
| 114 | 1 | tkerber | fy = finit |
| 115 | 1 | tkerber | gy = ginit |
| 116 | 1 | tkerber | stmin = 0
|
| 117 | 1 | tkerber | stmax = stp + self.xtrapu * stp
|
| 118 | 1 | tkerber | self.task = 'FG' |
| 119 | 1 | tkerber | self.save((stage, ginit, gtest, gx,
|
| 120 | 1 | tkerber | gy, finit, fx, fy, stx, sty, |
| 121 | 1 | tkerber | stmin, stmax, width, width1)) |
| 122 | 1 | tkerber | stp = self.determine_step(stp)
|
| 123 | 1 | tkerber | #return stp, f, g
|
| 124 | 1 | tkerber | return stp
|
| 125 | 1 | tkerber | else:
|
| 126 | 1 | tkerber | if self.isave[0] == 1: |
| 127 | 1 | tkerber | self.bracket = True |
| 128 | 1 | tkerber | else:
|
| 129 | 1 | tkerber | self.bracket = False |
| 130 | 1 | tkerber | stage = self.isave[1] |
| 131 | 1 | tkerber | (ginit, gtest, gx, gy, finit, fx, fy, stx, sty, stmin, stmax, \ |
| 132 | 1 | tkerber | width, width1) =self.dsave
|
| 133 | 1 | tkerber | |
| 134 | 1 | tkerber | # If psi(stp) <= 0 and f'(stp) >= 0 for some step, then the
|
| 135 | 1 | tkerber | # algorithm enters the second stage.
|
| 136 | 1 | tkerber | ftest = finit + stp * gtest |
| 137 | 1 | tkerber | if stage == 1 and f < ftest and g >= 0.: |
| 138 | 1 | tkerber | stage = 2
|
| 139 | 1 | tkerber | |
| 140 | 1 | tkerber | # Test for warnings.
|
| 141 | 1 | tkerber | if self.bracket and (stp <= stmin or stp >= stmax): |
| 142 | 1 | tkerber | self.task = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS' |
| 143 | 1 | tkerber | if self.bracket and stmax - stmin <= self.xtol * stmax: |
| 144 | 1 | tkerber | self.task = 'WARNING: XTOL TEST SATISFIED' |
| 145 | 1 | tkerber | if stp == self.stpmax and f <= ftest and g <= gtest: |
| 146 | 1 | tkerber | self.task = 'WARNING: STP = maxstep' |
| 147 | 1 | tkerber | if stp == self.stpmin and (f > ftest or g >= gtest): |
| 148 | 1 | tkerber | self.task = 'WARNING: STP = minstep' |
| 149 | 1 | tkerber | |
| 150 | 1 | tkerber | # Test for convergence.
|
| 151 | 1 | tkerber | if f <= ftest and abs(g) <= c2 * (- ginit): |
| 152 | 1 | tkerber | self.task = 'CONVERGENCE' |
| 153 | 1 | tkerber | |
| 154 | 1 | tkerber | # Test for termination.
|
| 155 | 1 | tkerber | if self.task[:4] == 'WARN' or self.task[:4] == 'CONV': |
| 156 | 1 | tkerber | self.save((stage, ginit, gtest, gx,
|
| 157 | 1 | tkerber | gy, finit, fx, fy, stx, sty, |
| 158 | 1 | tkerber | stmin, stmax, width, width1)) |
| 159 | 1 | tkerber | #return stp, f, g
|
| 160 | 1 | tkerber | return stp
|
| 161 | 1 | tkerber | |
| 162 | 1 | tkerber | # A modified function is used to predict the step during the
|
| 163 | 1 | tkerber | # first stage if a lower function value has been obtained but
|
| 164 | 1 | tkerber | # the decrease is not sufficient.
|
| 165 | 1 | tkerber | #if stage == 1 and f <= fx and f > ftest:
|
| 166 | 1 | tkerber | # # Define the modified function and derivative values.
|
| 167 | 1 | tkerber | # fm =f - stp * gtest
|
| 168 | 1 | tkerber | # fxm = fx - stx * gtest
|
| 169 | 1 | tkerber | # fym = fy - sty * gtest
|
| 170 | 1 | tkerber | # gm = g - gtest
|
| 171 | 1 | tkerber | # gxm = gx - gtest
|
| 172 | 1 | tkerber | # gym = gy - gtest
|
| 173 | 1 | tkerber | |
| 174 | 1 | tkerber | # Call step to update stx, sty, and to compute the new step.
|
| 175 | 1 | tkerber | # stx, sty, stp, gxm, fxm, gym, fym = self.update (stx, fxm, gxm, sty,
|
| 176 | 1 | tkerber | # fym, gym, stp, fm, gm,
|
| 177 | 1 | tkerber | # stmin, stmax)
|
| 178 | 1 | tkerber | |
| 179 | 1 | tkerber | # # Reset the function and derivative values for f.
|
| 180 | 1 | tkerber | |
| 181 | 1 | tkerber | # fx = fxm + stx * gtest
|
| 182 | 1 | tkerber | # fy = fym + sty * gtest
|
| 183 | 1 | tkerber | # gx = gxm + gtest
|
| 184 | 1 | tkerber | # gy = gym + gtest
|
| 185 | 1 | tkerber | |
| 186 | 1 | tkerber | #else:
|
| 187 | 1 | tkerber | # Call step to update stx, sty, and to compute the new step.
|
| 188 | 1 | tkerber | |
| 189 | 1 | tkerber | stx, sty, stp, gx, fx, gy, fy= self.update(stx, fx, gx, sty,
|
| 190 | 1 | tkerber | fy, gy, stp, f, g, |
| 191 | 1 | tkerber | stmin, stmax) |
| 192 | 1 | tkerber | |
| 193 | 1 | tkerber | |
| 194 | 1 | tkerber | # Decide if a bisection step is needed.
|
| 195 | 1 | tkerber | |
| 196 | 1 | tkerber | if self.bracket: |
| 197 | 1 | tkerber | if abs(sty-stx) >= .66 * width1: |
| 198 | 1 | tkerber | stp = stx + .5 * (sty - stx)
|
| 199 | 1 | tkerber | width1 = width |
| 200 | 1 | tkerber | width = abs(sty - stx)
|
| 201 | 1 | tkerber | |
| 202 | 1 | tkerber | # Set the minimum and maximum steps allowed for stp.
|
| 203 | 1 | tkerber | |
| 204 | 1 | tkerber | if self.bracket: |
| 205 | 1 | tkerber | stmin = min(stx, sty)
|
| 206 | 1 | tkerber | stmax = max(stx, sty)
|
| 207 | 1 | tkerber | else:
|
| 208 | 1 | tkerber | stmin = stp + self.xtrapl * (stp - stx)
|
| 209 | 1 | tkerber | stmax = stp + self.xtrapu * (stp - stx)
|
| 210 | 1 | tkerber | |
| 211 | 1 | tkerber | # Force the step to be within the bounds maxstep and minstep.
|
| 212 | 1 | tkerber | |
| 213 | 1 | tkerber | stp = max(stp, self.stpmin) |
| 214 | 1 | tkerber | stp = min(stp, self.stpmax) |
| 215 | 1 | tkerber | |
| 216 | 1 | tkerber | if (stx == stp and stp == self.stpmax and stmin > self.stpmax): |
| 217 | 1 | tkerber | self.no_update = True |
| 218 | 1 | tkerber | # If further progress is not possible, let stp be the best
|
| 219 | 1 | tkerber | # point obtained during the search.
|
| 220 | 1 | tkerber | |
| 221 | 1 | tkerber | if (self.bracket and stp < stmin or stp >= stmax) \ |
| 222 | 1 | tkerber | or (self.bracket and stmax - stmin < self.xtol * stmax): |
| 223 | 1 | tkerber | stp = stx |
| 224 | 1 | tkerber | |
| 225 | 1 | tkerber | # Obtain another function and derivative.
|
| 226 | 1 | tkerber | |
| 227 | 1 | tkerber | self.task = 'FG' |
| 228 | 1 | tkerber | self.save((stage, ginit, gtest, gx,
|
| 229 | 1 | tkerber | gy, finit, fx, fy, stx, sty, |
| 230 | 1 | tkerber | stmin, stmax, width, width1)) |
| 231 | 1 | tkerber | return stp
|
| 232 | 1 | tkerber | |
| 233 | 1 | tkerber | def update(self, stx, fx, gx, sty, fy, gy, stp, fp, gp, |
| 234 | 1 | tkerber | stpmin, stpmax): |
| 235 | 1 | tkerber | sign = gp * (gx / abs(gx))
|
| 236 | 1 | tkerber | |
| 237 | 1 | tkerber | # First case: A higher function value. The minimum is bracketed.
|
| 238 | 1 | tkerber | # If the cubic step is closer to stx than the quadratic step, the
|
| 239 | 1 | tkerber | # cubic step is taken, otherwise the average of the cubic and
|
| 240 | 1 | tkerber | # quadratic steps is taken.
|
| 241 | 1 | tkerber | if fp > fx: #case1 |
| 242 | 1 | tkerber | self.case = 1 |
| 243 | 1 | tkerber | theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
| 244 | 1 | tkerber | s = max(abs(theta), abs(gx), abs(gp)) |
| 245 | 1 | tkerber | gamma = s * np.sqrt((theta / s) ** 2. - (gx / s) * (gp / s))
|
| 246 | 1 | tkerber | if stp < stx:
|
| 247 | 1 | tkerber | gamma = -gamma |
| 248 | 1 | tkerber | p = (gamma - gx) + theta |
| 249 | 1 | tkerber | q = ((gamma - gx) + gamma) + gp |
| 250 | 1 | tkerber | r = p / q |
| 251 | 1 | tkerber | stpc = stx + r * (stp - stx) |
| 252 | 1 | tkerber | stpq = stx + ((gx / ((fx - fp) / (stp-stx) + gx)) / 2.) \
|
| 253 | 1 | tkerber | * (stp - stx) |
| 254 | 1 | tkerber | if (abs(stpc - stx) < abs(stpq - stx)): |
| 255 | 1 | tkerber | stpf = stpc |
| 256 | 1 | tkerber | else:
|
| 257 | 1 | tkerber | stpf = stpc + (stpq - stpc) / 2.
|
| 258 | 1 | tkerber | |
| 259 | 1 | tkerber | self.bracket = True |
| 260 | 1 | tkerber | |
| 261 | 1 | tkerber | # Second case: A lower function value and derivatives of opposite
|
| 262 | 1 | tkerber | # sign. The minimum is bracketed. If the cubic step is farther from
|
| 263 | 1 | tkerber | # stp than the secant step, the cubic step is taken, otherwise the
|
| 264 | 1 | tkerber | # secant step is taken.
|
| 265 | 1 | tkerber | |
| 266 | 1 | tkerber | elif sign < 0: #case2 |
| 267 | 1 | tkerber | self.case = 2 |
| 268 | 1 | tkerber | theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
| 269 | 1 | tkerber | s = max(abs(theta), abs(gx), abs(gp)) |
| 270 | 1 | tkerber | gamma = s * np.sqrt((theta / s) ** 2 - (gx / s) * (gp / s))
|
| 271 | 1 | tkerber | if stp > stx:
|
| 272 | 1 | tkerber | gamma = -gamma |
| 273 | 1 | tkerber | p = (gamma - gp) + theta |
| 274 | 1 | tkerber | q = ((gamma - gp) + gamma) + gx |
| 275 | 1 | tkerber | r = p / q |
| 276 | 1 | tkerber | stpc = stp + r * (stx - stp) |
| 277 | 1 | tkerber | stpq = stp + (gp / (gp - gx)) * (stx - stp) |
| 278 | 1 | tkerber | if (abs(stpc - stp) > abs(stpq - stp)): |
| 279 | 1 | tkerber | stpf = stpc |
| 280 | 1 | tkerber | else:
|
| 281 | 1 | tkerber | stpf = stpq |
| 282 | 1 | tkerber | self.bracket = True |
| 283 | 1 | tkerber | |
| 284 | 1 | tkerber | # Third case: A lower function value, derivatives of the same sign,
|
| 285 | 1 | tkerber | # and the magnitude of the derivative decreases.
|
| 286 | 1 | tkerber | |
| 287 | 1 | tkerber | elif abs(gp) < abs(gx): #case3 |
| 288 | 1 | tkerber | self.case = 3 |
| 289 | 1 | tkerber | # The cubic step is computed only if the cubic tends to infinity
|
| 290 | 1 | tkerber | # in the direction of the step or if the minimum of the cubic
|
| 291 | 1 | tkerber | # is beyond stp. Otherwise the cubic step is defined to be the
|
| 292 | 1 | tkerber | # secant step.
|
| 293 | 1 | tkerber | |
| 294 | 1 | tkerber | theta = 3. * (fx - fp) / (stp - stx) + gx + gp
|
| 295 | 1 | tkerber | s = max(abs(theta), abs(gx), abs(gp)) |
| 296 | 1 | tkerber | |
| 297 | 1 | tkerber | # The case gamma = 0 only arises if the cubic does not tend
|
| 298 | 1 | tkerber | # to infinity in the direction of the step.
|
| 299 | 1 | tkerber | |
| 300 | 1 | tkerber | gamma = s * np.sqrt(max(0.,(theta / s) ** 2-(gx / s) * (gp / s))) |
| 301 | 1 | tkerber | if stp > stx:
|
| 302 | 1 | tkerber | gamma = -gamma |
| 303 | 1 | tkerber | p = (gamma - gp) + theta |
| 304 | 1 | tkerber | q = (gamma + (gx - gp)) + gamma |
| 305 | 1 | tkerber | r = p / q |
| 306 | 1 | tkerber | if r < 0. and gamma != 0: |
| 307 | 1 | tkerber | stpc = stp + r * (stx - stp) |
| 308 | 1 | tkerber | elif stp > stx:
|
| 309 | 1 | tkerber | stpc = stpmax |
| 310 | 1 | tkerber | else:
|
| 311 | 1 | tkerber | stpc = stpmin |
| 312 | 1 | tkerber | stpq = stp + (gp / (gp - gx)) * (stx - stp) |
| 313 | 1 | tkerber | |
| 314 | 1 | tkerber | if self.bracket: |
| 315 | 1 | tkerber | |
| 316 | 1 | tkerber | # A minimizer has been bracketed. If the cubic step is
|
| 317 | 1 | tkerber | # closer to stp than the secant step, the cubic step is
|
| 318 | 1 | tkerber | # taken, otherwise the secant step is taken.
|
| 319 | 1 | tkerber | |
| 320 | 1 | tkerber | if abs(stpc - stp) < abs(stpq - stp): |
| 321 | 1 | tkerber | stpf = stpc |
| 322 | 1 | tkerber | else:
|
| 323 | 1 | tkerber | stpf = stpq |
| 324 | 1 | tkerber | if stp > stx:
|
| 325 | 1 | tkerber | stpf = min(stp + .66 * (sty - stp), stpf) |
| 326 | 1 | tkerber | else:
|
| 327 | 1 | tkerber | stpf = max(stp + .66 * (sty - stp), stpf) |
| 328 | 1 | tkerber | else:
|
| 329 | 1 | tkerber | |
| 330 | 1 | tkerber | # A minimizer has not been bracketed. If the cubic step is
|
| 331 | 1 | tkerber | # farther from stp than the secant step, the cubic step is
|
| 332 | 1 | tkerber | # taken, otherwise the secant step is taken.
|
| 333 | 1 | tkerber | |
| 334 | 1 | tkerber | if abs(stpc - stp) > abs(stpq - stp): |
| 335 | 1 | tkerber | stpf = stpc |
| 336 | 1 | tkerber | else:
|
| 337 | 1 | tkerber | stpf = stpq |
| 338 | 1 | tkerber | stpf = min(stpmax, stpf)
|
| 339 | 1 | tkerber | stpf = max(stpmin, stpf)
|
| 340 | 1 | tkerber | |
| 341 | 1 | tkerber | # Fourth case: A lower function value, derivatives of the same sign,
|
| 342 | 1 | tkerber | # and the magnitude of the derivative does not decrease. If the
|
| 343 | 1 | tkerber | # minimum is not bracketed, the step is either minstep or maxstep,
|
| 344 | 1 | tkerber | # otherwise the cubic step is taken.
|
| 345 | 1 | tkerber | |
| 346 | 1 | tkerber | else: #case4 |
| 347 | 1 | tkerber | self.case = 4 |
| 348 | 1 | tkerber | if self.bracket: |
| 349 | 1 | tkerber | theta = 3. * (fp - fy) / (sty - stp) + gy + gp
|
| 350 | 1 | tkerber | s = max(abs(theta), abs(gy), abs(gp)) |
| 351 | 1 | tkerber | gamma = s * np.sqrt((theta / s) ** 2 - (gy / s) * (gp / s))
|
| 352 | 1 | tkerber | if stp > sty:
|
| 353 | 1 | tkerber | gamma = -gamma |
| 354 | 1 | tkerber | p = (gamma - gp) + theta |
| 355 | 1 | tkerber | q = ((gamma - gp) + gamma) + gy |
| 356 | 1 | tkerber | r = p / q |
| 357 | 1 | tkerber | stpc = stp + r * (sty - stp) |
| 358 | 1 | tkerber | stpf = stpc |
| 359 | 1 | tkerber | elif stp > stx:
|
| 360 | 1 | tkerber | stpf = stpmax |
| 361 | 1 | tkerber | else:
|
| 362 | 1 | tkerber | stpf = stpmin |
| 363 | 1 | tkerber | |
| 364 | 1 | tkerber | # Update the interval which contains a minimizer.
|
| 365 | 1 | tkerber | |
| 366 | 1 | tkerber | if fp > fx:
|
| 367 | 1 | tkerber | sty = stp |
| 368 | 1 | tkerber | fy = fp |
| 369 | 1 | tkerber | gy = gp |
| 370 | 1 | tkerber | else:
|
| 371 | 1 | tkerber | if sign < 0: |
| 372 | 1 | tkerber | sty = stx |
| 373 | 1 | tkerber | fy = fx |
| 374 | 1 | tkerber | gy = gx |
| 375 | 1 | tkerber | stx = stp |
| 376 | 1 | tkerber | fx = fp |
| 377 | 1 | tkerber | gx = gp |
| 378 | 1 | tkerber | # Compute the new step.
|
| 379 | 1 | tkerber | |
| 380 | 1 | tkerber | stp = self.determine_step(stpf)
|
| 381 | 1 | tkerber | |
| 382 | 1 | tkerber | return stx, sty, stp, gx, fx, gy, fy
|
| 383 | 1 | tkerber | |
| 384 | 1 | tkerber | def determine_step(self, stp): |
| 385 | 1 | tkerber | dr = stp - self.old_stp
|
| 386 | 1 | tkerber | if abs(pymax(self.pk) * dr) > self.maxstep: |
| 387 | 1 | tkerber | dr /= abs((pymax(self.pk) * dr) / self.maxstep) |
| 388 | 1 | tkerber | stp = self.old_stp + dr
|
| 389 | 1 | tkerber | return stp
|
| 390 | 1 | tkerber | |
| 391 | 1 | tkerber | def save(self, data): |
| 392 | 1 | tkerber | if self.bracket: |
| 393 | 1 | tkerber | self.isave[0] = 1 |
| 394 | 1 | tkerber | else:
|
| 395 | 1 | tkerber | self.isave[0] = 0 |
| 396 | 1 | tkerber | self.isave[1] = data[0] |
| 397 | 1 | tkerber | self.dsave = data[1:] |