root / ase / utils / eos.py @ 7
Historique | Voir | Annoter | Télécharger (2,48 ko)
| 1 | 1 | tkerber | # -*- coding: utf-8 -*-
|
|---|---|---|---|
| 2 | 1 | tkerber | from math import sqrt |
| 3 | 1 | tkerber | |
| 4 | 1 | tkerber | import numpy as np |
| 5 | 1 | tkerber | |
| 6 | 1 | tkerber | from ase.units import kJ |
| 7 | 1 | tkerber | |
| 8 | 1 | tkerber | class EquationOfState: |
| 9 | 1 | tkerber | """Fit equation of state for bulk systems.
|
| 10 | 1 | tkerber |
|
| 11 | 1 | tkerber | The following equation is used::
|
| 12 | 1 | tkerber |
|
| 13 | 1 | tkerber | 2 3 -1/3
|
| 14 | 1 | tkerber | E(V) = c + c t + c t + c t , t = V
|
| 15 | 1 | tkerber | 0 1 2 3
|
| 16 | 1 | tkerber |
|
| 17 | 1 | tkerber | Use::
|
| 18 | 1 | tkerber |
|
| 19 | 1 | tkerber | eos = EquationOfState(volumes, energies)
|
| 20 | 1 | tkerber | v0, e0, B = eos.fit()
|
| 21 | 1 | tkerber | eos.plot()
|
| 22 | 1 | tkerber |
|
| 23 | 1 | tkerber | """
|
| 24 | 1 | tkerber | def __init__(self, volumes, energies): |
| 25 | 1 | tkerber | self.v = np.array(volumes)
|
| 26 | 1 | tkerber | self.e = np.array(energies)
|
| 27 | 1 | tkerber | self.v0 = None |
| 28 | 1 | tkerber | |
| 29 | 1 | tkerber | def fit(self): |
| 30 | 1 | tkerber | """Calculate volume, energy, and bulk modulus.
|
| 31 | 1 | tkerber |
|
| 32 | 1 | tkerber | Returns the optimal volume, the minumum energy, and the bulk
|
| 33 | 1 | tkerber | modulus. Notice that the ASE units for the bulk modulus is
|
| 34 | 1 | tkerber | eV/Angstrom^3 - to get the value in GPa, do this::
|
| 35 | 1 | tkerber |
|
| 36 | 1 | tkerber | v0, e0, B = eos.fit()
|
| 37 | 1 | tkerber | print B / kJ * 1.0e24, 'GPa'
|
| 38 | 1 | tkerber |
|
| 39 | 1 | tkerber | """
|
| 40 | 1 | tkerber | |
| 41 | 1 | tkerber | fit0 = np.poly1d(np.polyfit(self.v**-(1.0 / 3), self.e, 3)) |
| 42 | 1 | tkerber | fit1 = np.polyder(fit0, 1)
|
| 43 | 1 | tkerber | fit2 = np.polyder(fit1, 1)
|
| 44 | 1 | tkerber | |
| 45 | 1 | tkerber | self.v0 = None |
| 46 | 1 | tkerber | for t in np.roots(fit1): |
| 47 | 1 | tkerber | if t > 0 and fit2(t) > 0: |
| 48 | 1 | tkerber | self.v0 = t**-3 |
| 49 | 1 | tkerber | break
|
| 50 | 1 | tkerber | |
| 51 | 1 | tkerber | if self.v0 is None: |
| 52 | 1 | tkerber | raise ValueError('No minimum!') |
| 53 | 1 | tkerber | |
| 54 | 1 | tkerber | self.e0 = fit0(t)
|
| 55 | 1 | tkerber | self.B = t**5 * fit2(t) / 9 |
| 56 | 1 | tkerber | self.fit0 = fit0
|
| 57 | 1 | tkerber | |
| 58 | 1 | tkerber | return self.v0, self.e0, self.B |
| 59 | 1 | tkerber | |
| 60 | 1 | tkerber | def plot(self, filename=None, show=None): |
| 61 | 1 | tkerber | """Plot fitted energy curve.
|
| 62 | 1 | tkerber |
|
| 63 | 1 | tkerber | Uses Matplotlib to plot the energy curve. Use *show=True* to
|
| 64 | 1 | tkerber | show the figure and *filename='abc.png'* or
|
| 65 | 1 | tkerber | *filename='abc.eps'* to save the figure to a file."""
|
| 66 | 1 | tkerber | |
| 67 | 1 | tkerber | #import matplotlib.pyplot as plt
|
| 68 | 1 | tkerber | import pylab as plt |
| 69 | 1 | tkerber | |
| 70 | 1 | tkerber | if self.v0 is None: |
| 71 | 1 | tkerber | self.fit()
|
| 72 | 1 | tkerber | |
| 73 | 1 | tkerber | if filename is None and show is None: |
| 74 | 1 | tkerber | show = True
|
| 75 | 1 | tkerber | |
| 76 | 1 | tkerber | x = 3.95
|
| 77 | 1 | tkerber | f = plt.figure(figsize=(x * 2.5**0.5, x)) |
| 78 | 1 | tkerber | f.subplots_adjust(left=0.12, right=0.9, top=0.9, bottom=0.15) |
| 79 | 1 | tkerber | plt.plot(self.v, self.e, 'o') |
| 80 | 1 | tkerber | x = np.linspace(min(self.v), max(self.v), 100) |
| 81 | 1 | tkerber | plt.plot(x, self.fit0(x**-(1.0 / 3)), '-r') |
| 82 | 1 | tkerber | plt.xlabel(u'volume [Å^3]')
|
| 83 | 1 | tkerber | plt.ylabel(u'energy [eV]')
|
| 84 | 1 | tkerber | plt.title(u'E: %.3f eV, V: %.3f Å^3, B: %.3f GPa' %
|
| 85 | 1 | tkerber | (self.e0, self.v0, self.B / kJ * 1.0e24)) |
| 86 | 1 | tkerber | |
| 87 | 1 | tkerber | if show:
|
| 88 | 1 | tkerber | plt.show() |
| 89 | 1 | tkerber | if filename is not None: |
| 90 | 1 | tkerber | f.savefig(filename) |
| 91 | 1 | tkerber | |
| 92 | 1 | tkerber | return f |