root / ase / optimize / test / __init__.py @ 5
Historique | Voir | Annoter | Télécharger (4,33 ko)
| 1 |
"""Define a helper function for running tests
|
|---|---|
| 2 |
|
| 3 |
The skeleton for making a new setup is as follows:
|
| 4 |
|
| 5 |
from ase.optimize.test import run_test
|
| 6 |
|
| 7 |
def get_atoms():
|
| 8 |
return Atoms('H')
|
| 9 |
|
| 10 |
def get_calculator():
|
| 11 |
return EMT()
|
| 12 |
|
| 13 |
run_test(get_atoms, get_calculator, 'Hydrogen')
|
| 14 |
"""
|
| 15 |
import matplotlib |
| 16 |
matplotlib.rcParams['backend']="Agg" |
| 17 |
|
| 18 |
from ase.optimize.bfgs import BFGS |
| 19 |
from ase.optimize.lbfgs import LBFGS, LBFGSLineSearch |
| 20 |
from ase.optimize.fire import FIRE |
| 21 |
from ase.optimize.mdmin import MDMin |
| 22 |
from ase.optimize.sciopt import SciPyFminCG |
| 23 |
from ase.optimize.sciopt import SciPyFminBFGS |
| 24 |
from ase.optimize.bfgslinesearch import BFGSLineSearch |
| 25 |
|
| 26 |
from ase.parallel import rank, paropen |
| 27 |
|
| 28 |
import matplotlib.pyplot as pl |
| 29 |
import numpy as np |
| 30 |
|
| 31 |
import traceback |
| 32 |
|
| 33 |
optimizers = [ |
| 34 |
'BFGS',
|
| 35 |
'LBFGS',
|
| 36 |
'LBFGSLineSearch',
|
| 37 |
'FIRE',
|
| 38 |
'MDMin',
|
| 39 |
'SciPyFminCG',
|
| 40 |
'SciPyFminBFGS',
|
| 41 |
'BFGSLineSearch'
|
| 42 |
] |
| 43 |
|
| 44 |
def get_optimizer(optimizer): |
| 45 |
if optimizer == 'BFGS': return BFGS |
| 46 |
elif optimizer == 'LBFGS': return LBFGS |
| 47 |
elif optimizer == 'LBFGSLineSearch': return LBFGSLineSearch |
| 48 |
elif optimizer == 'FIRE': return FIRE |
| 49 |
elif optimizer == 'MDMin': return MDMin |
| 50 |
elif optimizer == 'SciPyFminCG': return SciPyFminCG |
| 51 |
elif optimizer == 'SciPyFminBFGS': return SciPyFminBFGS |
| 52 |
elif optimizer == 'BFGSLineSearch': return BFGSLineSearch |
| 53 |
|
| 54 |
def run_test(get_atoms, get_calculator, name, |
| 55 |
fmax=0.05, steps=100, plot=True): |
| 56 |
|
| 57 |
plotter = Plotter(name, fmax) |
| 58 |
csvwriter = CSVWriter(name) |
| 59 |
for optimizer in optimizers: |
| 60 |
note = ''
|
| 61 |
logname = name + '-' + optimizer
|
| 62 |
|
| 63 |
atoms = get_atoms() |
| 64 |
atoms.set_calculator(get_calculator()) |
| 65 |
opt = get_optimizer(optimizer) |
| 66 |
relax = opt(atoms, logfile=None)
|
| 67 |
#logfile = logname + '.log',
|
| 68 |
#trajectory = logname + '.traj')
|
| 69 |
|
| 70 |
obs = DataObserver(atoms) |
| 71 |
relax.attach(obs) |
| 72 |
try:
|
| 73 |
relax.run(fmax = fmax, steps = steps) |
| 74 |
E = atoms.get_potential_energy() |
| 75 |
|
| 76 |
if relax.get_number_of_steps() == steps:
|
| 77 |
note = 'Not converged in %i steps' % steps
|
| 78 |
except Exception: |
| 79 |
traceback.print_exc() |
| 80 |
note = 'An exception occurred'
|
| 81 |
E = np.nan |
| 82 |
|
| 83 |
nsteps = relax.get_number_of_steps() |
| 84 |
if hasattr(relax, 'force_calls'): |
| 85 |
fc = relax.force_calls |
| 86 |
if rank == 0: |
| 87 |
print '%-15s %-15s %3i %8.3f (%3i) %s' % (name, optimizer, nsteps, E, fc, note) |
| 88 |
else:
|
| 89 |
fc = nsteps |
| 90 |
if rank == 0: |
| 91 |
print '%-15s %-15s %3i %8.3f %s' % (name, optimizer, nsteps, E, note) |
| 92 |
|
| 93 |
plotter.plot(optimizer, obs.get_E(), obs.get_fmax()) |
| 94 |
csvwriter.write(optimizer, nsteps, E, fc, note) |
| 95 |
|
| 96 |
plotter.save() |
| 97 |
csvwriter.finalize() |
| 98 |
|
| 99 |
class Plotter: |
| 100 |
def __init__(self, name, fmax): |
| 101 |
self.name = name
|
| 102 |
self.fmax = fmax
|
| 103 |
if rank == 0: |
| 104 |
self.fig = pl.figure(figsize=[12.0, 9.0]) |
| 105 |
self.axes0 = self.fig.add_subplot(2, 1, 1) |
| 106 |
self.axes1 = self.fig.add_subplot(2, 1, 2) |
| 107 |
|
| 108 |
def plot(self, optimizer, E, fmax): |
| 109 |
if rank == 0: |
| 110 |
self.axes0.plot(E, label = optimizer)
|
| 111 |
self.axes1.plot(fmax)
|
| 112 |
|
| 113 |
def save(self, format='png'): |
| 114 |
if rank == 0: |
| 115 |
self.axes0.legend()
|
| 116 |
self.axes0.set_title(self.name) |
| 117 |
self.axes0.set_ylabel('E [eV]') |
| 118 |
#self.axes0.set_yscale('log')
|
| 119 |
|
| 120 |
self.axes1.set_xlabel('steps') |
| 121 |
self.axes1.set_ylabel('fmax [eV/A]') |
| 122 |
self.axes1.set_yscale('log') |
| 123 |
self.axes1.axhline(self.fmax, color='k', linestyle='--') |
| 124 |
self.fig.savefig(self.name + '.' + format) |
| 125 |
|
| 126 |
class CSVWriter: |
| 127 |
def __init__(self, name): |
| 128 |
self.f = paropen(name + '.csv', 'w') |
| 129 |
|
| 130 |
def write(self, optimizer, nsteps, E, fc, note=''): |
| 131 |
self.f.write(
|
| 132 |
'%s,%i,%i,%f,%s\n' % (optimizer, nsteps, fc, E, note)
|
| 133 |
) |
| 134 |
|
| 135 |
def finalize(self): |
| 136 |
self.f.close()
|
| 137 |
|
| 138 |
class DataObserver: |
| 139 |
def __init__(self, atoms): |
| 140 |
self.atoms = atoms
|
| 141 |
self.E = []
|
| 142 |
self.fmax = []
|
| 143 |
|
| 144 |
def __call__(self): |
| 145 |
self.E.append(self.atoms.get_potential_energy()) |
| 146 |
self.fmax.append(np.sqrt((self.atoms.get_forces()**2).sum(axis=1)).max()) |
| 147 |
|
| 148 |
def get_E(self): |
| 149 |
return np.array(self.E) |
| 150 |
|
| 151 |
def get_fmax(self): |
| 152 |
return np.array(self.fmax) |