root / ase / md / nvtberendsen.py @ 5
Historique | Voir | Annoter | Télécharger (3,32 ko)
| 1 |
"""Berendsen NVT dynamics class."""
|
|---|---|
| 2 |
|
| 3 |
import sys |
| 4 |
import numpy as np |
| 5 |
from ase.md.md import MolecularDynamics |
| 6 |
|
| 7 |
|
| 8 |
# For parallel GPAW simulations, the random forces should be distributed.
|
| 9 |
if '_gpaw' in sys.modules: |
| 10 |
# http://wiki.fysik.dtu.dk/gpaw
|
| 11 |
from gpaw.mpi import world as gpaw_world |
| 12 |
else:
|
| 13 |
gpaw_world = None
|
| 14 |
|
| 15 |
|
| 16 |
class NVTBerendsen(MolecularDynamics): |
| 17 |
"""Berendsen (constant N, V, T) molecular dynamics.
|
| 18 |
|
| 19 |
Usage: NVTBerendsen(atoms, timestep, temperature, taut, fixcm)
|
| 20 |
|
| 21 |
atoms
|
| 22 |
The list of atoms.
|
| 23 |
|
| 24 |
timestep
|
| 25 |
The time step.
|
| 26 |
|
| 27 |
temperature
|
| 28 |
The desired temperature, in Kelvin.
|
| 29 |
|
| 30 |
taut
|
| 31 |
Time constant for Berendsen temperature coupling.
|
| 32 |
|
| 33 |
fixcm
|
| 34 |
If True, the position and momentum of the center of mass is
|
| 35 |
kept unperturbed. Default: True.
|
| 36 |
|
| 37 |
"""
|
| 38 |
|
| 39 |
def __init__(self, atoms, timestep, temperature, taut, fixcm=True, |
| 40 |
trajectory=None, logfile=None, loginterval=1, |
| 41 |
communicator=gpaw_world): |
| 42 |
|
| 43 |
MolecularDynamics.__init__(self, atoms, timestep, trajectory,
|
| 44 |
logfile, loginterval) |
| 45 |
self.taut = taut
|
| 46 |
self.temperature = temperature
|
| 47 |
self.fixcm = fixcm # will the center of mass be held fixed? |
| 48 |
self.communicator = communicator
|
| 49 |
|
| 50 |
def set_taut(self, taut): |
| 51 |
self.taut = taut
|
| 52 |
|
| 53 |
def get_taut(self): |
| 54 |
return self.taut |
| 55 |
|
| 56 |
def set_temperature(self, temperature): |
| 57 |
self.temperature = temperature
|
| 58 |
|
| 59 |
def get_temperature(self): |
| 60 |
return self.temperature |
| 61 |
|
| 62 |
def set_timestep(self, timestep): |
| 63 |
self.dt = timestep
|
| 64 |
|
| 65 |
def get_timestep(self): |
| 66 |
return self.dt |
| 67 |
|
| 68 |
def scale_velocities(self): |
| 69 |
""" Do the NVT Berendsen velocity scaling """
|
| 70 |
tautscl = self.dt / self.taut |
| 71 |
old_temperature = self.atoms.get_temperature()
|
| 72 |
|
| 73 |
scl_temperature = np.sqrt(1.0+ (self.temperature/ old_temperature- 1.0) |
| 74 |
*tautscl) |
| 75 |
#limit the velocity scaling to reasonable values
|
| 76 |
if scl_temperature > 1.1: |
| 77 |
scl_temperature = 1.1
|
| 78 |
if scl_temperature < 0.9: |
| 79 |
scl_temperature = 0.9
|
| 80 |
|
| 81 |
atoms = self.atoms
|
| 82 |
p = self.atoms.get_momenta()
|
| 83 |
p = scl_temperature * p |
| 84 |
self.atoms.set_momenta(p)
|
| 85 |
return
|
| 86 |
|
| 87 |
|
| 88 |
def step(self, f): |
| 89 |
""" move one timestep forward using Berenden NVT molecular dynamics."""
|
| 90 |
self.scale_velocities()
|
| 91 |
|
| 92 |
#one step velocity verlet
|
| 93 |
atoms = self.atoms
|
| 94 |
p = self.atoms.get_momenta()
|
| 95 |
p += 0.5 * self.dt * f |
| 96 |
|
| 97 |
if self.fixcm: |
| 98 |
# calculate the center of mass
|
| 99 |
# momentum and subtract it
|
| 100 |
psum = p.sum(axis=0) / float(len(p)) |
| 101 |
p = p - psum |
| 102 |
|
| 103 |
self.atoms.set_positions(self.atoms.get_positions() + |
| 104 |
self.dt * p / self.atoms.get_masses()[:,np.newaxis]) |
| 105 |
|
| 106 |
# We need to store the momenta on the atoms before calculating
|
| 107 |
# the forces, as in a parallel Asap calculation atoms may
|
| 108 |
# migrate during force calculations, and the momenta need to
|
| 109 |
# migrate along with the atoms. For the same reason, we
|
| 110 |
# cannot use self.masses in the line above.
|
| 111 |
|
| 112 |
self.atoms.set_momenta(p)
|
| 113 |
f = self.atoms.get_forces()
|
| 114 |
atoms.set_momenta(self.atoms.get_momenta() + 0.5 * self.dt * f) |
| 115 |
|
| 116 |
return f
|
| 117 |
|