root / ase / lattice / cubic.py @ 5
Historique | Voir | Annoter | Télécharger (4,36 ko)
| 1 |
"""Function-like objects creating cubic lattices (SC, FCC, BCC and Diamond).
|
|---|---|
| 2 |
|
| 3 |
The following lattice creators are defined:
|
| 4 |
SimpleCubic
|
| 5 |
FaceCenteredCubic
|
| 6 |
BodyCenteredCubic
|
| 7 |
Diamond
|
| 8 |
"""
|
| 9 |
|
| 10 |
from ase.lattice.bravais import Bravais |
| 11 |
import numpy as np |
| 12 |
from ase.data import reference_states as _refstate |
| 13 |
|
| 14 |
class SimpleCubicFactory(Bravais): |
| 15 |
"A factory for creating simple cubic lattices."
|
| 16 |
|
| 17 |
# The name of the crystal structure in ChemicalElements
|
| 18 |
xtal_name = "sc"
|
| 19 |
|
| 20 |
# The natural basis vectors of the crystal structure
|
| 21 |
int_basis = np.array([[1, 0, 0], |
| 22 |
[0, 1, 0], |
| 23 |
[0, 0, 1]]) |
| 24 |
basis_factor = 1.0
|
| 25 |
|
| 26 |
# Converts the natural basis back to the crystallographic basis
|
| 27 |
inverse_basis = np.array([[1, 0, 0], |
| 28 |
[0, 1, 0], |
| 29 |
[0, 0, 1]]) |
| 30 |
inverse_basis_factor = 1.0
|
| 31 |
|
| 32 |
# For checking the basis volume
|
| 33 |
atoms_in_unit_cell = 1
|
| 34 |
|
| 35 |
def get_lattice_constant(self): |
| 36 |
"Get the lattice constant of an element with cubic crystal structure."
|
| 37 |
if _refstate[self.atomicnumber]['symmetry'].lower() != self.xtal_name: |
| 38 |
raise ValueError, (("Cannot guess the %s lattice constant of" |
| 39 |
+ " an element with crystal structure %s.")
|
| 40 |
% (self.xtal_name,
|
| 41 |
_refstate[self.atomicnumber]['symmetry'])) |
| 42 |
return _refstate[self.atomicnumber]['a'] |
| 43 |
|
| 44 |
def make_crystal_basis(self): |
| 45 |
"Make the basis matrix for the crystal unit cell and the system unit cell."
|
| 46 |
self.crystal_basis = (self.latticeconstant * self.basis_factor |
| 47 |
* self.int_basis)
|
| 48 |
self.miller_basis = self.latticeconstant * np.identity(3) |
| 49 |
self.basis = np.dot(self.directions, self.crystal_basis) |
| 50 |
self.check_basis_volume()
|
| 51 |
|
| 52 |
def check_basis_volume(self): |
| 53 |
"Check the volume of the unit cell."
|
| 54 |
vol1 = abs(np.linalg.det(self.basis)) |
| 55 |
cellsize = self.atoms_in_unit_cell
|
| 56 |
if self.bravais_basis is not None: |
| 57 |
cellsize *= len(self.bravais_basis) |
| 58 |
vol2 = (self.calc_num_atoms() * self.latticeconstant**3 / cellsize) |
| 59 |
assert abs(vol1-vol2) < 1e-5 |
| 60 |
|
| 61 |
def find_directions(self, directions, miller): |
| 62 |
"Find missing directions and miller indices from the specified ones."
|
| 63 |
directions = list(directions)
|
| 64 |
miller = list(miller)
|
| 65 |
# Process keyword "orthogonal"
|
| 66 |
self.find_ortho(directions)
|
| 67 |
self.find_ortho(miller)
|
| 68 |
Bravais.find_directions(self, directions, miller)
|
| 69 |
|
| 70 |
def find_ortho(self, idx): |
| 71 |
"Replace keyword 'ortho' or 'orthogonal' with a direction."
|
| 72 |
for i in range(3): |
| 73 |
if isinstance(idx[i], str) and (idx[i].lower() == "ortho" or |
| 74 |
idx[i].lower() == "orthogonal"):
|
| 75 |
if self.debug: |
| 76 |
print "Calculating orthogonal direction", i |
| 77 |
print idx[i-2], "X", idx[i-1], |
| 78 |
idx[i] = reduceindex(cross(idx[i-2], idx[i-1])) |
| 79 |
if self.debug: |
| 80 |
print "=", idx[i] |
| 81 |
|
| 82 |
|
| 83 |
SimpleCubic = SimpleCubicFactory() |
| 84 |
|
| 85 |
class FaceCenteredCubicFactory(SimpleCubicFactory): |
| 86 |
"A factory for creating face-centered cubic lattices."
|
| 87 |
|
| 88 |
xtal_name = "fcc"
|
| 89 |
int_basis = np.array([[0, 1, 1], |
| 90 |
[1, 0, 1], |
| 91 |
[1, 1, 0]]) |
| 92 |
basis_factor = 0.5
|
| 93 |
inverse_basis = np.array([[-1, 1, 1], |
| 94 |
[1, -1, 1], |
| 95 |
[1, 1, -1]]) |
| 96 |
inverse_basis_factor = 1.0
|
| 97 |
|
| 98 |
atoms_in_unit_cell = 4
|
| 99 |
|
| 100 |
FaceCenteredCubic = FaceCenteredCubicFactory() |
| 101 |
|
| 102 |
class BodyCenteredCubicFactory(SimpleCubicFactory): |
| 103 |
"A factory for creating body-centered cubic lattices."
|
| 104 |
|
| 105 |
xtal_name = "bcc"
|
| 106 |
int_basis = np.array([[-1, 1, 1], |
| 107 |
[1, -1, 1], |
| 108 |
[1, 1, -1]]) |
| 109 |
basis_factor = 0.5
|
| 110 |
inverse_basis = np.array([[0, 1, 1], |
| 111 |
[1, 0, 1], |
| 112 |
[1, 1, 0]]) |
| 113 |
inverse_basis_factor = 1.0
|
| 114 |
|
| 115 |
atoms_in_unit_cell = 2
|
| 116 |
|
| 117 |
BodyCenteredCubic = BodyCenteredCubicFactory() |
| 118 |
|
| 119 |
class DiamondFactory(FaceCenteredCubicFactory): |
| 120 |
"A factory for creating diamond lattices."
|
| 121 |
xtal_name = "diamond"
|
| 122 |
bravais_basis = [[0,0,0], [0.25, 0.25, 0.25]] |
| 123 |
|
| 124 |
Diamond = DiamondFactory() |
| 125 |
|