root / ase / optimize / optimize.py @ 5
Historique | Voir | Annoter | Télécharger (5,59 ko)
| 1 | 1 | tkerber | """Structure optimization. """
|
|---|---|---|---|
| 2 | 1 | tkerber | |
| 3 | 1 | tkerber | import sys |
| 4 | 1 | tkerber | import pickle |
| 5 | 1 | tkerber | import time |
| 6 | 1 | tkerber | from math import sqrt |
| 7 | 1 | tkerber | from os.path import isfile |
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | import numpy as np |
| 10 | 1 | tkerber | |
| 11 | 1 | tkerber | from ase.parallel import rank, barrier |
| 12 | 3 | tkerber | from ase.io.trajectory import PickleTrajectory |
| 13 | 1 | tkerber | |
| 14 | 1 | tkerber | |
| 15 | 1 | tkerber | class Dynamics: |
| 16 | 1 | tkerber | """Base-class for all MD and structure optimization classes.
|
| 17 | 1 | tkerber |
|
| 18 | 1 | tkerber | Dynamics(atoms, logfile)
|
| 19 | 1 | tkerber |
|
| 20 | 1 | tkerber | atoms: Atoms object
|
| 21 | 1 | tkerber | The Atoms object to operate on
|
| 22 | 1 | tkerber | logfile: file object or str
|
| 23 | 1 | tkerber | If *logfile* is a string, a file with that name will be opened.
|
| 24 | 1 | tkerber | Use '-' for stdout.
|
| 25 | 1 | tkerber | trajectory: Trajectory object or str
|
| 26 | 1 | tkerber | Attach trajectory object. If *trajectory* is a string a
|
| 27 | 1 | tkerber | PickleTrajectory will be constructed. Use *None* for no
|
| 28 | 1 | tkerber | trajectory.
|
| 29 | 1 | tkerber | """
|
| 30 | 1 | tkerber | def __init__(self, atoms, logfile, trajectory): |
| 31 | 1 | tkerber | self.atoms = atoms
|
| 32 | 1 | tkerber | |
| 33 | 1 | tkerber | if rank != 0: |
| 34 | 1 | tkerber | logfile = None
|
| 35 | 1 | tkerber | elif isinstance(logfile, str): |
| 36 | 1 | tkerber | if logfile == '-': |
| 37 | 1 | tkerber | logfile = sys.stdout |
| 38 | 1 | tkerber | else:
|
| 39 | 1 | tkerber | logfile = open(logfile, 'a') |
| 40 | 1 | tkerber | self.logfile = logfile
|
| 41 | 1 | tkerber | |
| 42 | 1 | tkerber | self.observers = []
|
| 43 | 1 | tkerber | self.nsteps = 0 |
| 44 | 1 | tkerber | |
| 45 | 1 | tkerber | if trajectory is not None: |
| 46 | 1 | tkerber | if isinstance(trajectory, str): |
| 47 | 1 | tkerber | trajectory = PickleTrajectory(trajectory, 'w', atoms)
|
| 48 | 1 | tkerber | self.attach(trajectory)
|
| 49 | 1 | tkerber | |
| 50 | 1 | tkerber | def get_number_of_steps(self): |
| 51 | 1 | tkerber | return self.nsteps |
| 52 | 1 | tkerber | |
| 53 | 1 | tkerber | def insert_observer(self, function, position=0, interval=1, |
| 54 | 1 | tkerber | *args, **kwargs): |
| 55 | 1 | tkerber | """Insert an observer."""
|
| 56 | 1 | tkerber | if not callable(function): |
| 57 | 1 | tkerber | function = function.write |
| 58 | 1 | tkerber | self.observers.insert(position, (function, interval, args, kwargs))
|
| 59 | 1 | tkerber | |
| 60 | 1 | tkerber | def attach(self, function, interval=1, *args, **kwargs): |
| 61 | 1 | tkerber | """Attach callback function.
|
| 62 | 1 | tkerber |
|
| 63 | 1 | tkerber | At every *interval* steps, call *function* with arguments
|
| 64 | 1 | tkerber | *args* and keyword arguments *kwargs*."""
|
| 65 | 1 | tkerber | |
| 66 | 1 | tkerber | if not hasattr(function, '__call__'): |
| 67 | 1 | tkerber | function = function.write |
| 68 | 1 | tkerber | self.observers.append((function, interval, args, kwargs))
|
| 69 | 1 | tkerber | |
| 70 | 1 | tkerber | def call_observers(self): |
| 71 | 1 | tkerber | for function, interval, args, kwargs in self.observers: |
| 72 | 1 | tkerber | if self.nsteps % interval == 0: |
| 73 | 1 | tkerber | function(*args, **kwargs) |
| 74 | 1 | tkerber | |
| 75 | 1 | tkerber | |
| 76 | 1 | tkerber | class Optimizer(Dynamics): |
| 77 | 1 | tkerber | """Base-class for all structure optimization classes."""
|
| 78 | 1 | tkerber | def __init__(self, atoms, restart, logfile, trajectory): |
| 79 | 1 | tkerber | """Structure optimizer object.
|
| 80 | 1 | tkerber |
|
| 81 | 1 | tkerber | atoms: Atoms object
|
| 82 | 1 | tkerber | The Atoms object to relax.
|
| 83 | 1 | tkerber | restart: str
|
| 84 | 1 | tkerber | Filename for restart file. Default value is *None*.
|
| 85 | 1 | tkerber | logfile: file object or str
|
| 86 | 1 | tkerber | If *logfile* is a string, a file with that name will be opened.
|
| 87 | 1 | tkerber | Use '-' for stdout.
|
| 88 | 1 | tkerber | trajectory: Trajectory object or str
|
| 89 | 1 | tkerber | Attach trajectory object. If *trajectory* is a string a
|
| 90 | 1 | tkerber | PickleTrajectory will be constructed. Use *None* for no
|
| 91 | 1 | tkerber | trajectory.
|
| 92 | 1 | tkerber | """
|
| 93 | 1 | tkerber | Dynamics.__init__(self, atoms, logfile, trajectory)
|
| 94 | 1 | tkerber | self.restart = restart
|
| 95 | 1 | tkerber | |
| 96 | 1 | tkerber | if restart is None or not isfile(restart): |
| 97 | 1 | tkerber | self.initialize()
|
| 98 | 1 | tkerber | else:
|
| 99 | 1 | tkerber | self.read()
|
| 100 | 1 | tkerber | barrier() |
| 101 | 1 | tkerber | def initialize(self): |
| 102 | 1 | tkerber | pass
|
| 103 | 1 | tkerber | |
| 104 | 1 | tkerber | def run(self, fmax=0.05, steps=100000000): |
| 105 | 1 | tkerber | """Run structure optimization algorithm.
|
| 106 | 1 | tkerber |
|
| 107 | 1 | tkerber | This method will return when the forces on all individual
|
| 108 | 1 | tkerber | atoms are less than *fmax* or when the number of steps exceeds
|
| 109 | 1 | tkerber | *steps*."""
|
| 110 | 1 | tkerber | |
| 111 | 1 | tkerber | self.fmax = fmax
|
| 112 | 1 | tkerber | step = 0
|
| 113 | 1 | tkerber | while step < steps:
|
| 114 | 1 | tkerber | f = self.atoms.get_forces()
|
| 115 | 1 | tkerber | self.log(f)
|
| 116 | 1 | tkerber | self.call_observers()
|
| 117 | 1 | tkerber | if self.converged(f): |
| 118 | 1 | tkerber | return
|
| 119 | 1 | tkerber | self.step(f)
|
| 120 | 1 | tkerber | self.nsteps += 1 |
| 121 | 1 | tkerber | step += 1
|
| 122 | 1 | tkerber | |
| 123 | 1 | tkerber | def converged(self, forces=None): |
| 124 | 1 | tkerber | """Did the optimization converge?"""
|
| 125 | 1 | tkerber | if forces is None: |
| 126 | 1 | tkerber | forces = self.atoms.get_forces()
|
| 127 | 1 | tkerber | return (forces**2).sum(axis=1).max() < self.fmax**2 |
| 128 | 1 | tkerber | |
| 129 | 1 | tkerber | def log(self, forces): |
| 130 | 1 | tkerber | fmax = sqrt((forces**2).sum(axis=1).max()) |
| 131 | 1 | tkerber | e = self.atoms.get_potential_energy()
|
| 132 | 1 | tkerber | T = time.localtime() |
| 133 | 1 | tkerber | if self.logfile is not None: |
| 134 | 1 | tkerber | name = self.__class__.__name__
|
| 135 | 1 | tkerber | self.logfile.write('%s: %3d %02d:%02d:%02d %15.6f %12.4f\n' % |
| 136 | 1 | tkerber | (name, self.nsteps, T[3], T[4], T[5], e, fmax)) |
| 137 | 1 | tkerber | self.logfile.flush()
|
| 138 | 1 | tkerber | |
| 139 | 1 | tkerber | def dump(self, data): |
| 140 | 1 | tkerber | if rank == 0 and self.restart is not None: |
| 141 | 1 | tkerber | pickle.dump(data, open(self.restart, 'wb'), protocol=2) |
| 142 | 1 | tkerber | |
| 143 | 1 | tkerber | def load(self): |
| 144 | 1 | tkerber | return pickle.load(open(self.restart)) |
| 145 | 1 | tkerber | |
| 146 | 1 | tkerber | |
| 147 | 1 | tkerber | class NDPoly: |
| 148 | 1 | tkerber | def __init__(self, ndims=1, order=3): |
| 149 | 1 | tkerber | """Multivariate polynomium.
|
| 150 | 1 | tkerber |
|
| 151 | 1 | tkerber | ndims: int
|
| 152 | 1 | tkerber | Number of dimensions.
|
| 153 | 1 | tkerber | order: int
|
| 154 | 1 | tkerber | Order of polynomium."""
|
| 155 | 1 | tkerber | |
| 156 | 1 | tkerber | if ndims == 0: |
| 157 | 1 | tkerber | exponents = [()] |
| 158 | 1 | tkerber | else:
|
| 159 | 1 | tkerber | exponents = [] |
| 160 | 1 | tkerber | for i in range(order + 1): |
| 161 | 1 | tkerber | E = NDPoly(ndims - 1, order - i).exponents
|
| 162 | 1 | tkerber | exponents += [(i,) + tuple(e) for e in E] |
| 163 | 1 | tkerber | self.exponents = np.array(exponents)
|
| 164 | 1 | tkerber | self.c = None |
| 165 | 1 | tkerber | |
| 166 | 1 | tkerber | def __call__(self, *x): |
| 167 | 1 | tkerber | """Evaluate polynomial at x."""
|
| 168 | 1 | tkerber | return np.dot(self.c, (x**self.exponents).prod(1)) |
| 169 | 1 | tkerber | |
| 170 | 1 | tkerber | def fit(self, x, y): |
| 171 | 1 | tkerber | """Fit polynomium at points in x to values in y."""
|
| 172 | 1 | tkerber | A = (x**self.exponents[:, np.newaxis]).prod(2) |
| 173 | 1 | tkerber | self.c = np.linalg.solve(np.inner(A, A), np.dot(A, y))
|
| 174 | 1 | tkerber | |
| 175 | 1 | tkerber | |
| 176 | 1 | tkerber | def polyfit(x, y, order=3): |
| 177 | 1 | tkerber | """Fit polynomium at points in x to values in y.
|
| 178 | 1 | tkerber |
|
| 179 | 1 | tkerber | With D dimensions and N points, x must have shape (N, D) and y
|
| 180 | 1 | tkerber | must have length N."""
|
| 181 | 1 | tkerber | |
| 182 | 1 | tkerber | p = NDPoly(len(x[0]), order) |
| 183 | 1 | tkerber | p.fit(x, y) |
| 184 | 1 | tkerber | return p |