root / ase / lattice / hexagonal.py @ 5
Historique | Voir | Annoter | Télécharger (3,31 ko)
| 1 | 1 | tkerber | """Function-like object creating hexagonal lattices.
|
|---|---|---|---|
| 2 | 1 | tkerber |
|
| 3 | 1 | tkerber | The following lattice creators are defined:
|
| 4 | 1 | tkerber | Hexagonal
|
| 5 | 1 | tkerber | HexagonalClosedPacked
|
| 6 | 1 | tkerber | Graphite
|
| 7 | 1 | tkerber | """
|
| 8 | 1 | tkerber | |
| 9 | 1 | tkerber | from ase.lattice.triclinic import TriclinicFactory |
| 10 | 1 | tkerber | import numpy as np |
| 11 | 1 | tkerber | from ase.data import reference_states as _refstate |
| 12 | 1 | tkerber | |
| 13 | 1 | tkerber | |
| 14 | 1 | tkerber | class HexagonalFactory(TriclinicFactory): |
| 15 | 1 | tkerber | "A factory for creating simple hexagonal lattices."
|
| 16 | 1 | tkerber | # The name of the crystal structure in ChemicalElements
|
| 17 | 1 | tkerber | xtal_name = "hexagonal"
|
| 18 | 1 | tkerber | |
| 19 | 1 | tkerber | def make_crystal_basis(self): |
| 20 | 1 | tkerber | "Make the basis matrix for the crystal unit cell and the system unit cell."
|
| 21 | 1 | tkerber | # First convert the basis specification to a triclinic one
|
| 22 | 1 | tkerber | if type(self.latticeconstant) == type({}): |
| 23 | 1 | tkerber | self.latticeconstant['alpha'] = 90 |
| 24 | 1 | tkerber | self.latticeconstant['beta'] = 90 |
| 25 | 1 | tkerber | self.latticeconstant['gamma'] = 120 |
| 26 | 1 | tkerber | self.latticeconstant['b/a'] = 1.0 |
| 27 | 1 | tkerber | else:
|
| 28 | 1 | tkerber | if len(self.latticeconstant) == 2: |
| 29 | 1 | tkerber | a,c = self.latticeconstant
|
| 30 | 1 | tkerber | self.latticeconstant = (a,a,c,90,90,120) |
| 31 | 1 | tkerber | else:
|
| 32 | 1 | tkerber | raise ValueError, "Improper lattice constants for hexagonal crystal." |
| 33 | 1 | tkerber | TriclinicFactory.make_crystal_basis(self)
|
| 34 | 1 | tkerber | |
| 35 | 1 | tkerber | def find_directions(self, directions, miller): |
| 36 | 1 | tkerber | """Find missing directions and miller indices from the specified ones.
|
| 37 | 1 | tkerber |
|
| 38 | 1 | tkerber | Also handles the conversion of hexagonal-style 4-index notation to
|
| 39 | 1 | tkerber | the normal 3-index notation.
|
| 40 | 1 | tkerber | """
|
| 41 | 1 | tkerber | directions = list(directions)
|
| 42 | 1 | tkerber | miller = list(miller)
|
| 43 | 1 | tkerber | for obj in (directions,miller): |
| 44 | 1 | tkerber | for i in range(3): |
| 45 | 1 | tkerber | if obj[i] is not None: |
| 46 | 1 | tkerber | (a,b,c,d) = obj[i] |
| 47 | 1 | tkerber | if a + b + c != 0: |
| 48 | 1 | tkerber | raise ValueError( |
| 49 | 1 | tkerber | ("(%d,%d,%d,%d) is not a valid hexagonal Miller " +
|
| 50 | 1 | tkerber | "index, as the sum of the first three numbers " +
|
| 51 | 1 | tkerber | "should be zero.") % (a,b,c,d))
|
| 52 | 1 | tkerber | x = 4*a + 2*b |
| 53 | 1 | tkerber | y = 2*a + 4*b |
| 54 | 1 | tkerber | z = 3*d
|
| 55 | 1 | tkerber | obj[i] = (x,y,z) |
| 56 | 1 | tkerber | TriclinicFactory.find_directions(self, directions, miller)
|
| 57 | 1 | tkerber | |
| 58 | 1 | tkerber | def print_directions_and_miller(self, txt=""): |
| 59 | 1 | tkerber | "Print direction vectors and Miller indices."
|
| 60 | 1 | tkerber | print "Direction vectors of unit cell%s:" % (txt,) |
| 61 | 1 | tkerber | for i in (0,1,2): |
| 62 | 1 | tkerber | self.print_four_vector("[]", self.directions[i]) |
| 63 | 1 | tkerber | print "Miller indices of surfaces%s:" % (txt,) |
| 64 | 1 | tkerber | for i in (0,1,2): |
| 65 | 1 | tkerber | self.print_four_vector("()", self.miller[i]) |
| 66 | 1 | tkerber | |
| 67 | 1 | tkerber | def print_four_vector(self, bracket, numbers): |
| 68 | 1 | tkerber | bra, ket = bracket |
| 69 | 1 | tkerber | (x,y,z) = numbers |
| 70 | 1 | tkerber | a = 2*x - y
|
| 71 | 1 | tkerber | b = -x + 2*y
|
| 72 | 1 | tkerber | c = -x -y |
| 73 | 1 | tkerber | d = 2*z
|
| 74 | 1 | tkerber | print " %s%d, %d, %d%s ~ %s%d, %d, %d, %d%s" % \ |
| 75 | 1 | tkerber | (bra,x,y,z,ket, bra,a,b,c,d,ket) |
| 76 | 1 | tkerber | |
| 77 | 1 | tkerber | |
| 78 | 1 | tkerber | Hexagonal = HexagonalFactory() |
| 79 | 1 | tkerber | |
| 80 | 1 | tkerber | class HexagonalClosedPackedFactory(HexagonalFactory): |
| 81 | 1 | tkerber | "A factory for creating HCP lattices."
|
| 82 | 1 | tkerber | xtal_name = "hcp"
|
| 83 | 1 | tkerber | bravais_basis = [[0,0,0], [1.0/3.0, 2.0/3.0, 0.5]] |
| 84 | 1 | tkerber | |
| 85 | 1 | tkerber | HexagonalClosedPacked = HexagonalClosedPackedFactory() |
| 86 | 1 | tkerber | |
| 87 | 1 | tkerber | class GraphiteFactory(HexagonalFactory): |
| 88 | 1 | tkerber | "A factory for creating graphite lattices."
|
| 89 | 1 | tkerber | xtal_name = "graphite"
|
| 90 | 1 | tkerber | bravais_basis = [[0,0,0], [1.0/3.0, 2.0/3.0, 0], [1.0/3.0,2.0/3.0,0.5], [2.0/3.0,1.0/3.0,0.5]] |
| 91 | 1 | tkerber | |
| 92 | 1 | tkerber | Graphite = GraphiteFactory() |