root / ase / lattice / bravais.py @ 5
Historique | Voir | Annoter | Télécharger (18,3 ko)
| 1 | 1 | tkerber | """Bravais.py - class for generating Bravais lattices etc.
|
|---|---|---|---|
| 2 | 1 | tkerber |
|
| 3 | 1 | tkerber | This is a base class for numerous classes setting up pieces of crystal.
|
| 4 | 1 | tkerber | """
|
| 5 | 1 | tkerber | |
| 6 | 1 | tkerber | import math |
| 7 | 1 | tkerber | import numpy as np |
| 8 | 1 | tkerber | from ase.atoms import Atoms |
| 9 | 1 | tkerber | import ase.data |
| 10 | 1 | tkerber | |
| 11 | 1 | tkerber | class Bravais: |
| 12 | 1 | tkerber | """Bravais lattice factory.
|
| 13 | 1 | tkerber |
|
| 14 | 1 | tkerber | This is a base class for the objects producing various lattices
|
| 15 | 1 | tkerber | (SC, FCC, ...).
|
| 16 | 1 | tkerber | """
|
| 17 | 1 | tkerber | |
| 18 | 1 | tkerber | # The following methods are NOT defined here, but must be defined
|
| 19 | 1 | tkerber | # in classes inhering from Bravais:
|
| 20 | 1 | tkerber | # get_lattice_constant
|
| 21 | 1 | tkerber | # make_crystal_basis
|
| 22 | 1 | tkerber | # The following class attributes are NOT defined here, but must be defined
|
| 23 | 1 | tkerber | # in classes inhering from Bravais:
|
| 24 | 1 | tkerber | # int_basis
|
| 25 | 1 | tkerber | # inverse_basis
|
| 26 | 1 | tkerber | |
| 27 | 1 | tkerber | other = {0:(1,2), 1:(2,0), 2:(0,1)}
|
| 28 | 1 | tkerber | |
| 29 | 1 | tkerber | # For Bravais lattices with a basis, set the basis here. Leave as
|
| 30 | 1 | tkerber | # None if no basis is present.
|
| 31 | 1 | tkerber | bravais_basis = None
|
| 32 | 1 | tkerber | |
| 33 | 1 | tkerber | # If more than one type of element appear in the crystal, give the
|
| 34 | 1 | tkerber | # order here. For example, if two elements appear in a 3:1 ratio,
|
| 35 | 1 | tkerber | # bravais_basis could contain four vectors, and element_basis
|
| 36 | 1 | tkerber | # could be (0,0,1,0) - the third atom in the basis is different
|
| 37 | 1 | tkerber | # from the other three. Leave as None if all atoms are of the
|
| 38 | 1 | tkerber | # same type.
|
| 39 | 1 | tkerber | element_basis = None
|
| 40 | 1 | tkerber | |
| 41 | 1 | tkerber | # How small numbers should be considered zero in the unit cell?
|
| 42 | 1 | tkerber | chop_tolerance = 1e-10
|
| 43 | 1 | tkerber | |
| 44 | 1 | tkerber | def __call__(self, symbol, |
| 45 | 1 | tkerber | directions=(None,None,None), miller=(None,None,None), |
| 46 | 1 | tkerber | size=(1,1,1), latticeconstant=None, |
| 47 | 1 | tkerber | pbc=True, align=True, debug=0): |
| 48 | 1 | tkerber | "Create a lattice."
|
| 49 | 1 | tkerber | self.size = size
|
| 50 | 1 | tkerber | self.pbc = pbc
|
| 51 | 1 | tkerber | self.debug = debug
|
| 52 | 1 | tkerber | self.process_element(symbol)
|
| 53 | 1 | tkerber | self.find_directions(directions, miller)
|
| 54 | 1 | tkerber | if self.debug: |
| 55 | 1 | tkerber | self.print_directions_and_miller()
|
| 56 | 1 | tkerber | self.convert_to_natural_basis()
|
| 57 | 1 | tkerber | if self.debug >= 2: |
| 58 | 1 | tkerber | self.print_directions_and_miller(" (natural basis)") |
| 59 | 1 | tkerber | if latticeconstant is None: |
| 60 | 1 | tkerber | if self.element_basis is None: |
| 61 | 1 | tkerber | self.latticeconstant = self.get_lattice_constant() |
| 62 | 1 | tkerber | else:
|
| 63 | 1 | tkerber | raise ValueError,\ |
| 64 | 1 | tkerber | "A lattice constant must be specified for a compound"
|
| 65 | 1 | tkerber | else:
|
| 66 | 1 | tkerber | self.latticeconstant = latticeconstant
|
| 67 | 1 | tkerber | if self.debug: |
| 68 | 1 | tkerber | print "Expected number of atoms in unit cell:", self.calc_num_atoms() |
| 69 | 1 | tkerber | if self.debug >= 2: |
| 70 | 1 | tkerber | print "Bravais lattice basis:", self.bravais_basis |
| 71 | 1 | tkerber | if self.bravais_basis is not None: |
| 72 | 1 | tkerber | print " ... in natural basis:", self.natural_bravais_basis |
| 73 | 1 | tkerber | self.make_crystal_basis()
|
| 74 | 1 | tkerber | self.make_unit_cell()
|
| 75 | 1 | tkerber | if align:
|
| 76 | 1 | tkerber | self.align()
|
| 77 | 1 | tkerber | return self.make_list_of_atoms() |
| 78 | 1 | tkerber | |
| 79 | 1 | tkerber | def align(self): |
| 80 | 1 | tkerber | "Align the first axis along x-axis and the second in the x-y plane."
|
| 81 | 1 | tkerber | degree = 180/np.pi
|
| 82 | 1 | tkerber | if self.debug >= 2: |
| 83 | 1 | tkerber | print "Basis before alignment:" |
| 84 | 1 | tkerber | print self.basis |
| 85 | 1 | tkerber | if self.basis[0][0]**2 + self.basis[0][2]**2 < 0.01 * self.basis[0][1]**2: |
| 86 | 1 | tkerber | # First basis vector along y axis - rotate 90 deg along z
|
| 87 | 1 | tkerber | t = np.array([[0, -1, 0], |
| 88 | 1 | tkerber | [1, 0, 0], |
| 89 | 1 | tkerber | [0, 0, 1]], np.float) |
| 90 | 1 | tkerber | self.basis = np.dot(self.basis, t) |
| 91 | 1 | tkerber | transf = t |
| 92 | 1 | tkerber | if self.debug >= 2: |
| 93 | 1 | tkerber | print "Rotating -90 degrees around z axis for numerical stability." |
| 94 | 1 | tkerber | print self.basis |
| 95 | 1 | tkerber | else:
|
| 96 | 1 | tkerber | transf = np.identity(3, np.float)
|
| 97 | 1 | tkerber | assert abs(np.linalg.det(transf) - 1) < 1e-6 |
| 98 | 1 | tkerber | # Rotate first basis vector into xy plane
|
| 99 | 1 | tkerber | theta = math.atan2(self.basis[0,2], self.basis[0,0]) |
| 100 | 1 | tkerber | t = np.array([[np.cos(theta), 0, -np.sin(theta)],
|
| 101 | 1 | tkerber | [ 0, 1, 0 ], |
| 102 | 1 | tkerber | [np.sin(theta), 0, np.cos(theta) ]])
|
| 103 | 1 | tkerber | self.basis = np.dot(self.basis, t) |
| 104 | 1 | tkerber | transf = np.dot(transf, t) |
| 105 | 1 | tkerber | if self.debug >= 2: |
| 106 | 1 | tkerber | print "Rotating %f degrees around y axis." % (-theta*degree,) |
| 107 | 1 | tkerber | print self.basis |
| 108 | 1 | tkerber | assert abs(np.linalg.det(transf) - 1) < 1e-6 |
| 109 | 1 | tkerber | # Rotate first basis vector to point along x axis
|
| 110 | 1 | tkerber | theta = math.atan2(self.basis[0,1], self.basis[0,0]) |
| 111 | 1 | tkerber | t = np.array([[np.cos(theta), -np.sin(theta), 0],
|
| 112 | 1 | tkerber | [np.sin(theta), np.cos(theta), 0],
|
| 113 | 1 | tkerber | [ 0, 0, 1]]) |
| 114 | 1 | tkerber | self.basis = np.dot(self.basis, t) |
| 115 | 1 | tkerber | transf = np.dot(transf, t) |
| 116 | 1 | tkerber | if self.debug >= 2: |
| 117 | 1 | tkerber | print "Rotating %f degrees around z axis." % (-theta*degree,) |
| 118 | 1 | tkerber | print self.basis |
| 119 | 1 | tkerber | assert abs(np.linalg.det(transf) - 1) < 1e-6 |
| 120 | 1 | tkerber | # Rotate second basis vector into xy plane
|
| 121 | 1 | tkerber | theta = math.atan2(self.basis[1,2], self.basis[1,1]) |
| 122 | 1 | tkerber | t = np.array([[1, 0, 0], |
| 123 | 1 | tkerber | [0, np.cos(theta), -np.sin(theta)],
|
| 124 | 1 | tkerber | [0, np.sin(theta), np.cos(theta)]])
|
| 125 | 1 | tkerber | self.basis = np.dot(self.basis, t) |
| 126 | 1 | tkerber | transf = np.dot(transf, t) |
| 127 | 1 | tkerber | if self.debug >= 2: |
| 128 | 1 | tkerber | print "Rotating %f degrees around x axis." % (-theta*degree,) |
| 129 | 1 | tkerber | print self.basis |
| 130 | 1 | tkerber | assert abs(np.linalg.det(transf) - 1) < 1e-6 |
| 131 | 1 | tkerber | # Now we better rotate the atoms as well
|
| 132 | 1 | tkerber | self.atoms = np.dot(self.atoms, transf) |
| 133 | 1 | tkerber | # ... and rotate miller_basis
|
| 134 | 1 | tkerber | self.miller_basis = np.dot(self.miller_basis, transf) |
| 135 | 1 | tkerber | |
| 136 | 1 | tkerber | def make_list_of_atoms(self): |
| 137 | 1 | tkerber | "Repeat the unit cell."
|
| 138 | 1 | tkerber | nrep = self.size[0] * self.size[1] * self.size[2] |
| 139 | 1 | tkerber | if nrep <= 0: |
| 140 | 1 | tkerber | raise ValueError, "Cannot create a non-positive number of unit cells" |
| 141 | 1 | tkerber | # Now the unit cells must be merged.
|
| 142 | 1 | tkerber | a2 = [] |
| 143 | 1 | tkerber | e2 = [] |
| 144 | 1 | tkerber | for i in xrange(self.size[0]): |
| 145 | 1 | tkerber | offset = self.basis[0] * i |
| 146 | 1 | tkerber | a2.append(self.atoms + offset[np.newaxis,:])
|
| 147 | 1 | tkerber | e2.append(self.elements)
|
| 148 | 1 | tkerber | atoms = np.concatenate(a2) |
| 149 | 1 | tkerber | elements = np.concatenate(e2) |
| 150 | 1 | tkerber | a2 = [] |
| 151 | 1 | tkerber | e2 = [] |
| 152 | 1 | tkerber | for j in xrange(self.size[1]): |
| 153 | 1 | tkerber | offset = self.basis[1] * j |
| 154 | 1 | tkerber | a2.append(atoms + offset[np.newaxis,:]) |
| 155 | 1 | tkerber | e2.append(elements) |
| 156 | 1 | tkerber | atoms = np.concatenate(a2) |
| 157 | 1 | tkerber | elements = np.concatenate(e2) |
| 158 | 1 | tkerber | a2 = [] |
| 159 | 1 | tkerber | e2 = [] |
| 160 | 1 | tkerber | for k in xrange(self.size[2]): |
| 161 | 1 | tkerber | offset = self.basis[2] * k |
| 162 | 1 | tkerber | a2.append(atoms + offset[np.newaxis,:]) |
| 163 | 1 | tkerber | e2.append(elements) |
| 164 | 1 | tkerber | atoms = np.concatenate(a2) |
| 165 | 1 | tkerber | elements = np.concatenate(e2) |
| 166 | 1 | tkerber | del a2, e2
|
| 167 | 1 | tkerber | assert len(atoms) == nrep * len(self.atoms) |
| 168 | 1 | tkerber | basis = np.array([[self.size[0],0,0], |
| 169 | 1 | tkerber | [0,self.size[1],0], |
| 170 | 1 | tkerber | [0,0,self.size[2]]]) |
| 171 | 1 | tkerber | basis = np.dot(basis, self.basis)
|
| 172 | 1 | tkerber | |
| 173 | 1 | tkerber | # Tiny elements should be replaced by zero. The cutoff is
|
| 174 | 1 | tkerber | # determined by chop_tolerance which is a class attribute.
|
| 175 | 1 | tkerber | basis = np.where(np.abs(basis) < self.chop_tolerance,
|
| 176 | 1 | tkerber | 0.0, basis)
|
| 177 | 1 | tkerber | |
| 178 | 1 | tkerber | # None should be replaced, and memory should be freed.
|
| 179 | 1 | tkerber | lattice = Lattice(positions=atoms, cell=basis, numbers=elements, |
| 180 | 1 | tkerber | pbc=self.pbc)
|
| 181 | 1 | tkerber | lattice.millerbasis = self.miller_basis
|
| 182 | 1 | tkerber | # Add info for lattice.surface.AddAdsorbate
|
| 183 | 1 | tkerber | lattice._addsorbate_info_size = np.array(self.size[:2]) |
| 184 | 1 | tkerber | return lattice
|
| 185 | 1 | tkerber | |
| 186 | 1 | tkerber | def process_element(self, element): |
| 187 | 1 | tkerber | "Extract atomic number from element"
|
| 188 | 1 | tkerber | # The types that can be elements: integers and strings
|
| 189 | 1 | tkerber | if self.element_basis is None: |
| 190 | 1 | tkerber | if isinstance(element, type("string")): |
| 191 | 1 | tkerber | self.atomicnumber = ase.data.atomic_numbers[element]
|
| 192 | 1 | tkerber | elif isinstance(element, int): |
| 193 | 1 | tkerber | self.atomicnumber = element
|
| 194 | 1 | tkerber | else:
|
| 195 | 1 | tkerber | raise TypeError("The symbol argument must be a string or an atomic number.") |
| 196 | 1 | tkerber | else:
|
| 197 | 1 | tkerber | atomicnumber = [] |
| 198 | 1 | tkerber | try:
|
| 199 | 1 | tkerber | if len(element) != max(self.element_basis) + 1: |
| 200 | 1 | tkerber | oops = True
|
| 201 | 1 | tkerber | else:
|
| 202 | 1 | tkerber | oops = False
|
| 203 | 1 | tkerber | except TypeError: |
| 204 | 1 | tkerber | oops = True
|
| 205 | 1 | tkerber | if oops:
|
| 206 | 1 | tkerber | raise TypeError( |
| 207 | 1 | tkerber | ("The symbol argument must be a sequence of length %d"
|
| 208 | 1 | tkerber | +" (one for each kind of lattice position")
|
| 209 | 1 | tkerber | % (max(self.element_basis)+1,)) |
| 210 | 1 | tkerber | for e in element: |
| 211 | 1 | tkerber | if isinstance(e, type("string")): |
| 212 | 1 | tkerber | atomicnumber.append(ase.data.atomic_numbers[e]) |
| 213 | 1 | tkerber | elif isinstance(element, int): |
| 214 | 1 | tkerber | atomicnumber.append(e) |
| 215 | 1 | tkerber | else:
|
| 216 | 1 | tkerber | raise TypeError("The symbols argument must be a sequence of strings or atomic numbers.") |
| 217 | 1 | tkerber | self.atomicnumber = [atomicnumber[i] for i in self.element_basis] |
| 218 | 1 | tkerber | assert len(self.atomicnumber) == len(self.bravais_basis) |
| 219 | 1 | tkerber | |
| 220 | 1 | tkerber | def convert_to_natural_basis(self): |
| 221 | 1 | tkerber | "Convert directions and miller indices to the natural basis."
|
| 222 | 1 | tkerber | self.directions = np.dot(self.directions, self.inverse_basis) |
| 223 | 1 | tkerber | if self.bravais_basis is not None: |
| 224 | 1 | tkerber | self.natural_bravais_basis = np.dot(self.bravais_basis, |
| 225 | 1 | tkerber | self.inverse_basis)
|
| 226 | 1 | tkerber | for i in (0,1,2): |
| 227 | 1 | tkerber | self.directions[i] = reduceindex(self.directions[i]) |
| 228 | 1 | tkerber | for i in (0,1,2): |
| 229 | 1 | tkerber | (j,k) = self.other[i]
|
| 230 | 1 | tkerber | self.miller[i] = reduceindex(self.handedness * |
| 231 | 1 | tkerber | cross(self.directions[j],
|
| 232 | 1 | tkerber | self.directions[k]))
|
| 233 | 1 | tkerber | |
| 234 | 1 | tkerber | def calc_num_atoms(self): |
| 235 | 1 | tkerber | v = int(round(abs(np.linalg.det(self.directions)))) |
| 236 | 1 | tkerber | if self.bravais_basis is None: |
| 237 | 1 | tkerber | return v
|
| 238 | 1 | tkerber | else:
|
| 239 | 1 | tkerber | return v * len(self.bravais_basis) |
| 240 | 1 | tkerber | |
| 241 | 1 | tkerber | def make_unit_cell(self): |
| 242 | 1 | tkerber | "Make the unit cell."
|
| 243 | 1 | tkerber | # Make three loops, and find the positions in the integral
|
| 244 | 1 | tkerber | # lattice. Each time a position is found, the atom is placed
|
| 245 | 1 | tkerber | # in the real unit cell by put_atom().
|
| 246 | 1 | tkerber | self.natoms = self.calc_num_atoms() |
| 247 | 1 | tkerber | self.nput = 0 |
| 248 | 1 | tkerber | self.atoms = np.zeros((self.natoms,3), np.float) |
| 249 | 1 | tkerber | self.elements = np.zeros(self.natoms, np.int) |
| 250 | 1 | tkerber | self.farpoint = farpoint = sum(self.directions) |
| 251 | 1 | tkerber | #printprogress = self.debug and (len(self.atoms) > 250)
|
| 252 | 1 | tkerber | percent = 0
|
| 253 | 1 | tkerber | # Find the radius of the sphere containing the whole system
|
| 254 | 1 | tkerber | sqrad = 0
|
| 255 | 1 | tkerber | for i in (0,1): |
| 256 | 1 | tkerber | for j in (0,1): |
| 257 | 1 | tkerber | for k in (0,1): |
| 258 | 1 | tkerber | vect = (i * self.directions[0] + |
| 259 | 1 | tkerber | j * self.directions[1] + |
| 260 | 1 | tkerber | k * self.directions[2]) |
| 261 | 1 | tkerber | if np.dot(vect,vect) > sqrad:
|
| 262 | 1 | tkerber | sqrad = np.dot(vect,vect) |
| 263 | 1 | tkerber | del i,j,k
|
| 264 | 1 | tkerber | # Loop along first crystal axis (i)
|
| 265 | 1 | tkerber | for (istart, istep) in ((0,1), (-1,-1)): |
| 266 | 1 | tkerber | i = istart |
| 267 | 1 | tkerber | icont = True
|
| 268 | 1 | tkerber | while icont:
|
| 269 | 1 | tkerber | nj = 0
|
| 270 | 1 | tkerber | for (jstart, jstep) in ((0,1), (-1,-1)): |
| 271 | 1 | tkerber | j = jstart |
| 272 | 1 | tkerber | jcont = True
|
| 273 | 1 | tkerber | while jcont:
|
| 274 | 1 | tkerber | nk = 0
|
| 275 | 1 | tkerber | for (kstart, kstep) in ((0,1), (-1,-1)): |
| 276 | 1 | tkerber | k = kstart |
| 277 | 1 | tkerber | #print "Starting line i=%d, j=%d, k=%d, step=(%d,%d,%d)" % (i,j,k,istep,jstep,kstep)
|
| 278 | 1 | tkerber | kcont = True
|
| 279 | 1 | tkerber | while kcont:
|
| 280 | 1 | tkerber | # Now (i,j,k) loops over Z^3, except that
|
| 281 | 1 | tkerber | # the loops can be cut off when we get outside
|
| 282 | 1 | tkerber | # the unit cell.
|
| 283 | 1 | tkerber | point = np.array((i,j,k)) |
| 284 | 1 | tkerber | if self.inside(point): |
| 285 | 1 | tkerber | self.put_atom(point)
|
| 286 | 1 | tkerber | nk += 1
|
| 287 | 1 | tkerber | nj += 1
|
| 288 | 1 | tkerber | # Is k too high?
|
| 289 | 1 | tkerber | if np.dot(point,point) > sqrad:
|
| 290 | 1 | tkerber | assert not self.inside(point) |
| 291 | 1 | tkerber | kcont = False
|
| 292 | 1 | tkerber | k += kstep |
| 293 | 1 | tkerber | # Is j too high?
|
| 294 | 1 | tkerber | if i*i+j*j > sqrad:
|
| 295 | 1 | tkerber | jcont = False
|
| 296 | 1 | tkerber | j += jstep |
| 297 | 1 | tkerber | # Is i too high?
|
| 298 | 1 | tkerber | if i*i > sqrad:
|
| 299 | 1 | tkerber | icont = False
|
| 300 | 1 | tkerber | i += istep |
| 301 | 1 | tkerber | #if printprogress:
|
| 302 | 1 | tkerber | # perce = int(100*self.nput / len(self.atoms))
|
| 303 | 1 | tkerber | # if perce > percent + 10:
|
| 304 | 1 | tkerber | # print ("%d%%" % perce),
|
| 305 | 1 | tkerber | # percent = perce
|
| 306 | 1 | tkerber | assert(self.nput == self.natoms) |
| 307 | 1 | tkerber | |
| 308 | 1 | tkerber | def inside(self, point): |
| 309 | 1 | tkerber | "Is a point inside the unit cell?"
|
| 310 | 1 | tkerber | return (np.dot(self.miller[0], point) >= 0 and |
| 311 | 1 | tkerber | np.dot(self.miller[0], point - self.farpoint) < 0 and |
| 312 | 1 | tkerber | np.dot(self.miller[1], point) >= 0 and |
| 313 | 1 | tkerber | np.dot(self.miller[1], point - self.farpoint) < 0 and |
| 314 | 1 | tkerber | np.dot(self.miller[2], point) >= 0 and |
| 315 | 1 | tkerber | np.dot(self.miller[2], point - self.farpoint) < 0) |
| 316 | 1 | tkerber | |
| 317 | 1 | tkerber | def put_atom(self, point): |
| 318 | 1 | tkerber | "Place an atom given its integer coordinates."
|
| 319 | 1 | tkerber | if self.bravais_basis is None: |
| 320 | 1 | tkerber | # No basis - just place a single atom
|
| 321 | 1 | tkerber | pos = np.dot(point, self.crystal_basis)
|
| 322 | 1 | tkerber | if self.debug >= 2: |
| 323 | 1 | tkerber | print ("Placing an atom at (%d,%d,%d) ~ (%.3f, %.3f, %.3f)." |
| 324 | 1 | tkerber | % (tuple(point) + tuple(pos))) |
| 325 | 1 | tkerber | self.atoms[self.nput] = pos |
| 326 | 1 | tkerber | self.elements[self.nput] = self.atomicnumber |
| 327 | 1 | tkerber | self.nput += 1 |
| 328 | 1 | tkerber | else:
|
| 329 | 1 | tkerber | for i, offset in enumerate(self.natural_bravais_basis): |
| 330 | 1 | tkerber | pos = np.dot(point + offset, self.crystal_basis)
|
| 331 | 1 | tkerber | if self.debug >= 2: |
| 332 | 1 | tkerber | print ("Placing an atom at (%d+%f, %d+%f, %d+%f) ~ (%.3f, %.3f, %.3f)." |
| 333 | 1 | tkerber | % (point[0], offset[0], point[1], offset[1], |
| 334 | 1 | tkerber | point[2], offset[2], pos[0], pos[1], pos[2])) |
| 335 | 1 | tkerber | self.atoms[self.nput] = pos |
| 336 | 1 | tkerber | if self.element_basis is None: |
| 337 | 1 | tkerber | self.elements[self.nput] = self.atomicnumber |
| 338 | 1 | tkerber | else:
|
| 339 | 1 | tkerber | self.elements[self.nput] = self.atomicnumber[i] |
| 340 | 1 | tkerber | self.nput += 1 |
| 341 | 1 | tkerber | |
| 342 | 1 | tkerber | def find_directions(self, directions, miller): |
| 343 | 1 | tkerber | "Find missing directions and miller indices from the specified ones."
|
| 344 | 1 | tkerber | directions = list(directions)
|
| 345 | 1 | tkerber | miller = list(miller)
|
| 346 | 1 | tkerber | # If no directions etc are specified, use a sensible default.
|
| 347 | 1 | tkerber | if directions == [None, None, None] and miller == [None, None, None]: |
| 348 | 1 | tkerber | directions = [[1,0,0], [0,1,0], [0,0,1]] |
| 349 | 1 | tkerber | # Now fill in missing directions and miller indices. This is an
|
| 350 | 1 | tkerber | # iterative process.
|
| 351 | 1 | tkerber | change = 1
|
| 352 | 1 | tkerber | while change:
|
| 353 | 1 | tkerber | change = False
|
| 354 | 1 | tkerber | missing = 0
|
| 355 | 1 | tkerber | for i in (0,1,2): |
| 356 | 1 | tkerber | (j,k) = self.other[i]
|
| 357 | 1 | tkerber | if directions[i] is None: |
| 358 | 1 | tkerber | missing += 1
|
| 359 | 1 | tkerber | if miller[j] is not None and miller[k] is not None: |
| 360 | 1 | tkerber | directions[i] = reduceindex(cross(miller[j], |
| 361 | 1 | tkerber | miller[k])) |
| 362 | 1 | tkerber | change = True
|
| 363 | 1 | tkerber | if self.debug >= 2: |
| 364 | 1 | tkerber | print "Calculating directions[%d] from miller indices" % i |
| 365 | 1 | tkerber | if miller[i] is None: |
| 366 | 1 | tkerber | missing += 1
|
| 367 | 1 | tkerber | if directions[j] is not None and directions[k] is not None: |
| 368 | 1 | tkerber | miller[i] = reduceindex(cross(directions[j], |
| 369 | 1 | tkerber | directions[k])) |
| 370 | 1 | tkerber | change = True
|
| 371 | 1 | tkerber | if self.debug >= 2: |
| 372 | 1 | tkerber | print "Calculating miller[%d] from directions" % i |
| 373 | 1 | tkerber | if missing:
|
| 374 | 1 | tkerber | raise ValueError, "Specification of directions and miller indices is incomplete." |
| 375 | 1 | tkerber | # Make sure that everything is Numeric arrays
|
| 376 | 1 | tkerber | self.directions = np.array(directions)
|
| 377 | 1 | tkerber | self.miller = np.array(miller)
|
| 378 | 1 | tkerber | # Check for left-handed coordinate system
|
| 379 | 1 | tkerber | if np.linalg.det(self.directions) < 0: |
| 380 | 1 | tkerber | print "WARNING: Creating a left-handed coordinate system!" |
| 381 | 1 | tkerber | self.miller = -self.miller |
| 382 | 1 | tkerber | self.handedness = -1 |
| 383 | 1 | tkerber | else:
|
| 384 | 1 | tkerber | self.handedness = 1 |
| 385 | 1 | tkerber | # Now check for consistency
|
| 386 | 1 | tkerber | for i in (0,1,2): |
| 387 | 1 | tkerber | (j,k) = self.other[i]
|
| 388 | 1 | tkerber | m = reduceindex(self.handedness *
|
| 389 | 1 | tkerber | cross(self.directions[j], self.directions[k])) |
| 390 | 1 | tkerber | if sum(np.not_equal(m, self.miller[i])): |
| 391 | 1 | tkerber | print "ERROR: Miller index %s is inconsisten with directions %d and %d" % (i,j,k) |
| 392 | 1 | tkerber | print "Miller indices:" |
| 393 | 1 | tkerber | print str(self.miller) |
| 394 | 1 | tkerber | print "Directions:" |
| 395 | 1 | tkerber | print str(self.directions) |
| 396 | 1 | tkerber | raise ValueError, "Inconsistent specification of miller indices and directions." |
| 397 | 1 | tkerber | |
| 398 | 1 | tkerber | def print_directions_and_miller(self, txt=""): |
| 399 | 1 | tkerber | "Print direction vectors and Miller indices."
|
| 400 | 1 | tkerber | print "Direction vectors of unit cell%s:" % (txt,) |
| 401 | 1 | tkerber | for i in (0,1,2): |
| 402 | 1 | tkerber | print " ", self.directions[i] |
| 403 | 1 | tkerber | print "Miller indices of surfaces%s:" % (txt,) |
| 404 | 1 | tkerber | for i in (0,1,2): |
| 405 | 1 | tkerber | print " ", self.miller[i] |
| 406 | 1 | tkerber | |
| 407 | 1 | tkerber | class MillerInfo: |
| 408 | 1 | tkerber | """Mixin class to provide information about Miller indices."""
|
| 409 | 1 | tkerber | def miller_to_direction(self, miller): |
| 410 | 1 | tkerber | """Returns the direction corresponding to a given Miller index."""
|
| 411 | 1 | tkerber | return np.dot(miller, self.millerbasis) |
| 412 | 1 | tkerber | |
| 413 | 1 | tkerber | class Lattice(Atoms, MillerInfo): |
| 414 | 1 | tkerber | """List of atoms initially containing a regular lattice of atoms.
|
| 415 | 1 | tkerber |
|
| 416 | 1 | tkerber | A part from the usual list of atoms methods this list of atoms type
|
| 417 | 1 | tkerber | also has a method, `miller_to_direction`, used to convert from Miller
|
| 418 | 1 | tkerber | indices to directions in the coordinate system of the lattice.
|
| 419 | 1 | tkerber | """
|
| 420 | 1 | tkerber | pass
|
| 421 | 1 | tkerber | |
| 422 | 1 | tkerber | # Helper functions
|
| 423 | 1 | tkerber | def cross(a, b): |
| 424 | 1 | tkerber | """The cross product of two vectors."""
|
| 425 | 1 | tkerber | return np.array((a[1]*b[2] - b[1]*a[2], |
| 426 | 1 | tkerber | a[2]*b[0] - b[2]*a[0], |
| 427 | 1 | tkerber | a[0]*b[1] - b[0]*a[1])) |
| 428 | 1 | tkerber | |
| 429 | 1 | tkerber | def gcd(a,b): |
| 430 | 1 | tkerber | """Greatest Common Divisor of a and b."""
|
| 431 | 1 | tkerber | while a != 0: |
| 432 | 1 | tkerber | a,b = b%a,a |
| 433 | 1 | tkerber | return b
|
| 434 | 1 | tkerber | |
| 435 | 1 | tkerber | def reduceindex(M): |
| 436 | 1 | tkerber | "Reduce Miller index to the lowest equivalent integers."
|
| 437 | 1 | tkerber | oldM = M |
| 438 | 1 | tkerber | g = gcd(M[0], M[1]) |
| 439 | 1 | tkerber | h = gcd(g, M[2])
|
| 440 | 1 | tkerber | while h != 1: |
| 441 | 1 | tkerber | M = M/h |
| 442 | 1 | tkerber | g = gcd(M[0], M[1]) |
| 443 | 1 | tkerber | h = gcd(g, M[2])
|
| 444 | 1 | tkerber | if np.dot(oldM, M) > 0: |
| 445 | 1 | tkerber | return M
|
| 446 | 1 | tkerber | else:
|
| 447 | 1 | tkerber | return -M
|