root / ase / visualize / vtk / grid.py @ 4
Historique | Voir | Annoter | Télécharger (10,83 ko)
| 1 |
|
|---|---|
| 2 |
import numpy as np |
| 3 |
|
| 4 |
from vtk import vtkPointData, vtkDataArray, vtkUnstructuredGrid, vtkPoints, \ |
| 5 |
vtkIdList, vtkStructuredPoints |
| 6 |
from ase.visualize.vtk.cell import vtkUnitCellModule |
| 7 |
from ase.visualize.vtk.data import vtkDataArrayFromNumPyBuffer, \ |
| 8 |
vtkDoubleArrayFromNumPyArray, \
|
| 9 |
vtkDoubleArrayFromNumPyMultiArray
|
| 10 |
|
| 11 |
# -------------------------------------------------------------------
|
| 12 |
|
| 13 |
class vtkBaseGrid: |
| 14 |
def __init__(self, npoints, cell): |
| 15 |
self.npoints = npoints
|
| 16 |
|
| 17 |
# Make sure cell argument is correct type
|
| 18 |
assert isinstance(cell, vtkUnitCellModule) |
| 19 |
self.cell = cell
|
| 20 |
|
| 21 |
self.vtk_pointdata = None |
| 22 |
|
| 23 |
def set_point_data(self, vtk_pointdata): |
| 24 |
if self.vtk_pointdata is not None: |
| 25 |
raise RuntimeError('VTK point data already present.') |
| 26 |
|
| 27 |
assert isinstance(vtk_pointdata, vtkPointData) |
| 28 |
self.vtk_pointdata = vtk_pointdata
|
| 29 |
#self.vtk_pointdata.SetCopyScalars(False)
|
| 30 |
#self.vtk_pointdata.SetCopyVectors(False)
|
| 31 |
#self.vtk_pointdata.SetCopyNormals(False)
|
| 32 |
|
| 33 |
def get_point_data(self): |
| 34 |
if self.vtk_pointdata is None: |
| 35 |
raise RuntimeError('VTK point data missing.') |
| 36 |
|
| 37 |
return self.vtk_pointdata |
| 38 |
|
| 39 |
def get_number_of_points(self): |
| 40 |
return self.npoints |
| 41 |
|
| 42 |
def add_scalar_data_array(self, data, name=None, active=True): |
| 43 |
|
| 44 |
# Are we converting from NumPy buffer to VTK array?
|
| 45 |
if isinstance(data, vtkDataArray): |
| 46 |
vtk_sda = data |
| 47 |
elif isinstance(data, vtkDataArrayFromNumPyBuffer): |
| 48 |
vtk_sda = data.get_output() |
| 49 |
else:
|
| 50 |
raise ValueError('Data is not a valid scalar data array.') |
| 51 |
|
| 52 |
del data
|
| 53 |
|
| 54 |
assert vtk_sda.GetNumberOfComponents() == 1 |
| 55 |
assert vtk_sda.GetNumberOfTuples() == self.npoints |
| 56 |
|
| 57 |
if name is not None: |
| 58 |
vtk_sda.SetName(name) |
| 59 |
|
| 60 |
# Add VTK array to VTK point data
|
| 61 |
self.vtk_pointdata.AddArray(vtk_sda)
|
| 62 |
|
| 63 |
if active:
|
| 64 |
self.vtk_pointdata.SetActiveScalars(name)
|
| 65 |
|
| 66 |
return vtk_sda
|
| 67 |
|
| 68 |
def add_vector_data_array(self, data, name=None, active=True): |
| 69 |
|
| 70 |
# Are we converting from NumPy buffer to VTK array?
|
| 71 |
if isinstance(data, vtkDataArray): |
| 72 |
vtk_vda = data |
| 73 |
elif isinstance(data, vtkDataArrayFromNumPyBuffer): |
| 74 |
vtk_vda = data.get_output() |
| 75 |
else:
|
| 76 |
raise ValueError('Data is not a valid vector data array.') |
| 77 |
|
| 78 |
del data
|
| 79 |
|
| 80 |
assert vtk_vda.GetNumberOfComponents() == 3 |
| 81 |
assert vtk_vda.GetNumberOfTuples() == self.npoints |
| 82 |
|
| 83 |
if name is not None: |
| 84 |
vtk_vda.SetName(name) |
| 85 |
|
| 86 |
# Add VTK array to VTK point data
|
| 87 |
self.vtk_pointdata.AddArray(vtk_vda)
|
| 88 |
|
| 89 |
if active:
|
| 90 |
self.vtk_pointdata.SetActiveVectors(name)
|
| 91 |
|
| 92 |
return vtk_vda
|
| 93 |
|
| 94 |
# -------------------------------------------------------------------
|
| 95 |
|
| 96 |
class vtkAtomicPositions(vtkBaseGrid): |
| 97 |
"""Provides an interface for adding ``Atoms``-centered data to VTK
|
| 98 |
modules. Atomic positions, e.g. obtained using atoms.get_positions(),
|
| 99 |
constitute an unstructured grid in VTK, to which scalar and vector
|
| 100 |
can be added as point data sets.
|
| 101 |
|
| 102 |
Just like ``Atoms``, instances of ``vtkAtomicPositions`` can be divided
|
| 103 |
into subsets, which makes it easy to select atoms and add properties.
|
| 104 |
|
| 105 |
Example:
|
| 106 |
|
| 107 |
>>> cell = vtkUnitCellModule(atoms)
|
| 108 |
>>> apos = vtkAtomicPositions(atoms.get_positions(), cell)
|
| 109 |
>>> apos.add_scalar_property(atoms.get_charges(), 'charges')
|
| 110 |
>>> apos.add_vector_property(atoms.get_forces(), 'forces')
|
| 111 |
|
| 112 |
"""
|
| 113 |
def __init__(self, pos, cell): |
| 114 |
"""Construct basic VTK-representation of a set of atomic positions.
|
| 115 |
|
| 116 |
pos: NumPy array of dtype float and shape ``(n,3)``
|
| 117 |
Cartesian positions of the atoms.
|
| 118 |
cell: Instance of vtkUnitCellModule of subclass thereof
|
| 119 |
Holds information equivalent to that of atoms.get_cell().
|
| 120 |
|
| 121 |
"""
|
| 122 |
# Make sure position argument is a valid array
|
| 123 |
if not isinstance(pos, np.ndarray): |
| 124 |
pos = np.array(pos) |
| 125 |
|
| 126 |
assert pos.dtype == float and pos.shape[1:] == (3,) |
| 127 |
|
| 128 |
vtkBaseGrid.__init__(self, len(pos), cell) |
| 129 |
|
| 130 |
# Convert positions to VTK array
|
| 131 |
npy2da = vtkDoubleArrayFromNumPyArray(pos) |
| 132 |
vtk_pda = npy2da.get_output() |
| 133 |
del npy2da
|
| 134 |
|
| 135 |
# Transfer atomic positions to VTK points
|
| 136 |
self.vtk_pts = vtkPoints()
|
| 137 |
self.vtk_pts.SetData(vtk_pda)
|
| 138 |
|
| 139 |
# Create a VTK unstructured grid of these points
|
| 140 |
self.vtk_ugd = vtkUnstructuredGrid()
|
| 141 |
self.vtk_ugd.SetWholeBoundingBox(self.cell.get_bounding_box()) |
| 142 |
self.vtk_ugd.SetPoints(self.vtk_pts) |
| 143 |
|
| 144 |
# Extract the VTK point data set
|
| 145 |
self.set_point_data(self.vtk_ugd.GetPointData()) |
| 146 |
|
| 147 |
def get_points(self, subset=None): |
| 148 |
"""Return (subset of) vtkPoints containing atomic positions.
|
| 149 |
|
| 150 |
subset=None: list of int
|
| 151 |
A list of indices into the atomic positions; ignored if None.
|
| 152 |
|
| 153 |
"""
|
| 154 |
if subset is None: |
| 155 |
return self.vtk_pts |
| 156 |
|
| 157 |
# Create a list of indices from the subset
|
| 158 |
vtk_il = vtkIdList() |
| 159 |
for i in subset: |
| 160 |
vtk_il.InsertNextId(i) |
| 161 |
|
| 162 |
# Allocate VTK points for subset
|
| 163 |
vtk_subpts = vtkPoints() |
| 164 |
vtk_subpts.SetDataType(self.vtk_pts.GetDataType())
|
| 165 |
vtk_subpts.SetNumberOfPoints(vtk_il.GetNumberOfIds()) |
| 166 |
|
| 167 |
# Transfer subset of VTK points
|
| 168 |
self.vtk_pts.GetPoints(vtk_il, vtk_subpts)
|
| 169 |
|
| 170 |
return vtk_subpts
|
| 171 |
|
| 172 |
def get_unstructured_grid(self, subset=None): |
| 173 |
"""Return (subset of) an unstructured grid of the atomic positions.
|
| 174 |
|
| 175 |
subset=None: list of int
|
| 176 |
A list of indices into the atomic positions; ignored if None.
|
| 177 |
|
| 178 |
"""
|
| 179 |
if subset is None: |
| 180 |
return self.vtk_ugd |
| 181 |
|
| 182 |
# Get subset of VTK points
|
| 183 |
vtk_subpts = self.get_points(subset)
|
| 184 |
|
| 185 |
# Create a VTK unstructured grid of these points
|
| 186 |
vtk_subugd = vtkUnstructuredGrid() |
| 187 |
vtk_subugd.SetWholeBoundingBox(self.cell.get_bounding_box())
|
| 188 |
vtk_subugd.SetPoints(vtk_subpts) |
| 189 |
|
| 190 |
return vtk_subugd
|
| 191 |
|
| 192 |
def add_scalar_property(self, data, name=None, active=True): |
| 193 |
"""Add VTK-representation of scalar data at the atomic positions.
|
| 194 |
|
| 195 |
data: NumPy array of dtype float and shape ``(n,)``
|
| 196 |
Scalar values corresponding to the atomic positions.
|
| 197 |
name=None: str
|
| 198 |
Unique identifier for the scalar data.
|
| 199 |
active=True: bool
|
| 200 |
Flag indicating whether to use as active scalar data.
|
| 201 |
|
| 202 |
"""
|
| 203 |
# Make sure data argument is a valid array
|
| 204 |
if not isinstance(data, np.ndarray): |
| 205 |
data = np.array(data) |
| 206 |
|
| 207 |
assert data.dtype == float and data.shape == (self.npoints,) |
| 208 |
|
| 209 |
# Convert scalar properties to VTK array
|
| 210 |
npa2da = vtkDoubleArrayFromNumPyArray(data) |
| 211 |
return vtkBaseGrid.add_scalar_data_array(self, npa2da, name, active) |
| 212 |
|
| 213 |
def add_vector_property(self, data, name=None, active=True): |
| 214 |
"""Add VTK-representation of vector data at the atomic positions.
|
| 215 |
|
| 216 |
data: NumPy array of dtype float and shape ``(n,3)``
|
| 217 |
Vector components corresponding to the atomic positions.
|
| 218 |
name=None: str
|
| 219 |
Unique identifier for the vector data.
|
| 220 |
active=True: bool
|
| 221 |
Flag indicating whether to use as active vector data.
|
| 222 |
|
| 223 |
"""
|
| 224 |
# Make sure data argument is a valid array
|
| 225 |
if not isinstance(data, np.ndarray): |
| 226 |
data = np.array(data) |
| 227 |
|
| 228 |
assert data.dtype == float and data.shape == (self.npoints,3,) |
| 229 |
|
| 230 |
# Convert vector properties to VTK array
|
| 231 |
npa2da = vtkDoubleArrayFromNumPyArray(data) |
| 232 |
return vtkBaseGrid.add_vector_data_array(self, npa2da, name, active) |
| 233 |
|
| 234 |
# -------------------------------------------------------------------
|
| 235 |
|
| 236 |
class vtkVolumeGrid(vtkBaseGrid): |
| 237 |
def __init__(self, elements, cell, origin=None): |
| 238 |
|
| 239 |
# Make sure element argument is a valid array
|
| 240 |
if not isinstance(elements, np.ndarray): |
| 241 |
elements = np.array(elements) |
| 242 |
|
| 243 |
assert elements.dtype == int and elements.shape == (3,) |
| 244 |
self.elements = elements
|
| 245 |
|
| 246 |
vtkBaseGrid.__init__(self, np.prod(self.elements), cell) |
| 247 |
|
| 248 |
# Create a VTK grid of structured points
|
| 249 |
self.vtk_spts = vtkStructuredPoints()
|
| 250 |
self.vtk_spts.SetWholeBoundingBox(self.cell.get_bounding_box()) |
| 251 |
self.vtk_spts.SetDimensions(self.elements) |
| 252 |
self.vtk_spts.SetSpacing(self.get_grid_spacing()) |
| 253 |
|
| 254 |
if origin is not None: |
| 255 |
self.vtk_spts.SetOrigin(origin)
|
| 256 |
|
| 257 |
# Extract the VTK point data set
|
| 258 |
self.set_point_data(self.vtk_spts.GetPointData()) |
| 259 |
|
| 260 |
def get_grid_spacing(self): |
| 261 |
# Periodic boundary conditions leave out one boundary along an axis
|
| 262 |
# Zero/fixed boundary conditions leave out both boundaries of an axis
|
| 263 |
return self.cell.get_size()/(self.elements+1.0-self.cell.get_pbc()) |
| 264 |
|
| 265 |
def get_relaxation_factor(self): |
| 266 |
# The relaxation factor is a floating point value between zero and one.
|
| 267 |
# It expresses the need for smoothening (relaxation) e.g. of isosurfaces
|
| 268 |
# due to coarse grid spacings. Larger grid spacing -> larger relaxation.
|
| 269 |
x = self.get_grid_spacing().mean()/self.cell.get_characteristic_length() |
| 270 |
|
| 271 |
# The relaxation function f(x) satisfies the following requirements
|
| 272 |
# f(x) -> 0 for x -> 0+ and f(x) -> b for x -> inf
|
| 273 |
# f'(x) -> a for x -> 0+ and f'(x) -> 0 for x -> inf
|
| 274 |
|
| 275 |
# Furthermore, it is a rescaling of arctan, hence we know
|
| 276 |
# f(x) = 2 b arctan(a pi x / 2 b) / pi
|
| 277 |
|
| 278 |
# Our reference point is x = r for which medium relaxion is needed
|
| 279 |
# f(r) = b/2 <=> r = 2 b / a pi <=> a = 2 b / r pi
|
| 280 |
r = 0.025 # corresponding to 0.2 Ang grid spacing in 8 Ang cell |
| 281 |
b = 0.5
|
| 282 |
f = 2*b*np.arctan(x/r)/np.pi
|
| 283 |
|
| 284 |
if f > 0.1: |
| 285 |
return f.round(1) |
| 286 |
else:
|
| 287 |
return None |
| 288 |
|
| 289 |
def get_structured_points(self): |
| 290 |
return self.vtk_spts |
| 291 |
|
| 292 |
def add_scalar_field(self, data, name=None, active=True): |
| 293 |
|
| 294 |
# Make sure data argument is a valid array
|
| 295 |
if not isinstance(data, np.ndarray): |
| 296 |
data = np.array(data) |
| 297 |
|
| 298 |
assert data.dtype == float and data.shape == tuple(self.elements) |
| 299 |
|
| 300 |
# Convert scalar field to VTK array
|
| 301 |
npa2da = vtkDoubleArrayFromNumPyMultiArray(data[...,np.newaxis]) |
| 302 |
return vtkBaseGrid.add_scalar_data_array(self, npa2da, name, active) |
| 303 |
|
| 304 |
def add_vector_field(self, data, name=None, active=True): |
| 305 |
|
| 306 |
# Make sure data argument is a valid array
|
| 307 |
if not isinstance(data, np.ndarray): |
| 308 |
data = np.array(data) |
| 309 |
|
| 310 |
assert data.dtype == float and data.shape == tuple(self.elements)+(3,) |
| 311 |
|
| 312 |
# Convert vector field to VTK array
|
| 313 |
npa2da = vtkDoubleArrayFromNumPyMultiArray(data) |
| 314 |
return vtkBaseGrid.add_vector_data_array(self, npa2da, name, active) |
| 315 |
|