root / ase / test / emt.py @ 4
Historique | Voir | Annoter | Télécharger (1,54 ko)
| 1 |
import numpy as np |
|---|---|
| 2 |
from ase.calculators.emt import EMT |
| 3 |
from ase import Atoms |
| 4 |
|
| 5 |
a = 3.60
|
| 6 |
b = a / 2
|
| 7 |
cu = Atoms('Cu',
|
| 8 |
positions=[(0, 0, 0)], |
| 9 |
cell=[(0, b, b),
|
| 10 |
(b, 0, b),
|
| 11 |
(b, b, 0)],
|
| 12 |
pbc=1,
|
| 13 |
calculator=EMT()) |
| 14 |
e0 = cu.get_potential_energy() |
| 15 |
print e0
|
| 16 |
|
| 17 |
cu.set_cell(cu.get_cell() * 1.001, scale_atoms=True) |
| 18 |
e1 = cu.get_potential_energy() |
| 19 |
V = a**3 / 4 |
| 20 |
B = 2 * (e1 - e0) / 0.003**2 / V * 160.2 |
| 21 |
print B
|
| 22 |
|
| 23 |
for i in range(4): |
| 24 |
x = 0.001 * i
|
| 25 |
A = np.array([(x, b, b+x), |
| 26 |
(b, 0, b),
|
| 27 |
(b, b, 0)])
|
| 28 |
cu.set_cell(A, scale_atoms=True)
|
| 29 |
e = cu.get_potential_energy() - e0 |
| 30 |
if i == 0: |
| 31 |
print i, e
|
| 32 |
else:
|
| 33 |
print i, e, e / x**2 |
| 34 |
|
| 35 |
A = np.array([(0, b, b),
|
| 36 |
(b, 0, b),
|
| 37 |
(6*b, 6*b, 0)]) |
| 38 |
R = np.zeros((2, 3)) |
| 39 |
for i in range(1, 2): |
| 40 |
R[i] = i * A[2] / 6 |
| 41 |
print (Atoms('Cu2', positions=R, |
| 42 |
pbc=1, cell=A,
|
| 43 |
calculator=EMT()).get_potential_energy() - 2 * e0) / 2 |
| 44 |
|
| 45 |
A = np.array([(0, b, b),
|
| 46 |
(b, 0, b),
|
| 47 |
(10*b, 10*b, 0)]) |
| 48 |
R = np.zeros((3, 3)) |
| 49 |
for i in range(1, 3): |
| 50 |
R[i] = i * A[2] / 10 |
| 51 |
print (Atoms('Cu3', positions=R, |
| 52 |
pbc=1, cell=A,
|
| 53 |
calculator=EMT()).get_potential_energy() - 3 * e0) / 2 |
| 54 |
|
| 55 |
A = np.array([(0, b, b),
|
| 56 |
(b, 0, b),
|
| 57 |
(b, b, 0)])
|
| 58 |
R = np.zeros((3, 3)) |
| 59 |
for i in range(1, 3): |
| 60 |
R[i] = i * A[2]
|
| 61 |
print (Atoms('Cu3', positions=R, |
| 62 |
pbc=(1, 1, 0), cell=A, |
| 63 |
calculator=EMT()).get_potential_energy() - 3 * e0) / 2 |
| 64 |
|