root / ase / gui / surfaceslab.py @ 4
Historique | Voir | Annoter | Télécharger (9,28 ko)
| 1 |
# encoding: utf-8
|
|---|---|
| 2 |
"""surfaceslab.py - Window for setting up surfaces
|
| 3 |
"""
|
| 4 |
|
| 5 |
import gtk |
| 6 |
from ase.gui.widgets import pack, cancel_apply_ok, oops |
| 7 |
from ase.gui.pybutton import PyButton |
| 8 |
from ase.gui.setupwindow import SetupWindow |
| 9 |
import ase.lattice.surface as _surf |
| 10 |
import ase |
| 11 |
import numpy as np |
| 12 |
|
| 13 |
introtext = """\
|
| 14 |
Use this dialog to create surface slabs. Select the element by
|
| 15 |
writing the chemical symbol or the atomic number in the box. Then
|
| 16 |
select the desired surface structure. Note that some structures can
|
| 17 |
be created with an othogonal or a non-orthogonal unit cell, in these
|
| 18 |
cases the non-orthogonal unit cell will contain fewer atoms.
|
| 19 |
|
| 20 |
If the structure matches the experimental crystal structure, you can
|
| 21 |
look up the lattice constant, otherwise you have to specify it
|
| 22 |
yourself."""
|
| 23 |
|
| 24 |
# Name, structure, orthogonal, support-nonorthogonal, function
|
| 25 |
surfaces = [('FCC(100)', 'fcc', True, False, _surf.fcc100), |
| 26 |
('FCC(110)', 'fcc', True, False, _surf.fcc110), |
| 27 |
('FCC(111) non-orthogonal', 'fcc', False, True, _surf.fcc111), |
| 28 |
('FCC(111) orthogonal', 'fcc', True, True, _surf.fcc111), |
| 29 |
('BCC(100)', 'bcc', True, False, _surf.bcc100), |
| 30 |
('BCC(110) non-orthogonal', 'bcc', False, True, _surf.bcc110), |
| 31 |
('BCC(110) orthogonal', 'bcc', True, True, _surf.bcc110), |
| 32 |
('BCC(111) non-orthogonal', 'bcc', False, True, _surf.bcc111), |
| 33 |
('BCC(111) orthogonal', 'bcc', True, True, _surf.bcc111), |
| 34 |
('HCP(0001) non-orthogonal', 'hcp', False, True, _surf.hcp0001), |
| 35 |
('HCP(0001) orthogonal', 'hcp', True, True, _surf.hcp0001), |
| 36 |
] |
| 37 |
|
| 38 |
py_template = """
|
| 39 |
from ase.lattice.surface import %(func)s
|
| 40 |
|
| 41 |
atoms = %(func)s(symbol='%(symbol)s', size=%(size)s,
|
| 42 |
a=%(a).3f, vacuum=%(vacuum).3f%(orthoarg)s)
|
| 43 |
"""
|
| 44 |
|
| 45 |
class SetupSurfaceSlab(SetupWindow): |
| 46 |
"""Window for setting up a surface."""
|
| 47 |
def __init__(self, gui): |
| 48 |
SetupWindow.__init__(self)
|
| 49 |
self.set_title("Surface") |
| 50 |
self.atoms = None |
| 51 |
|
| 52 |
vbox = gtk.VBox() |
| 53 |
|
| 54 |
# Intoductory text
|
| 55 |
self.packtext(vbox, introtext)
|
| 56 |
|
| 57 |
# Choose the element
|
| 58 |
label = gtk.Label("Element: ")
|
| 59 |
element = gtk.Entry(max=3)
|
| 60 |
self.element = element
|
| 61 |
self.elementinfo = gtk.Label("") |
| 62 |
pack(vbox, [label, element, self.elementinfo])
|
| 63 |
self.element.connect('activate', self.update) |
| 64 |
self.legal_element = False |
| 65 |
|
| 66 |
# Choose the surface structure
|
| 67 |
label = gtk.Label("Structure: ")
|
| 68 |
self.structchoice = gtk.combo_box_new_text()
|
| 69 |
self.surfinfo = {}
|
| 70 |
for s in surfaces: |
| 71 |
assert len(s) == 5 |
| 72 |
self.structchoice.append_text(s[0]) |
| 73 |
self.surfinfo[s[0]] = s |
| 74 |
pack(vbox, [label, self.structchoice])
|
| 75 |
self.structchoice.connect('changed', self.update) |
| 76 |
|
| 77 |
# Choose the lattice constant
|
| 78 |
tbl = gtk.Table(2, 3) |
| 79 |
label = gtk.Label("Lattice constant: ")
|
| 80 |
tbl.attach(label, 0, 1, 0, 1) |
| 81 |
vbox2 = gtk.VBox() # For the non-HCP stuff
|
| 82 |
self.vbox_hcp = gtk.VBox() # For the HCP stuff. |
| 83 |
self.lattice_const = gtk.Adjustment(3.0, 0.0, 1000.0, 0.01) |
| 84 |
lattice_box = gtk.SpinButton(self.lattice_const, 10.0, 3) |
| 85 |
lattice_box.numeric = True
|
| 86 |
pack(vbox2, [gtk.Label("a:"), lattice_box, gtk.Label("Å")]) |
| 87 |
tbl.attach(vbox2, 1, 2, 0, 1) |
| 88 |
lattice_button = gtk.Button("Get from database")
|
| 89 |
tbl.attach(lattice_button, 2, 3, 0, 1) |
| 90 |
# HCP stuff
|
| 91 |
self.hcp_ideal = (8.0/3)**(1.0/3) |
| 92 |
self.lattice_const_c = gtk.Adjustment(self.lattice_const.value * self.hcp_ideal, |
| 93 |
0.0, 1000.0, 0.01) |
| 94 |
lattice_box_c = gtk.SpinButton(self.lattice_const_c, 10.0, 3) |
| 95 |
lattice_box_c.numeric = True
|
| 96 |
pack(self.vbox_hcp, [gtk.Label("c:"), lattice_box_c, gtk.Label("Å")]) |
| 97 |
self.hcp_c_over_a_format = "c/a: %.3f (%.1f %% of ideal)" |
| 98 |
self.hcp_c_over_a_label = gtk.Label(self.hcp_c_over_a_format % (self.hcp_ideal, |
| 99 |
100.0))
|
| 100 |
pack(self.vbox_hcp, [self.hcp_c_over_a_label]) |
| 101 |
tbl.attach(self.vbox_hcp, 1, 2, 1, 2) |
| 102 |
tbl.show_all() |
| 103 |
pack(vbox, [tbl]) |
| 104 |
self.lattice_const.connect('value-changed', self.update) |
| 105 |
self.lattice_const_c.connect('value-changed', self.update) |
| 106 |
lattice_button.connect('clicked', self.get_lattice_const) |
| 107 |
pack(vbox, gtk.Label(""))
|
| 108 |
|
| 109 |
# System size
|
| 110 |
self.size = [gtk.Adjustment(1, 1, 100, 1) for i in range(3)] |
| 111 |
buttons = [gtk.SpinButton(s, 0, 0) for s in self.size] |
| 112 |
self.vacuum = gtk.Adjustment(10.0, 0, 100.0, 0.1) |
| 113 |
vacuum_box = gtk.SpinButton(self.vacuum, 0.0, 1) |
| 114 |
pack(vbox, [gtk.Label("Size: \tx: "), buttons[0], |
| 115 |
gtk.Label(" unit cells")])
|
| 116 |
pack(vbox, [gtk.Label("\t\ty: "), buttons[1], |
| 117 |
gtk.Label(" unit cells")])
|
| 118 |
pack(vbox, [gtk.Label(" \t\tz: "), buttons[2], |
| 119 |
gtk.Label(" layers, "),
|
| 120 |
vacuum_box, gtk.Label(" Å vacuum")])
|
| 121 |
self.nosize = "\t\tNo size information yet." |
| 122 |
self.sizelabel = gtk.Label(self.nosize) |
| 123 |
pack(vbox, [self.sizelabel])
|
| 124 |
for s in self.size: |
| 125 |
s.connect('value-changed', self.update) |
| 126 |
self.vacuum.connect('value-changed', self.update) |
| 127 |
pack(vbox, gtk.Label(""))
|
| 128 |
|
| 129 |
# Buttons
|
| 130 |
self.pybut = PyButton("Creating a surface slab.") |
| 131 |
self.pybut.connect('clicked', self.update) |
| 132 |
buts = cancel_apply_ok(cancel=lambda widget: self.destroy(), |
| 133 |
apply=self.apply,
|
| 134 |
ok=self.ok)
|
| 135 |
pack(vbox, [self.pybut, buts], end=True, bottom=True) |
| 136 |
|
| 137 |
self.add(vbox)
|
| 138 |
vbox.show() |
| 139 |
self.show()
|
| 140 |
self.gui = gui
|
| 141 |
|
| 142 |
# Hide the HCP stuff to begin with.
|
| 143 |
self.vbox_hcp.hide_all()
|
| 144 |
|
| 145 |
# update_element inherited from SetupWindow
|
| 146 |
|
| 147 |
def update(self, *args): |
| 148 |
"Called when something has changed."
|
| 149 |
struct = self.structchoice.get_active_text()
|
| 150 |
if struct:
|
| 151 |
structinfo = self.surfinfo[struct]
|
| 152 |
if structinfo[1] == 'hcp': |
| 153 |
self.vbox_hcp.show_all()
|
| 154 |
ca = self.lattice_const_c.value / self.lattice_const.value |
| 155 |
self.hcp_c_over_a_label.set_text(self.hcp_c_over_a_format % |
| 156 |
(ca, 100 * ca / self.hcp_ideal)) |
| 157 |
else:
|
| 158 |
self.vbox_hcp.hide_all()
|
| 159 |
# Abort if element or structure is invalid
|
| 160 |
if not (self.update_element() and struct): |
| 161 |
self.sizelabel.set_text(self.nosize) |
| 162 |
self.atoms = None |
| 163 |
self.pybut.python = None |
| 164 |
return False |
| 165 |
# Make the atoms
|
| 166 |
assert self.legal_element |
| 167 |
kw = {}
|
| 168 |
kw2 = {}
|
| 169 |
if structinfo[3]: # Support othogonal keyword? |
| 170 |
kw['orthogonal'] = structinfo[2] |
| 171 |
kw2['orthoarg'] = ', orthogonal='+str(kw['orthogonal']) |
| 172 |
else:
|
| 173 |
kw2['orthoarg'] = '' |
| 174 |
kw2['func'] = structinfo[4].__name__ |
| 175 |
kw['symbol'] = self.legal_element |
| 176 |
kw['size'] = [int(s.value) for s in self.size] |
| 177 |
kw['a'] = self.lattice_const.value |
| 178 |
kw['vacuum'] = self.vacuum.value |
| 179 |
# Now create the atoms
|
| 180 |
try:
|
| 181 |
self.atoms = structinfo[4](**kw) |
| 182 |
except ValueError, e: |
| 183 |
# The values were illegal - for example some size
|
| 184 |
# constants must be even for some structures.
|
| 185 |
self.pybut.python = None |
| 186 |
self.atoms = None |
| 187 |
self.sizelabel.set_text(str(e).replace(". ", ".\n")) |
| 188 |
return False |
| 189 |
kw2.update(kw) |
| 190 |
self.pybut.python = py_template % kw2
|
| 191 |
# Find the heights of the unit cell
|
| 192 |
h = np.zeros(3)
|
| 193 |
uc = self.atoms.get_cell()
|
| 194 |
for i in range(3): |
| 195 |
norm = np.cross(uc[i-1], uc[i-2]) |
| 196 |
norm /= np.sqrt(np.dot(norm, norm)) |
| 197 |
h[i] = np.abs(np.dot(norm, uc[i])) |
| 198 |
natoms = len(self.atoms) |
| 199 |
txt = ("\t\t%.2f Å x %.2f Å x %.2f Å, %i atoms."
|
| 200 |
% (h[0], h[1], h[2], natoms)) |
| 201 |
self.sizelabel.set_text(txt)
|
| 202 |
return True |
| 203 |
|
| 204 |
def get_lattice_const(self, *args): |
| 205 |
if not self.update_element(): |
| 206 |
oops("Invalid element.")
|
| 207 |
return
|
| 208 |
z = ase.atomic_numbers[self.legal_element]
|
| 209 |
ref = ase.data.reference_states[z] |
| 210 |
surface = self.structchoice.get_active_text()
|
| 211 |
if not surface: |
| 212 |
oops("No structure specified!")
|
| 213 |
return
|
| 214 |
struct = self.surfinfo[surface][1] |
| 215 |
if ref is None or ref['symmetry'].lower() != struct: |
| 216 |
oops(struct.upper() + " lattice constant unknown for "
|
| 217 |
+ self.legal_element + ".") |
| 218 |
return
|
| 219 |
a = ref['a']
|
| 220 |
self.lattice_const.set_value(a)
|
| 221 |
if struct == 'hcp': |
| 222 |
c = ref['c/a'] * a
|
| 223 |
self.lattice_const_c.set_value(c)
|
| 224 |
|
| 225 |
def apply(self, *args): |
| 226 |
self.update()
|
| 227 |
if self.atoms is not None: |
| 228 |
self.gui.new_atoms(self.atoms) |
| 229 |
return True |
| 230 |
else:
|
| 231 |
oops("No valid atoms.",
|
| 232 |
"You have not (yet) specified a consistent set of parameters.")
|
| 233 |
return False |
| 234 |
|
| 235 |
def ok(self, *args): |
| 236 |
if self.apply(): |
| 237 |
self.destroy()
|
| 238 |
|
| 239 |
|
| 240 |
|